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Abstract: Although several years have passed since its first introduction, the significance of Delay-
Tolerant Networking (DTN) remains evident, particularly in challenging environments where tradi-
tional networks face operational limitations such as disrupted communication or high latency. This
survey paper aims to explore the diverse array of applications where DTN technologies have proven
successful, with a focus on emerging and novel application paradigms. In particular, we focus on
the contributions of DTN in the Future Internet, including its contribution to space applications,
smart cities and the Internet of Things, but also to underwater communications. We also discuss its
potential to be used jointly with information-centric networks to change the internet communication
paradigm in the future.

Keywords: DTN; ICN/NDN; IoT/smart cities; space; underwater applications; protocols

1. Introduction

The Delayed/Disruptive Tolerance Network (DTN) has experienced significant growth
in usage and applicability throughout the years since its inception. Hence, although the
original focus of DTN was space communications [1,2], its utility has rapidly extended to
encompass a growing number of diverse applications [3,4]. These applications span various
domains including, but not limited to, space communications, the Internet of Things (IoT),
smart cities, and underground or underwater environments. To this end, we discuss how
the DTN suite of protocols and mechanisms work, its underlying philosophy, and the
technological gaps it addresses in order to identify DTN’s utility across a broad spectrum
of applications.

Therefore, this work explores the contribution of DTN towards a Future Internet,
including a Space Internet: what new concepts it brings, what possibilities it creates, and
consequently, how internet users gradually change the way they think. Practically, DTN
is a technology that allows for connectivity with disruptions and/or delays, even when
disruptions or delays dominate. This changes the notion of “connected” devices in its own
right, since it turns all devices into potentially connected or temporarily disconnected. In
turn, this changes the volume of data that can be gathered in a search if the search results can
be returned at a later time; the number of devices that share their relevant information can
be much larger if the response time can be extended in order to accommodate information
from currently disconnected devices. Therefore, requests need not necessarily be satisfied
immediately if they prioritize content optimization over response time. Another interesting
aspect is the varying impact of disconnections on applications. In space, for instance, where
the line of site is typically a communication requirement, a minute of disruption may result
in days of data–delivery delay. In space, occasionally time “stops”. Hence, the ability to
interconnect devices and reroute the data, using contact graph routing for example, allows
for time to restart or otherwise allows for transmission scheduling based on well-known a
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priori, deterministic events. Clearly, the traditional conception of communication changes,
and disconnection impact is restrained.

While several comprehensive surveys on DTN exist in the literature, with each empha-
sizing specific aspects such as routing protocols [5,6] or IoT integration [7], our approach in
this work is to highlight the major novelties of DTN applications across certain research
areas. Therefore, we focus on describing the innovative aspects of DTN rather than at-
tempting an exhaustive survey covering every possible dimension. Based on this approach,
we filtered out these publications based primarily on their relevance to the selected topics,
along with their impact, in our opinion, on the applications of the Future Internet. Along
these lines, we gather related works in specific domains where DTN introduces some
conceptual or technological novelty; in particular, we examined the following domains as
illustrated in Figure 1:

• Space.
• Information-Centric and Named Data Networking.
• Internet of Things and Smart Cities.
• Underwater.

The remainder of the paper is organized as follows: In Section 2, we provide an
overview of the general concept of the DTN approach and discuss the major challenges it
encounters. In Section 3, we present the taxonomy of major research areas where the DTN
suite is applied, while we also detail the relevant works and proposed solutions within
each category. Finally, in Section 4, we highlight our concluding remarks and future work
emphasizing the utilization of DTN in shaping the future internet landscape.

Figure 1. Graphical paper overview.

2. Concept and Challenges

DTN was originally developed, as defined in RFC 4838 [2], to ensure reliable message
delivery in highly dynamic and challenging Interplanetary Network (IPN) topologies,
which are environments in which the conventional networking paradigms pose significant
challenges. As a result, the fundamental concept of DTN, which distinguishes itself from
those paradigms, is the acknowledgment of communication disruptions as an inherent fea-
ture rather than an abnormality. Therefore, DTN revolves around enabling communication
in scenarios characterized by intermittent or disruptive connectivity, prolonged latency,
and other challenging conditions.

In order to understand the operational principles of DTN, mechanisms such as the
Store-Carry-and-Forward (SCF) and protocols like the Bundle Protocol (BP) serve as foun-
dational paradigms in the DTN suite. The SCF mechanism enables communication in
environments with intermittent connectivity, thus transforming intermediate (mobile)
nodes into relays or “data mules” to store, carry, and forward messages toward the destina-
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tion nodes until connectivity becomes available again in an asynchronous “hop-by-hop”
manner. Complementing the SCF approach, the BP, presented in RFC 4838 and 5050 [2,8]
as BP6, serves as a cornerstone protocol in DTN deployments. A bundle is defined as
a series of contiguous encapsulated data blocks, which are independently routed and
forwarded through the network. Its robustness lies in its ability to abstract underlying
network complexities, thus providing a common interface for communication regardless of
the underlying transport mechanisms or network topologies. Some notable features are the
inherent support for store-and-forward operations through the custody transfer mechanism
and Endpoint Identifiers (EIDs) for flexible addressing. The BP has been extended in RFC
9171 [9] (referred to as BP7), while several protocols and implementations have been built
upon it. In summary, DTN operates by storing and forwarding messages (bundles) between
nodes via the BP, i.e., Bundle Protocol Agents (BPAs), thus allowing communication in
environments with intermittent connectivity. Bundles are relayed through the network
opportunistically using custody transfer to ensure reliability.

