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Abstract: Disease and detection is crucial for the protection of forest growth, reproduction, and
biodiversity. Traditional detection methods face challenges such as limited coverage, excessive
time and resource consumption, and poor accuracy, diminishing the effectiveness of forest disease
prevention and control. By addressing these challenges, this study leverages drone remote sensing
data combined with deep object detection models, specifically employing the YOLO-v3 algorithm
based on loss function optimization, for the efficient and accurate detection of tree diseases and
pests. Utilizing drone-mounted cameras, the study captures insect pest image information in pine
forest areas, followed by segmentation, merging, and feature extraction processing. The computing
system of airborne embedded devices is designed to ensure detection efficiency and accuracy. The
improved YOLO-v3 algorithm combined with the CIoU loss function was used to detect forest pests
and diseases. Compared to the traditional IoU loss function, CIoU takes into account the overlap
area, the distance between the center of the predicted frame and the actual frame, and the consistency
of the aspect ratio. The experimental results demonstrate the proposed model’s capability to process
pest and disease images at a slightly faster speed, with an average processing time of less than 0.5 s
per image, while achieving an accuracy surpassing 95%. The model’s effectiveness in identifying
tree pests and diseases with high accuracy and comprehensiveness offers significant potential for
developing forest inspection protection and prevention plans. However, limitations exist in the
model’s performance in complex forest environments, necessitating further research to improve
model universality and adaptability across diverse forest regions. Future directions include exploring
advanced deep object detection models to minimize computing resource demands and enhance
practical application support for forest protection and pest control.

Keywords: drones; YOLO-v3; trees; prophylaxis; forestry; environment

1. Introduction

In the current context of globalization, forest health has become a global focus, espe-
cially in the detection and management of forest pests and diseases (FDP). With the rapid
development of UAV remote sensing technology, its application in forest resource survey
and pest monitoring is increasingly widespread [1–3]. Traditional forest pest monitoring
methods mainly rely on ground surveys and manual interpretations, which arenot only
time-consuming but also inefficient. Therefore, the use of remote sensing data obtained by
UAV aerial photography for automatic and accurate pest detection has become a research
hotspot. At present, deep learning technology has made remarkable achievements in image
processing and object detection. In particular, the convolutional neural network (CNN)
outperforms traditional algorithms in feature extraction and image classification [4–6].
However, there are still many challenges in applying deep learning technology to forest
pest detection based on UAV remote sensing data. For example, Li R et al. applied infrared
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remote sensing to dim target detection but failed to accurately identify them [7]. On the
one hand, remote sensing images of forest cover areas usually contain complex background
information, and different tree species, understory vegetation, and topographic relief may
interfere with the detection of diseases and pests [8]. On the other hand, the characteristics
of the occurrence of pests and diseases are irregular in spatial distribution, and the target
size of pests and diseases in the image is variable, which requires the detection algorithm
to have higher robustness and adaptability. For example, Xu B et al. proposed a spectral
weed mapping model, which is not effective in small samples and a few types of detection
scenarios [9]. In addition, the generalization ability and real-time performance of the model
are not considered enough in the existing studies, which may lead to areduction in detection
accuracy and anextension of response time in practical applications.

As a flexible data acquisition tool, drones have proven to be very effective in quickly
acquiring images of large forest areas [10]. B. Wang proposed a deep learning-based crop
pest and disease recognition model. Firstly, the image data are obtained and the image
is preprocessed by the nearest neighbor interpolation method. Then, the structure of
the Alex-Net model is improved, and the neuron nodes and experimental parameters
of the fully connected layer are adjusted. This improved model was used to identify
crop pests and diseases, and the results showed that the average recognition accuracy
reached 96.26%;the recognition time was only 321 s, and the performance was better than
other models [11]. Zhu C used UAV aerial photography to dynamically monitor diseases
and insect pests, and the transformed images with latitude and longitude information
were input into the detection system, mainly for image feature extraction and classification.
Using deep learning of MATLAB R2021a and BP neural network algorithm, the similarity of
image features in the pest feature database was compared. A large number of comparative
analyses show that deep learning algorithms have high accuracy and reliability in the
identification of pests and diseases [12]. X. Huang et al. used the full convolutional network
algorithm based on VGG-16 to segment crop images and proposed an improved dual-path
network model to enhance feature extraction capability. By adjusting the normalization
layer, the parameters of the dual-path neural network are optimized adaptively, which
improves the recognition versatility of different pest types and the training speed of the
network. The results show that 97.59% of the recognition accuracy is achieved, which
proves the effectiveness of the method [13]. L. Butera et al. proposed the ability of target
detection models to identify disease pests in non-uniform outdoor images taken from
various sources. Emphasis is placed on distinguishing pests from similar harmless species
while considering the detection performance and computing resource requirements of
different models. The experimental results show that the FRCNN model with MobileNetV3
backbone performs well in accuracy and inference speed, making it an effective starting
point. The average accuracy of this model reaches 92.66%, and its performance is superior
to other models [14]. Rustia D J A et al. proposed amethod combining UAV technology
and a convolutional neural network image classifier and adopted a sample control strategy
to improve classification performance. The algorithm was developed and tested on images
taken by wireless imaging equipment installed in multiple greenhouses under natural and
varying lighting conditions. The experiments show that the average F1 reaches 0.92 and
0.90, respectively, and the counting accuracy is 0.91 and 0.90, respectively. This method
provides an effective solution for pest and disease identification [15]. An improved YOLOv3
object detection algorithm was proposed by X. Wang et al. This method uses an extended
convolutional layer to improve the detection ability of small targets, and retains fuzzy
targets by evaluating candidate box IoU and linear attenuation confidence, so as to solve
the detection problem of pests and diseases. In addition, the small target weight in the
loss function is optimized by introducing a balance factor. Under different background
conditions, the detection effect is superior to the existing algorithm [16]. P. Kaur et al.
proposed a combination of convolutional neural network models and transfer learning
techniques to identify pests and diseases in leaf images. Model performance is evaluated by
different parameters such as dropout, learning rate, batch size, epoch number, and accuracy.
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The results showed that the accuracy of disease classification reached 98.92% and the F1
score was 97.94%. The experimental results verified the effectiveness of this method in the
detection of leaf pests and diseases [17]. Syed-Ab-Rahman, S.F et al. proposed a two-stage
deep convolutional neural network model, focusing on the detection and classification of
plant diseases using leaf images. The model consists of two key stages: first, the potentially
affected areas are identified through the regional suggestion network. These regions are
then accurately classified by disease class using a classifier. The experimental results show
that the detection accuracy of this model is 94.37%, and the average accuracy is 95.8%,
which proves that it is an effective decision-support tool for growers and farmers to identify
and classify pests and diseases [18].

In summary, the existing methods have some problems, such as training data over-
lapping processing, slow loss reduction, high cost, complex operation, limited coverage,
excessive consumption of time and resources, and insufficient precision effect. Therefore,
a method combining remote sensing data with a UAV deep target detection model is
proposed. In this method, the HOG-SVM model is used for initial feature extraction. In the
complex background, the YOLO-v3 algorithm is further introduced to accurately identify
the target based on the optimized loss function. After the regression optimization of the
boundary box for target detection, the improved consciousness loss function is adopted
to maximize the overlap area of the boundary box and fine-adjust the deviation of the
center point position and shape size to accurately reflect the actual contour of the target.
This helps to achieve higher accuracy and identification efficiency in the detection of pine
wilt. The progress of this technology provides a new perspective for disease monitoring
in the field of remote sensing and lays a foundation for future applications in complex
environments, thereby making positive contributions to forest protection and maintaining
ecological balance.