However, the applicability of DTN principles has found relevance in terrestrial con-
cepts as well. This transition from extraterrestrial to terrestrial environments resulted in
various DTN-related protocols and solutions tailored to address the unique challenges
encountered in real-world deployments. Some of the major challenges DTN tackles are
listed below:

• Intermittent/Disruptive Connectivity and Link Disruptions: Deals with occasional
breaks or interruptions in network connectivity, e.g., space missions, remote areas, or
disaster zones with limited connectivity. Mechanisms are utilized to store and forward
messages until connectivity is restored or alternative routes become available.

• High Latencies/Round Trip Time (RTT) and Low Throughput: Encounters long delays
in message transmission and acknowledgment due to long-distance communication
or congestion in the network. Also, issues achieving high data transfer rates due to
limited bandwidth, intermittent connectivity, or congestion.

• Data Losses, Message Fragmentation, and Reassembly: Occur due to network con-
gestion, link disruptions, or node failures. Also, in cases of limited bandwidth or
size restrictions on transmitted data, large messages need to be fragmented into
smaller pieces for transmission and afterward reassembled to accurately reconstruct
the original message.

• Storage and Energy Constraints: Limitations regarding the availability of storage
space for storing and forwarding messages or the energy consumption, especially in
resource-constrained devices or networks. Storage management techniques, as well as
prioritization, scheduling, or energy-efficient protocols and algorithms are employed.

• Routing and Forwarding: Determining optimal paths for message delivery in scenarios
with dynamic network topologies, intermittent connectivity, or limited routing infor-
mation requires the utilization of adaptive routing protocols and forwarding strategies.

• Security and Privacy: Ensuring data confidentiality, integrity, and authenticity across
heterogeneous, decentralized, and potentially adversarial environments is crucial,
particularly when transmitting sensitive information.

• Heterogeneity: Need to support seamless communication among diverse devices
and networks with varying capabilities and characteristics, e.g., different protocols or
data rates.

• Quality of Service (QoS): Due to the inherent constraints of DTN environments such
as network disruptions and intermittent connectivity, there is a need for mechanisms
to ensure reliable message delivery while meeting specified performance criteria, e.g.,
throughput, latency, and reliability.

3. Related Work

Categorizing the application domains that utilize DTN protocols poses a significant
challenge due to the constantly expanding spectrum of DTN usage. The current review
aims to address some of the most significant and broadest scientific areas in which DTN
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protocols find application, in particular (i) space; (ii) Information-Centric Networking (ICN)
and specific architecture designs, e.g., Named Data Networking (NDN); (iii) the Internet of
Things (IoT) and its applications in smart cities; and (iv) underwater applications. Before
delving into a detailed analysis of DTN implementations within these specific areas, we
provide an overview of each domain.

3.1. Space

This category focuses on the initial concept of DTN, particularly its application in space-
related contexts. Within this domain, significant advancements in protocol implementations
and the utilization of satellites for terrestrial communications are identified and explored.
A summary of the space-related works is illustrated in Table 1.

While several studies have experimented with DTN-related protocols and solutions,
the majority of them are conducted on a small scale. The mature and extensive DTN
Engineering Network (DEN) testbed [10] is a worth-mentioning exception consisting of
labs at NASA Centers, which are connected through VPNs for experimentation. In addition,
SPICE, a state-of-the-art DTN testbed for developing and evaluating DTN implementations,
architectures, and protocols (underlying or overlying) for satellite and space communi-
cations, is described in [11]. SPICE incorporates components such as a Portable Satellite
Simulator (PSS) and CORTEX CRT and Satellite Tool Kit (STK), while it provides a link
with a GEO satellite (HellasSat 2) to provide real satellite link characteristics.

Furthermore, some works attempt to incorporate novel computing technologies to the
DTN experimentation process. For instance, the authors in [12–14] followed microservice-
based and distributed approaches utilizing cloud-based computing and containerization in
an attempt to enhance interconnectivity and scalability while lowering operating costs. The
latter work also proposed the interconnection of the DEN with AWS cloud-based Ground
Stations (GSs).

3.1.1. Space Protocols

To ensure reliable communication in space exploration, space protocols encompass a
range of specialized protocols for interplanetary, satellite, and space-based systems. These
protocols are designed to address the unique challenges of space environments, including
long communication delays, intermittent connectivity, and high error rates. Some important
protocols for space-related applications are listed below:

• Bundle Protocol (BP) and derivatives: One of the most popular and widely implemented
protocols, also highlighted in Section 2, which influenced subsequent protocols, e.g.,
(B-)DTN7 [15,16]—a BP7 implementation in Golang and IBR-DTN [17,18] based
on BP6.

• Licklider Transmission Protocol (LTP) [19]: Operates asynchronously by focusing on
reliable transmission through segmentation, storage, reassembly, and congestion
control of data packets in DTN environments [20–22].

• Advanced Orbiting Systems (AOSs) Space Data Link Protocol [23]: Includes mechanisms
for error detection and correction and link synchronization between spacecrafts
and GS.

• ION-DTN [24]: A DTN protocol suite/infrastructure suitable for interplanetary flight
mission systems. For instance, ION CCSDS File Delivery Protocol (CFDP) [25], which
focuses on file transmission among DTN nodes.

• QUIC Protocol and derivatives (e.g., QUICL [26]): Although primarily designed for
use over traditional internet connections to provide low-latency communication over
unreliable networks [27], it gained attention in the satellite domain.

• Delay-Tolerant Payload Conditioning (DTPC) Protocol [28]: Adding an application-
independent protocol layer to provide end-to-end transport services to the ION-DTN
implementation.

• Deep Space Transport Protocol (DS-TP) [29]: Includes novel proactive transmission and
retransmission scheduling rules.
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• Space Packet Protocol (SPP) [30]: Provide unidirectional space data transfer service
containing an application process identifier to identify packet streams.

• Encapsulation Packet Protocol (EPP) [31]: Encapsulate higher-layer protocol data units
using Space Data Link protocols without authorized packet version Numbers over
space links.

• Routing Protocols: Spray and Wait [32,33], Contact Graph [34,35], Epidemic, Probabilis-
tic, Social-Based.

3.1.2. Satellites

Satellites are the primary components of space communications serving as the tangible
embodiment of the original DTN concept. They can be typically categorized based on
their distance from the Earth’s surface into Geostationary Earth Orbit (GEO), Medium
Earth Orbit (MEO), and Low Earth Orbit (LEO). In terms of size, there is a trend to-
ward smaller and more agile satellites known as “SmallSats” and “CubeSats”, which
adhere to SI metrics in their naming, e.g., minisatellites, microsatellites, nanosatellites, etc.
(https://www.nasa.gov/what-are-smallsats-and-cubesats/ accessed on 4 March 2024) .
GEO satellites follow the rotation of the Earth and thus appear stationary over a fixed
position for an observer located on Earth. Their wide coverage and lifespan are their major
advantages, as three equally-spaced satellites can provide near-global coverage; however,
latency becomes a significant drawback, especially for latency-sensitive applications such
as voice or video communication. On the contrary, MEO and especially LEO satellites take
advantage of the closer to the Earth distance and provide lower RTTs due to the lower
propagation delay. However, more satellites are required for full coverage, while some
significant challenges arise regarding the lifespan, complexity (e.g., intersatellite links and
high mobility), congestion of radio spectrum, interference avoidance, and coordination of
multiple interests.

In particular, the feasibility and implementations of space internetworking across
various domains have been explored in different works [4,36,37]. An interesting domain is
multimedia content delivery or streaming. Although in (deep) space communications the
delay becomes a bottleneck, solutions have been proposed such as the Bundle Streaming
Service (BSS) [38]. Applicationwise, there is a plethora of terrestrial services provided by
satellites. including the following application domains:

1. Internet Service and Relay Systems: (i) Provide global internet coverage primarily facili-
tated by the rapid deployment of LEO satellites and constellations (e.g., Globalstar,
Starlink, OneWeb) [39,40]. They can serve as complementary solutions to traditional
internet services (e.g., in cases of emergency) or as effective substitutes in areas lacking
terrestrial connectivity. Various proposals for communication enhancements have also
been proposed. For instance, ref. [41] describes a transmission scheduling algorithm
for LEO satellites involving a broadcasting mechanism with randomized retrans-
missions and a Peer-to-Peer (P2P) multicast ground distribution scheme. The paper
by [42] proposes enhancements between LEO/MEO intersatellite communication sys-
tems through modulation techniques and electrical pulse generators or tools to predict
delivery time, e.g., Bundle Delivery Time Estimation (BDTE) [43]. (ii) Data Relay Satel-
lites (DRSs) transmit information to and from satellites, spacecraft, vehicles/vessels,
and fixed Earth GSs, e.g., the European Data Relay System (EDRS) [44], U.S. Tracking
and Data Relay Satellite System (TDRSS) [45], or Earth-to-Moon communication [46].

2. Remote Sensing and Earth Observation: (i) Environmental/climate monitoring (e.g., the
GR01-DUTHSat for upper atmosphere measurements [47]); (ii) meteorology phenom-
ena and atmospheric tracking (e.g., the Leonardo Bidirectional Reflectance Distribu-
tion Function (BRDF) constellation and Cyclone Global Navigation Satellite System
(CYGNSS)); (iii) pollution monitoring (e.g., oil spill detection); and (iv) surveillance
and high-resolution photography.

3. Power Energy Networks and Smart Grids: Provide robust and flexible network manage-
ment and interconnection of distributed and heterogeneous energy infrastructures

https://www.nasa.gov/what-are-smallsats-and-cubesats/
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(e.g., supervisory control and data acquisition) while efficiently utilizing the band-
width and minimizing installation and maintenance costs [48,49].

4. Maritime and Agriculture: Enable communication among devices/sensors in the field
and drones/satellites. They allow for remote monitoring and the management of oper-
ations for (i) satellite–terrestrial communication networks at sea [50–52]; (ii) gathering
data, e.g., meteorological, moisture levels, temperature, humidity, crop health [53];
and (iii) precision agriculture [54,55] and Machine Learning (ML) techniques [56].

5. Military: Enhance surveillance and aerial reconnaissance operations [57,58]. They
provide reliable, global, and secure communication and navigation services while also
gathering real-time intelligence by utilizing mainly LEO nano- and microsatellites.

Table 1. Summary of space-related literature works.