The overall structure of the study includes five parts: the first part summarizes the
relevant research achievements and shortcomings of diseases and insect pests and detection
technology at home and abroad. In the second part, the HOG-SVM model is proposed, the
YOLO-v3 algorithm based on loss function optimization is proposed for target recognition,
and the computing system under the airborne embedded equipment is designed. The
third part uses the method proposed in this paper to carry outacomparative analysis of the
research experiment. In the fourth part, the research optimization model is discussed and
analyzed. In the fifth part, the experimental results are summarized, the shortcomings of
the research are pointed out, and the future research direction is proposed.

2. Materials and Methods

This study first proposed a pest and disease detection model based on UAV RSD, with
the core technology being the combination of HOG and SVM. Given the limitations of
HOG-SVM in feature extraction in complex environments, this study further combined
the YOLO-v3DLOD model optimized by Compatible-IoU (CIoU). In addition, considering
the efficiency of data processing and the need to reduce information redundancy, this
study proposed an OCP. This platform aimed to improve the detection efficiency of ground
processing units, optimize data processing processes, reduce data transmission burden,
and enhance the practicality and reliability of the entire pest and disease detection system.

2.1. Detection of Pests and Diseases Based on UAV RSD

This study used machine learning methods to detect FDP, which is more cost-effective
and efficient than manual methods. To this end, machine learning methods that are easier
to operate and have lower computational requirements were adopted to adapt forest terrain
interference, and image processing and search algorithms were improved to enhance the
feature extraction performance of HOG. This study was mainly conducted in Mount Taishan
Mountain and the forest area to the west. From autumn 2018 to 2021, the pine wilt and
other tree diseases and pests were carefully surveyed and controlled. This study focused
on observing trees under the influence of pine wilt disease and usedUAV-mounted cameras
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to collect image data of the affected areas. Regional aerial photography was completed
using DJI M600UAV RSD, MAVIC 2UAV, FIREFLY 6S cameras to comprehensively cover
the monitoring area and effectively grasp the development of FDP. Figure 1 shows the DJI
M600 UAV and its flight trajectory.

Forests 2024, 15, 869 4 of 20 
 

 

conducted in Mount Taishan Mountain and the forest area to the west. From autumn 
2018 to 2021, the pine wilt and other tree diseases and pests were carefully surveyed and 
controlled. This study focused on observing trees under the influence of pine wilt disease 
and usedUAV-mounted cameras to collect image data of the affected areas. Regional 
aerial photography was completed using DJI M600UAV RSD, MAVIC 2UAV, FIREFLY 6S 
cameras to comprehensively cover the monitoring area and effectively grasp the devel-
opment of FDP. Figure 1 shows the DJI M600 UAV and its flight trajectory. 

(a) Dji M600 drone (b) Dji M600 flight path
 

Figure 1. Drones and Their Flight Trajectories: (a) DJI M600 Drones and (b) Flight Trajectories of 
DJI M600 Drones. 

This study used DJI M600 and Yu2UAVRSD to conduct aerial photography of forest 
areas affected by pine wilt disease. The DJI M600 was performing missions at an altitude 
of 100 m, while the Yu2 was shooting at an altitude of 10 to 30 m. Through these aerial 
photographs, 770 training samples and 85 test samples were collected. The research re-
quired the use of image masking techniques to simplify complex elements in images and 
facilitate processing. Firstly, image segmentation was performed in multiple color spaces, 
and then image regions were merged usingmethods such as color histograms and texture 
features. The linear fusion method is Equation (1) [19]. 

1 3 4( , ) ( , ) ( , ) ( , )i j color i j size i j fill i jS r r a S r r a S r r a S r r  
 (1)

Finally, different image segmentation thresholds were set to obtain diverse image 
processing results. After image segmentation and hierarchical merging, the potential pest 
and disease areas were identified. For tree images affected by pine wilt disease, the sus-
pected target areas obtained through selective search needed to be further processed for 
model training. Whencomparing the degree of overlap between the candidate boxes ob-
tained through selective search and the actual pest and disease areas, ifthe overlap rate 
exceeded 50%, it was considered a positive sample. If it was less than 50%, it was judged 
as a negative sample, and the selection process is Figure 2. 