Challenges Papers Focus Solution/Protocol

Extreme delay, intermittent
connectivity,

security and authentication,
mobility, resource constraints,

infrastructure damage

[2,8]
[15,16]
[17,18]

[19]
[24]
[23]

[26,27]
[28]
[29]
[30]
[31]

[32–35]

[10]
[11]

[38]

[12]
[13,14]

[41]
[42]

[43]

[48]
[49]

[50–52]
[54–56]

[57,58]

Protocol definition

Testbeds for space

Multimedia content delivery

Microservice-based
approaches

Enchantments for scheduling
and prediction

Energy and smart grids

Maritime
Agriculture

Military support

BP
(B-)DTN7
IBR-DTN

LTP
ION-DTN

AOS
QUIC and QUICL

DTPC
DS-TP

SPP
EPP

Routing protocols

DEN
SPICE

BSS

A2C and DQN-based
HDTN project

P2P decentralized simulation tool
Modulation techniques for
electrical pulse generators

BDTE tool and CGR

AURA-NMS performance
SATCOM systems in smart grids

Networking, UAV-enhanced Hybrid Networks
Precision agriculture with ML and DL

Lasers and military satellites

3.2. Information-Centric Networking (ICN) and Named Data Networking (NDN)

The ICN paradigm represents an alternative approach to traditional IP-based internet-
working that focuses on the content itself rather than its (IP) location [59]. Notably, NDN
emerges as a leading architecture within ICN, thus gaining increased attention [60,61]. In
these lines, schemes such as NDN-over-DTN (NoD) have been proposed [62]. In particular,
NDN accesses the content via its name (i.e., Named Data Objects (NDOs)) as facilitated
by Content Identifiers (CIDs) rather than through host-to-host communication. Some key
components of NDN include the Forwarding Information Base (FIB) (i.e., similar to routing
tables in IP networks), which maps names to interfaces and determines where to forward
the interest based on the name it carries, and the Pending Interest Table (PIT), which tem-
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porarily stores the corresponding interests. Hence, ICN approaches aim to improve content
delivery, caching efficiency [63], and network scalability [64] by directly addressing content
and enabling in-network caching and content-based routing. The related works can be
found in Table 2.

3.2.1. DTN-ICN in IoT

The DTN-ICN convergence can offer a resilient architecture paradigm for IoT environ-
ments. It can enable efficient data dissemination, enhance reliability, and provide seamless
communication within the dynamic, intermittently connected, and resource-constrained
IoT ecosystems.

Efforts to evaluate the performance of NDN, DTN, and NoD architectures have been
made within dynamic IoT networks [65,66]. Regarding the latter case, the authors identify
tradeoffs (content retrieval delay, cache hit ratio, delivery ratio) within each approach with
various packet sizes and numbers of nodes in stationary and mobile IoT networks. The
work by [67], which is extended in [68,69], e.g., to include anomaly detection techniques
for prediction and propose an adaptive NoD multiprotocol SDN solution for smart cities
within the REWIRE project (https://www.fed4fire.eu/demo-stories/oc9/rewire/ accessed
on 4 March 2024). The system was evaluated in the large-scale CityLab (https://www.
fed4fire.eu/testbeds/citylab/ accessed on 4 March 2024) and w.iLab (https://www.fed4
fire.eu/testbeds/w-ilab-t/ accessed on 4 March 2024) testbeds with extended metrics
similar to [67]. Another paper [70] presents an architecture based on NDN-DTN to enhance
data retrieval from intermittently connected devices, such as those found in the IoT and
sensor networks operating in remote areas. Through real-world WiFi-based experiments,
the authors demonstrated significant improvements in the interest satisfaction ratio and
average delay, particularly in environments characterized by a low delivery ratio and
contact duration. In a different study [71], the authors employed the BP as an underlying
transport mechanism for the Constrained Application Protocol (CoAP), thus deviating
from the default UDP, which is used in IoT scenarios. Furthermore, in [72], fog computing
and IoT were integrated, thus introducing the concept of “content islands”. The authors
developed a publish/subscribe system and a prototype over DTN to facilitate data and
computation sharing utilizing MQTT and IBR-DTN. Similar works that utilize and leverage
MQTT with DTN are also highlighted for IoT case studies in Section 3.3.

Modifications to ICN architectures have also been explored to achieve delay and
disruption tolerance. In [73], the authors propose an ICN-over-LoRa framework within
DTN-constrained IoT environments. They considered varying RTTs to facilitate end-to-
end ICN communication from internet consumers to LoRa nodes. Additionally, in [74],
the concept of reflexive forwarding/pushing is introduced as an extension to the Content-
Centric Networking (CCN) and NDN protocol architectures, thus aiming to mitigate issues
associated with independent interest–data message exchanges in scenarios involving the
transfer of large data volumes. The paper by [75] also focuses on CCN but regarding
data transmission and modifying caching during short network contacts through CCN
content discovery. Furthermore, in [76], the RICE network layer framework is proposed
for remote function invocation within ICN, thereby aiming to reduce polling overhead
and introduce function-oriented capabilities. This includes employing the programming-
oriented concept of “thunks” and introducing a 4-way handshake for security enhancement.
Moreover, several works leverage the functionality of DTN architectures, such as the
UMOBILE architecture [77] and the RIFE integrative architectural platform [78]. These
frameworks bring together IP, ICN, and DTN into unified frameworks while also offering
QoS-enhanced services.

3.2.2. DTN-ICN in Emergency Scenarios

The possibility of utilizing the ICN approach in emergency scenarios where the DTN
concept is a key aspect has been highlighted by several research groups [79,80] and studies.

https://www.fed4fire.eu/demo-stories/oc9/rewire/
https://www.fed4fire.eu/testbeds/citylab/
https://www.fed4fire.eu/testbeds/citylab/
https://www.fed4fire.eu/testbeds/w-ilab-t/
https://www.fed4fire.eu/testbeds/w-ilab-t/
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This approach can help re-establish communication in scenarios where communication
infrastructures are unavailable.

Along these lines, the authors in [75] introduce a CCN-Oriented Notification Service
(CNS) that leverages ICN to facilitate efficient disaster management by minimizing ad-
ministrative overhead, thus reducing network congestion, latency, and enhancing security
during communication establishment. They perform large-scale simulations with real-
world disaster traces and compare the CNS with IP-based solutions. The authors in [81]
introduce Delay-Tolerant ICN for Disaster Management (DID), which is a framework de-
signed to address the challenges of communication resilience in disaster scenarios. DID
focuses on enabling interest-based content retrieval among fragmented networks. The
work of [82] presents an orchestration framework that integrates ICN/DTN with long-term
evolution standards for public security applications, thereby offering a radio access network
to end users.

Furthermore, the notion of ICN “data mules” [81,83–85], which deliver information
in a publish/subscribe manner to different fragments of the network with predetermined,
fixed, or random paths, has also been examined. In this context, additional features have
been introduced to ICN, such as scoping and prioritizing messages/interests according
to specific attributes. These attributes may include (i) user-defined priorities; (ii) content
lifetime and validity [86]; (iii) criticality (e.g., broadcasting emergency messages [81] or the
preprocessing and delivery of medical images for healthcare workers [87,88]); (iv) popular-
ity [85]; or (v) reputation score [89].

3.2.3. DTN-ICN-VANETs

Due to the inherited NDN features, such as multicast or in-path caching, NDN (and
CCN/ICN in general) has been recognized as an attractive solution for Vehicular Ad Hoc
Networks (VANETs) [90–92]. In particular, [93] introduces the Multihop Multipath and
Multichannel Vehicular NDN routing protocol (iMMM-VNDN) designed for the Vehicle-
to-Vehicle (V2V) message exchange. In another work [94], a Vehicle-to-Infrastructure
(V2I) communication architecture based on NDN was investigated, including a content
discovery phase with the assistance of both vehicles and Roadside Units (RSUs). Along
these lines, they broadcast beacon messages containing information about content sources
and MAC addresses. The authors in [95] propose a Density-Aware Delay-Tolerant (DADT)
interest forwarding strategy to retrieve traffic data in vehicular NDN environments and
retransmit interests based on directional network density considerations. Moreover, the
NDN Vehicular Internetworking (V-NDN) framework, as discussed in [91], enables a
car/node to utilize various wireless interfaces in a V2V and V2I manner according to the
requirements of specific applications.

The paper by [96] focuses on NDN-based content caching within dynamic and delay-
constrained network topologies. They introduce DeepNDN, an architecture that combines
probabilistic techniques with convolutional neural networks to optimize content caching.
Similar contexts have been explored in V2V [97] and V2I [98] scenarios and in [99] where
cache refreshing schemes have been proposed in rational order or updated upon requests
with a defined probability.

Efforts to increase link stability and improve content delivery timeliness have also been
discussed. The importance of prioritizing neighboring vehicles with more stable links is high-
lighted in [100], while ref. [101] suggests sharing time-critical content among RSUs and vehicles
using a publish/subscribe-based message propagation approach to prevent accidents.

To conclude, while ICN/NDN and DTN initially addressed distinct networking chal-
lenges, i.e., content retrieval in fixed networks and data delivery in deep space communica-
tions, respectively, they can complement each other in scenarios involving mobility and
intermittent or disrupted connectivity. In these cases where the usual end-to-end paths
may not be available, the content-centric approach of ICN can improve content delivery, as
expressions of interest (subscriptions) can be satisfied long after they have been issued and
may be served from any node that has a copy of an object that matches the interest.
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3.3. Internet of Things and Smart Cities

The IoT refers to a network of physical objects embedded with software, sensors, and
other technologies, thereby enabling connectivity and data exchange among devices and
systems. Some primary reasons for leveraging the IoT include (i) improved efficiency [102];
(ii) data-driven decision making [103]; (iii) enchanted user experience [104]; and (iv) remote
monitoring and controlling [105].

The concept of the “Internet of Things” was first introduced as a term in a speech in
1985 and has since evolved to be driven by the combination of multiple technologies such
as ubiquitous computing, shared sensors, increasingly powerful embedded systems, and
ML. It finds applications in various sectors of human life, including healthcare systems,
transportation, smart homes, and energy. Along these lines, the smart city concept utilizes
IoT technologies and data-driven solutions to enhance the efficiency, sustainability, and
quality of life of its residents [106]. Incorporating IoT devices [107], sensors, data analytics,
and various other technologies allows for the real-time utilization of data, thus enabling
better decision-making and resource management across different domains such as trans-
portation [108], energy [109], healthcare [110], public safety [111], and governance [112]. A
summary of the discussed works is illustrated in Table 3.

Table 2. Summary of ICN/NDN-based literature works.

Challenges Papers Focus Solution/Protocol

Heterogeneity, integration
with IP-based networks,

data prioritization,
security, intermittent

connectivity

[62,65,66,70,73]

[77]
[76]

[62,67–69]

[63]

[71]
[72]

[74,75]

[81]
[83]
[84]
[85]
[87]
[86]
[88]
[89]

[94]
[95]
[91]

[90]

[97]
[98]
[99]

[100]
[101]

NDN/DTN architectures

NDN/DTN platforms for IoT

Adaptive multiprotocols
for smart cities

Caching in IoT

IoT protocols and concepts

Disaster scenarios and
prioritization of interests

Protocols/Solutions
for VANETs

ICN VANETs architecture

Caching in VANETs

Prioritization in VANETs

NoD, ICN-over-LoRa

UMOBILE
RICE

NoD and ML

EFPCaching

CoAP
Content islands

CCN and reflexive forwarding

DID
ICN Data muling

Name-based push and pull service
Popularity estimation scheme
Image prioritization method
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iMMM-VNDN
DADT
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SEVeN
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Content prefetching optimization
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3.3.1. IoT and Smart Cities Protocols

To ensure effective communication among network nodes, efficient message delivery,
and overall IoT operation, the following DTN-related protocols are commonly utilized:

• Bundle Protocol (BP) [7]: Enables the transmission of data in challenged environments
by encapsulating data into bundles and routing them opportunistically.