Start

Target real 
position

Positive 
sample

mask Oversegmen
ted image

Hierarchical 
merging

Similar 
target region

Negative 
sample

Training 
sample

Training 
image set

Overlap

Overlap

 
Figure 2. The selection process of positive and negative samples. 

Figure 1. Drones and Their Flight Trajectories: (a) DJI M600 Drones and (b) Flight Trajectories of DJI
M600 Drones.

This study used DJI M600 and Yu2UAVRSD to conduct aerial photography of forest
areas affected by pine wilt disease. The DJI M600 was performing missions at an altitude
of 100 m, while the Yu2 was shooting at an altitude of 10 to 30 m. Through these aerial
photographs, 770 training samples and 85 test samples were collected. The research
required the use of image masking techniques to simplify complex elements in images and
facilitate processing. Firstly, image segmentation was performed in multiple color spaces,
and then image regions were merged usingmethods such as color histograms and texture
features. The linear fusion method is Equation (1) [19].

S(ri, rj) = a1Scolor(ri, rj) + a3Ssize(ri, rj) + a4S f ill(ri, rj) (1)

Finally, different image segmentation thresholds were set to obtain diverse image
processing results. After image segmentation and hierarchical merging, the potential
pest and disease areas were identified. For tree images affected by pine wilt disease, the
suspected target areas obtained through selective search needed to be further processed
for model training. Whencomparing the degree of overlap between the candidate boxes
obtained through selective search and the actual pest and disease areas, ifthe overlap rate
exceeded 50%, it was considered a positive sample. If it was less than 50%, it was judged as
a negative sample, and the selection process is Figure 2.
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After preparing positive and negative samples, it was necessary to perform feature
extraction on these samples, which mainly used HOG as the key feature. HOG is a feature
descriptor based on image gradient histograms, which is effective for object detection tasks.
To improve the accuracy of feature extraction, the image was first converted to grayscale
format, and then its contrast was adjusted through pixel compression technology while
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reducing noise to reduce the impact of light and shadow changes on the image, as shown
in Equation (2) [20].

dst(x, y) = src(x, y)γ (2)

In Equation (2), γ represents pixel compression, usually a value of 0.5. Then, the gradi-
ent of the image was calculated to capture features such as contours and textures and reduce
the impact of lighting effects. This method involved analyzing the rate of change in each
pixel in the horizontal and vertical directions of the image and determining the gradient
intensity and direction of these positions. The specific calculation is Equation (3) [21].{

Gx(x, y) = I(x + 1, y)− I(x − 1, y)
Gy(x, y) = I(x, y + 1)− I(x, y − 1)

(3)

In Equation (3), (x, y) represents the horizontal and vertical gradient values of each
point in the image, respectively. The gradient amplitude and direction of these points were
accurately calculated, as shown in Equation (4) [21]. G(x, y) =

√
Gx(x, y)2 + Gy(x, y)2

a = arctan Gy·(x,y)
Gx·(x,y)

(4)

The process of constructing feature vectors required three steps: first, the image was
segmented into multiple small cell domains, and the gradient histogram of each cell was
calculated. Then, these cells were combined into larger block regions, and the descriptors
of each cell were concatenated into the HOG feature vectors of the block. Finally, the
descriptors of all blocks were concatenated to form the HOG feature descriptors of the
complete image. The mathematical calculation of this process is Equation (5) [22].