• Spray and Wait (SNW) [113]: Distributes messages by spraying multiple copies and then
waiting for successful delivery, thus storing and forwarding messages opportunistically.

• Epidemic Routing [5]: Disseminates data by reproducing and pushing messages to all
the nodes it encounters, thus ensuring final delivery through opportunistic encounters
in latency-tolerant networks.

• MaxProp [114]: Prioritizes message forwarding on the basis of maximum probability
for a successful delivery, thus optimizing the efficiency of communication in delay-
tolerant networks.

• Prophet [115]: Utilizes probabilistic forwarding based on historical encounter informa-
tion for improving message delivery in intermittent networks.

• MQTT: A widely used TCP-based publish/subscribe protocol within IoT deployments.
It is proposed to be combined with the DTN and IBR-DTN for real IoT Sensor Networks
(MQTT-SN) [116] and IoT environment cases [117]; to be utilized complementarily
to DTN under various disruption patterns [118,119] utilizing the 5.0 MQTT version
(https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html accessed on 4 March
2024); run over the QUIC protocol (i.e., MQTT over QUIC) [120]; or leveraged as
the next generation IoT standard protocol, thereby offering substantial performance
advantages and resource footprint reduction.

• Licklider Transmission Protocol (LTP) [121].

3.3.2. IoT and Smart Cities Applications

Regarding the DTN suit and its applications in the IoT and smart city domains, some
highlighted research areas focus on the following:

• Remote Environmental Monitoring: The process of collecting data on various envi-
ronmental parameters in areas that are difficult to access or far from settlements.
Delay-Tolerant Wireless Sensor Networks (DTWSNs) have been established to assist
with the collection of data, as well as the tracking and monitoring of animals. For
instance, [122] describes the design of a GPS tracking device that utilizes the DTN
suite in order to monitor, collect data, and track the Galápagos pink land iguana.

• Data Aggregation and Data Collection: The collection and integration of dispersed data
points from various sources into a central system for analysis and decision making
frequently address challenges related to limited connectivity. A typical example is
the usage of DTN on Wireless Body Area Networks (WBANs), which are used in a
plethora of scenarios, such as hospital data, military situations, and in the recognition
of dangerous diseases for animals, as mentioned in [123]. Furthermore, DTN assists
in data collection from Vehicular Delay-Tolerant Networks (VDTNs), particularly in
applications for smart cities. An example is the Data Collection for Low Energy Devices
(DC4LED), which is a hierarchical VDTN routing tested in the city of Helsinki [124].

• Disaster Management and Emergency Reports: Aim to address issues related to natural
or man-made disasters. Typical examples are the utilization of the DTN protocols
to ensure effective communication for the prioritization of messages in disaster sce-
narios [125], the organization of recovery operations in areas with limited network
availability, and in proactive disaster management applications to predict patterns of
human and vehicle mobility [126,127].

• Healthcare Monitoring in Rural Areas: Leveraging solutions to remotely monitor and
manage patients’ health, particularly in regions with limited access to medical facilities
and health professionals. Such a delay-tolerant data communication system for the

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
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transmission of health and environmental data to areas of developing countries is
presented in [87].

• Public Transportation and Mobility: The provision of common transport services facilitate
efficient movement in both urban and rural areas, thereby improving accessibility
and reducing congestion. An example of DTN application in this domain is the DTN
routing algorithm as presented in [128].

• Energy Management: The efficient use, monitoring, and optimization of energy re-
sources to minimize consumption, reduce costs, and mitigate environmental impact.
A combination of energy-efficient architectures is provided by [129] and evaluated in
the ONE simulation.

• Location Monitoring: The Real-Time Location System (RTLS) is a technology that
tracks and identifies the current geographic location of objects or people in real
time. RTLS is integrated in IoT cases, thereby allowing for the monitoring of the
environmental and health conditions of workers. In underground scenarios such as
miners’ reconnaissance, RTLS plays a crucial role in location monitoring, as discussed
in [130]. Additionally, the proposed architecture includes Bluetooth Low-Energy (BLE)
beacon-based devices, while it also analyzes key factors for a future 6G IoT system.

3.3.3. MANETs, VANETs, V2X, WSN

A significant category where DTN protocols find extended applications is VANETs [131].
VANETs enable communication between vehicles and roadside infrastructure to enhance road
safety, traffic efficiency, and provide infotainment services. To this end, DTN protocols provide
resilience to VANET infrastructures, which is an important aspect due to the obstacles, signal
interference, or network congestion that they may encounter.

Similarly, Mobile Ad Hoc Networks (MANETs) [132], i.e., decentralized mobile net-
works of autonomous agents that collaborate and communicate, are commonly employed
in scenarios where traditional infrastructure is lacking or impractical. One key benefit
gained from DTN utilization is resilient communication. In this context, DTN protocols
enable communication even in challenging and dynamic environments encountered by
MANETs, such as intermittent connectivity, node mobility, and disruptions. In addition, the
store-and-forward mechanism of DTN allows for efficient message delivery, as messages
are relayed opportunistically through intermediate nodes. This is particularly beneficial in
MANETs, where varying communication ranges and node densities are common issues.