WinNum = (
srcIMG.w − winS.w

winStride.w
+ 1) ∗ ( srcIMG.h − winS.h

winStride.h
+ 1)

BlockNum = (
winS.w − blockS.w

blockStride.w
+ 1) ∗ (winS.h − blockS.h

blockStride.h
+ 1)

CellNum =
blockS.w
cellS.w

∗ blockS.h
cellS.h

FeatureNum = WinNum ∗ BlockNum ∗ CellNum ∗ Nbin

(5)

In Equation (5), the width and height of the input image are represented by srcIMG.w
and srcIMG.h, while winS.w and winS.h represent the size of the sliding window. winStride.w
and winStride.h represent the step size of the sliding window. WinNum is the total number
of sliding windows. For blocks, their quantity is represented as BlockNum, their dimen-
sions are blockS.w and blockS.h, and their step sizes are blockStride.w and blockStride.h. The
quantity CellNum, dimensions cellS.w, and cellS.h of the cells were also included in the
calculation. FeatureNum and Nbin represent the dimensionality and number of directional
intervals of the feature vectors, respectively. These parameters collectively described the
HOG feature extraction process of the image. This study mainly applied the SVM classifier,
which is an effective binary classification model that can handle different types of data
samples, as shown in Figure 3.

In Figure 3, the green lines represent different hyperplanes, while circles and crosses
represent two different types of data. When analyzing the confidence of a classification
model, the relative position of data points and the classification hyperplane was usually
taken as a key consideration. For linear classification, the equation of the hyperplane was
usually set as w·xi + b. w·xi + b represents the distance between point x and the hyperplane,
and the degree to which its positive and negative symbols match the category identifier y
determines the accuracy of classification. The quantification method for the accuracy and
confidence of this classification was defined as Equation (6) [23].
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In Equation (6), yi(w·xi + b) represents the accuracy and confidence level of measuring
classification. When this value was standardized, it was converted into a geometric interval
γ, as shown in Equation (7), for specific calculations [24].

γ̂ = min
i=1,2,...,N

γ̂i = min
i=1,2,...,N

yi(w·xi + b) (6)

γ =
w·x + b
∥ w ∥ =

γ̂

∥ w ∥ (7)

As mentioned above, SVM classifiers combining HOG features havebeen widely
applied in the field of image recognition. Therefore, this study chose the HOG-SVM
method for the detection of pine wilt disease.

2.2. Disease and Pest Detection Based on Deep Object Algorithm

To address the limitations of HOG-SVM in handling feature extraction in complex
backgrounds, this study introduced the DLOD model of UAV RSD. This model exhibited
superior image feature recognition ability in complex environments. This study focused
on training a detection model specifically for pine wilt disease trees and explored its effec-
tiveness and challenges in practical applications. Further application of CIoU optimization
to the YOLO-v3 algorithm significantly improved the accuracy of detection. In Figure 4,
YOLO-v3 is known for its efficient detection method and fast processing ability. The D-
Net53 network was used to enhance feature extraction, and the detection ability for small
objects was enhanced through the improvement of feature pyramids and convolutional
layers. These innovations significantly improved the accuracy of YOLO-v3 in multi-scale
detection, effectively reducing the risk of false positives and missed detection.
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In the YOLO-v3 deep object detection model, the loss function mainly consists of three
parts: bounding box loss, confidence loss, and category loss, as shown in Equation (8) [25].

Loss = Lbbox(x, y, w, h) + Lcon f (ci, ci
∗) + Lcls(ci, p, p∗) (8)

In Equation (8), Lbbox represents regression loss, Lcon f represents target confidence
loss, and Lcls = (ci, p, p∗) represents category cross-entropy loss. Among them, ci and ci

∗

represent the actual category and the predicted model category, while p and p∗ represent
the likelihood of real labels and positive classes. For the target position regression loss, it
was further decomposed into cross-entropy loss of x and y coordinates and mean square
error loss of width and height, as shown in Equation (9) [26].

Lbbox(x, y) =
K×K

∑
i=0

M

∑
j=0

Iobj
ij (2 − wi ∗ hi)× [(−xi ∗ log(xi

∗)− (1 − xi) ∗ log(1 − xi
∗))

+(yi ∗ log(yi
∗)− (1 − yi) ∗ log(1 − yi

∗))]
(9)

In Equation (9), Lbbox(x, y) represents the loss of quantized target coordinates. The
loss assessment was based on whether the j-th detection accurately indicates the presence
of the target at a specific scale i, as shown in Equation (10) [27].