Moreover, as mentioned in [133], DTN’s decentralized nature aligns well with the au-
tonomous operation of agents in MANETs, thus enabling self-organizing and self-healing
communication without relying on fixed infrastructure. Dynamic routing is another advantage,
as DTN protocols adapt routes based on real-time network conditions, thereby making them
suitable for MANETs where network topology and connectivity can change rapidly.

Furthermore, several works on DTN-related solutions for emergency situations have
been proposed. In [134], the authors propose LoRAgent, a DTN-based location-aware
system and geospatial routing mechanism using LoRa technology to provide decentralized
communication and message forwarding. Moreover, in [135], a mobile cloud computing
system for information exchange among isolated shelters via mobile vehicle server is
introduced using IBR-DTN and DTN2. In addition, [136] provides an overview regarding
the utilization of UAVs in V2X applications, e.g., as access point carriers [137].

3.4. Underwater

The applications of Underwater Wireless Communication (UWN) range from ocean
pollution monitoring to environment, climate, natural disturbances, and marine ecosys-
tem monitoring for survey and overview operations, surveillance, offshore exploration,
navigation, and disaster prevention. The primary objective of UWN is the detection and
monitoring of the underwater environment, as well as the navigation of Autonomous
Underwater Vehicles (AUVs) and information provision to offshore centers via interme-
diate data collection points or floating sinks above sea level. Some additional limitations
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specific to the underwater application scheme include propagation delay or time-varying
multiparty propagation [138], multivariate attenuation [139], the effect of noise [140], lim-
ited bandwidth [141], high transmission power [142], big error rates [143], limited energy
harvesting options [144], and no position information [145]. A summary of the related
underwater works is illustrated in Table 4.

Table 3. Summary of IoT/smart cities-related literature works.

Challenges Papers Focus Solution/Protocol

Heterogeneity, mobility,
scalability, variable delay,

resource/(energy) constraints,
security and privacy

[7]
[113]

[5]
[114]
[115]

[116–120]
[121]

[87,122–124]
[125–127,129]

[108,128]
[130]

[131]

[132,133]
[134]

[135]
[137]

Protocols definition

Data collection and monitoring
Disaster and energy management
Public transportation and mobility

Location monitoring

VANETs

MANETs

Mobile computing in disaster
UAVs in V2X

BP
SNW

Epidemic routing
MaxPro
Prophet

MQTT-DTN
LTP

BP, VDTN, epidemic routing
Routing protocols

Review, routing protocols
RTLS, LoRaWAN, Zigbee

IQDN

Routing protocols
LoRAgent: LoRa and BP

IBR-DTN and DTN2
UGV and UAV

3.4.1. Underwater Protocols

Some of the protocols commonly used in underwater applications include the following:

• Spray and Wait (SNW) [146].
• Resource Allocation Protocol for Intentional DTN (RAPID) [147]: Optimizes resource

allocation and scheduling for data transmission in DTNs, thereby enhancing efficiency
and reliability.

• Underwater DTN with Probabilistic Spraying (UDTN-Prob) [146]: Broadcasts underwater
messages using probabilistic copy transmission, thereby optimizing data delivery in
difficult underwater communication environments.

• Q Learning-Based DTN Routing Protocol (QDTR) [138]: Uses reinforcement learning
techniques to adjust routing decisions dynamically and optimize message delivery.

• Redundancy-Based Adaptive Routing (RBAR) [148]: Optimizes message delivery in delay-
tolerant networks by dynamically adjusting routing decisions based on redundancy
levels to enhance reliability.

• Prediction-Based Delay-Tolerant Protocol (PBDTR) [149] and Prediction-Assisted Single-
copy Routing (PASR): Employ prediction information to improve message routing and
enhance delivery efficiency.

• Delay-Tolerant Data Dolphin (DDD) [144]: Utilizes dolphin-inspired communication
strategies to optimize data transmission and improve efficiency.

3.4.2. Underwater Applications

Some applications in which DTN finds implementation in underwater networks
are those where traditional communication methods such as Radio Frequency (RF) or
optical signals may be ineffective due to signal attenuation, propagation limitations, or
environmental factors. These applications include the following:
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• Underwater Environmental Monitoring: The systematic collection of data to evaluate and
understand ecological conditions and changes in underwater ecosystems, as presented
in [150] with a deepwater monitoring system in the Cambos Basin offshore area.

• Underwater Exploration and Surveillance: Utilized to explore and monitor underwater
environments for scientific research, safety, or commercial purposes. This application
employs technologies such as the Coastal Patrol and Surveillance Application (CPSA)
and introduces novel protocols like Reed–Solomon (RS) [151].

• Underwater Acoustic Communication: Involves the transmission of data through sound
waves in underwater environments, thus allowing communication among underwater
devices, vehicles, and surface stations [152].

• Underwater Remote Sensing and Mapping: The integration of technologies to harvest
data from underwater environments to generate detailed maps and comprehend
underwater topography, habitats, and resources [152].

• Underwater Disaster Prevention: Deals with the implementation of measures and strate-
gies to mitigate risks and minimize the impact of natural or man-made disasters in
underwater environments, such as oil spills, tsunamis, or industrial accidents. An
example is the utilization of DTN for the Underwater Internet of Things (UIoT) and
its various applications, as demonstrated in [153].

Table 4. Summary of underwater-related literature works.

Challenges Papers Focus Solution/Protocol

Propagation delay,
multivariate attenuation,

limited bandwidth,
high transmission power,

bit error rate,
intermittent connectivity,
no position information,
limited energy demands

[146]
[147]
[146]
[138]
[148]
[149]
[149]
[144]
[143]

[150]
[151]

[152]
[154]

[153]
[155]
[156]

Protocols definition

Monitoring surveillance and sensing

Acoustic communication

Disaster prevention and UIoT
Underwater DTN network simulator

Overlay networking WSN

SNW
RAPID

UDTN-Prob
QDTR
RBAR

PBDTR
PASR
DDD
ORIT

Prophet and epidemic routing
UDTN-RS

Network and routing protocols
Reinforcement learning-based selection

Survey
DTN Aqua-Sim

DTN-Janus

4. Discussion and Conclusions

We have highlighted the potential of DTN to contribute to a variety of internet applica-
tions and also to contribute toward extending the internet in order to accommodate isolated
environments such as underwater or space. The key characteristics of this technology
that enable a unification of diverse environments are the custody transfer and the storage
capabilities. In fact, the way DTN operates is not in contrast with the traditional end-to-end
architecture of transport protocols; it transforms it into an end-to-end architecture with
one sliding end. Indeed, the custody is gradually transferred to the next node each time,
thereby making graduated progress toward reaching the other end. This new philosophy
of communication, even when connection gaps exist, allows for a new perspective for
interconnecting devices: Not all devices need to be interconnected at all times. Hence,
information can be shared from devices that may be interconnected in the near future. Such
devices and their users can now become active members of the internet community even
when they are temporarily disconnected.
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Focusing on the specified domains presented in Section 3, i.e., space, ICN and NDN,
IoT and smart cities, and underwater, we have described a number of works that uti-
lize DTN within each domain. In space, DTN allows for interconnecting space devices
and permits an alternative solution to line-of-sight limitations, thus allowing for a 24/7
paradigm and opening a new era for satellite technologies as well. In particular, we have
identified the necessity—and, in turn, the challenges—to implement and evaluate the
proposed DTN-based solutions (e.g., protocols, algorithms, or frameworks) not only in
simulated environments but also on a large scale, as well as in real-world scenarios. Along
these lines, scalable testbeds such as DEN or SPICE have emerged, thus providing space-
related environments for the evaluation of solutions, with some proposing integration
with cloud-based computing and containerization technologies. Furthermore, satellites
have gained increased attention as significant enablers in the new era of the internet and
communications, thereby aiming to harvest the close-to-terrestrial delays that LEO satellite
communications provide. This has implications for a range of terrestrial domains such as in-
ternet services, Earth observation, energy, maritime, agriculture, and military applications.
However, some of the related challenges, protocols, and solutions they aim to solve include
the routing and scheduling of data transmission in intermittently connected networks;
efficient resource allocation to optimize bandwidth utilization; seamless integration and
interoperability with existing terrestrial networks, technologies, and protocols; and robust
security mechanisms.

Also, it is worth noting that the incorporation of DTN protocols in ICN architectures
allows for a publish/subscribe model even when users are temporarily disconnected
but still gather useful information from their local spot. This information can be shared
or delivered to the interested users if they do not demand immediate answers to their
queries. This feature also allows for optimizing search results when time is not a critical
issue, as delivered information can then be more complete and enhanced. In this context,
we have identified works that implement solutions leveraging DTN combined with ICN
paradigms like NDN and CCN in critical and challenging domains. Environments like IoT,
emergency scenarios, and VANETs demand adaptive and multiprotocol solutions, as well
as mechanisms and frameworks to deal with the heterogeneity and special requirements of
the involved ecosystems (e.g., the prioritization of messages, large data delivery, forwarding
strategies, and dynamic content caching).

Likewise, in IoT and smart city applications, DTN-based solutions can enhance system
efficiency and enable real-time data utilization, as well as better decision making according
to the collected and processed data. In this context, the development of dynamic and
next-generation routing solutions/protocols, as well as the integration with data analytics
and ML/AI-oriented solutions, can improve IoT efficiency. Furthermore, user experiences
can be enhanced in smart city scenarios while providing the necessary means for remote
monitoring and surveillance in domains such as healthcare, e.g., monitoring patients in
remote and rural areas, or public transportation, e.g., optimizing public transportation by
avoiding traffic during peak hours.

The contribution of DTN in underwater applications is equally important, as it assists
in dealing with limitations such as the propagation delay and the limited bandwidth
and environmental factors present in underwater environments. Some representative
examples include the monitoring of environmental data in underwater ecosystems or the
establishment of acoustic communication among underwater vehicles and offshore stations.
Finally, DTN plays a crucial role in the Underwater IoT, thereby enabling a wide range of
applications in this domain.

As emphasized in the Section 4, it is important to acknowledge that this work does
not attempt to provide a comprehensive and exhaustive review covering the entirety of
applications and domains in which DTN excels. Instead, it focuses on specific research
areas that can benefit from enhancements provided by DTN, i.e., space, ICN/DTN, IoT
and smart cities, and underwater applications. In future work, we intend to expand upon
the findings presented in this DTN-focused paper, thereby covering a broader spectrum



Future Internet 2024, 16, 129 15 of 21

of domains and applications. This includes investigating innovative technologies, which
can act as enablers of the Future Internet such as 5G/6G and Low-Power Wide Area
Network (LPWAN) technologies, e.g., NarrowBand IoT and Zigbee, Software-Defined
Networking (SDN), ML/AI-driven networking, or edge computing. Along these lines,
we aim to explore how these technologies intersect with DTN’s perspective within the
evolving internet landscape. In addition, an examination of DTN’s performance through an
overarching analysis of its real-world applications presents an interesting area for further
investigation. By closely examining the practical implementations of DTN in these contexts,
we can gain valuable insights into its effectiveness, scalability, and adaptability in dynamic
and challenging environments.
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