Lbbox(w, h) =
K×K

∑
i=0

M

∑
j=0

Iobj
ij (2 − wi ∗ hi)[(wi − wi

∗)2 + (hi − hi
∗)2] (10)

In Equation (10), Lbbox(w, h) represents the loss of the width and height of the target
obtained through mean square error. The YOLO-v3 model divided all bounding boxes
into 9 categories by applying the K-means algorithm, with each of the three categories
corresponding to a size ratio. The input image was adjusted to a size of 416 × 416, divided
into grids of different sizes, and downsampled multiple times by the D-Net53 network to
generate feature maps of three different sizes. To improve prediction accuracy, the target
width and height were squared to reduce the impact of size on prediction accuracy. This
study proposed the intersection-to-union ratio method as the loss function, which is more
effective than traditional mean square error and cross-entropy loss functions, as shown in
Equation (11) [28].

IoU =
|A ∩ B|
|A ∪ B| (11)

In Equation (11), IoU represents the overlap of cross weights used to evaluate the
predicted and actual targets. This indicator was relatively unaffected by size changes and
effectively reflects the accuracy of the positionin%g box. However, when the predicted
box did not overlap completely with the actual target, it could not provide gradient
information for optimization. In addition, even if the overlap rate of two boxes was the
same, IoU could not accurately describe the specific way they overlap, thus being unable to
accurately determine the positioning quality of the boxes. Therefore, this study introduced
a generalized overlap rate loss function, as shown in Equation (12) [29].

GIoU = IoU − |C/(A ∪ B)|
|C| (12)

In Equation (12), the generalized intersection union ratio GIoU loss function was used
to evaluate the degree of overlap between the predicted box and the true target box. C
represents the smallest closed convex surface that surrounds two boxes. However, when
the predicted box completely covered the real target box, GIoU was equivalent to the
ordinary IoU. This might lead to a decrease in the utility of GIoU. Therefore, this study
introduced a distance loss optimization method, which compensates for the shortcomings
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of GIoU when the predicted box completely coincides with the true box through distance
optimization, as shown in Equation (13) [30].

LDIoU = 1 − IoU +
ρ2(b, bgt)

c2 (13)

In Equation (13), the distance intersection to union ratio LDIoU loss function represents
the degree of proximity used to evaluate the predicted and actual target boxes. To improve
the training efficiency of the model and make up for the shortcomings of previous meth-
ods, this study proposed a CIoU loss function. This function combined the overlap and
positional distance between the target and the real box, as defined in Equation (14) [31].

LCIoU − 1 − IoU +
ρ2(b, bgt)

c2 + av

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

a =
v

(1 − IoU) + v

(14)

In Equation (14), ρ2(b, bgt) represents the Euclidean distance used to calculate the
predicted and actual center points, while c represents the diagonal size of the minimum
convex hull around these two boxes. The v parameter was used to determine the consistency
between the predicted box and the actual proportion, while the a parameter helped to adjust
the impact of this proportion consistency. In summary, the YOLO-v3 model combined with
the CIoU loss function effectively improved the accuracy and consistency of matching the
predicted boxes with real target boxes. This method played an important role in improving
the accuracy of object detection.

2.3. Design of Pest and Disease Detection System under OCP

This study focused on OCP and preliminarily applied the Mobile-NetV2SSDLite
model to identify tree diseases and pests. This edge computing strategy optimized data
collection and primary processing and sped up the process of pest detection. Next, image
transmission technology transferred the data to the ground processing unit, further utilizing
the YOLO-v3 model fused with CIoU for in-depth analysis and localization. OCP was
designed for users to perform computing tasks up close, significantly improving data
processing speed. This platform was divided into two models: unidirectional data flow
and bidirectional data flow, as shown in Figure 5. The one-way data flow model mainly
handled data reception or transmission. The bidirectional data flow model supported
data exchange between cloud and edge devices and performed complex computing tasks.
Compared with traditional cloud computing, this airborne platform effectively improved
timeliness by processing computing tasks near the data source.
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OCP consists of Raspberry Pi 4 Model B 4 (Raspberry Pi Foundation, Cambridge,
UK), Mobile-NetV2SSDLite model, and 4K camera, installed on the DJI M600UAV (DJI
Innovation Technology Co., Ltd., Shenzhen, China) for aerial data collection. After being
processed by Raspberry, only images marked as potential tree pests and diseases were
transmitted back to the ground terminal to reduce the burden of data processing. As
the latest embedded computer, Raspberry Pi 4 Model B 4 was equipped with a Linux
system and rich community support, making it an ideal airborne edge computing platform
device. This platform not only reduced the pressure on data processing terminals but also
simplified the implementation of the entire detection system, as shown in Figure 6.
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With the advancement of deep object detection model technology, many models
suitable for embedded devices haveemerged, such as Mobile-NetV2SSDLite, YOLO Tiny,
and YOLO Nano. These models havebeen widely applied on platforms such as Raspberry
and haveshown good detection performance. Each deep object detection model hasits
unique advantages and disadvantages; for example, Mobile-NetV2SSDLite performed well
in detecting pine wilt disease. The model architecture is shown in Figure 7.
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After inputting the image, the first step was to use the Mobile-NetV2SSDLite feature
extraction network. The network was divided into six detection boxes of different scales
when generating feature maps, and regression training was performed on each scale. After
completing the training, the final category and bounding box were obtained through
non-maximum suppression. The feature extractor was crucial for the effectiveness of
tree pest and disease detection models. MobileNetV2SSDLite is an advanced version of
MobileNetV1SSDLite, which has been applied in multiple fields such as classification,
object detection, and semantic segmentation. This network introduced linear bottlenecks
and fast connections, enhancing the model structure. Therefore, the Mobile-NetV2SSDLite
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model was suitable for running on OCPs such as Raspberry in terms of accuracy and speed,
demonstrating good performance. To evaluate the performance of four tree pest and disease
detection models in actual environments, this study used four key indicators. This included
the accuracy, recall, and overall accuracy of the model, as well as the processing speed
of each image. These indicators comprehensively considered the efficiency and accuracy
of the model in identifying pine wilt disease trees, ensuring the comprehensiveness and
practicality of the evaluation, as shown in Equation (15) [32].

Precision =
TP

TP + FP
Recall =

TP
TP + FN

Accuracy =
TP + TN

TP + FP + TN + FN

(15)

In Equation (15), four variables were used to evaluate the model performance. True
positive TP represents the number of positive samples correctly recognized by the model,
while true negative TN represents the number of negative samples correctly recognized
by the model. False positive FP represents the number of positive samples that the model
incorrectly identified as positive, while false negative FN represents the number of positive
samples that the model did not correctly recognize [33]. The combination of these variables
provided a comprehensive understanding of the accuracy of model predictions, reflecting
their effectiveness and reliability in practical applications.

3. Results

This study first determined the test set and evaluation criteria, and based on this,
conducted a detailed analysis of the training and detection results of the HOG-SVM model.
After the training was completed, the recognition performance of the deep object detection
model on the test set was further evaluated. To ensure the accuracy of the detection method,
TensorFlow, an open-source deep object detection model learning framework, was adopted,
and a comprehensive performance test was conducted on the YOLOv3 tree pest and disease
detection method combined with CIoU. Subsequently, this study compared and analyzed
the performance of four different models, with a particular focus on the performance curves
of YOLO-v3 and YOLO-v3 CIoU in identifying tree pests and diseases. Finally, the Mobile-
NetV2SSDLite deep object detection model was used to identify tree pests and diseases.
After 10,000 iterations of training, this model was used on a test dataset to evaluate its
actual effectiveness in detecting tree diseases and pests.

3.1. Training and Detection Results and Analysis of the HOG-SVM Model

The stratified sampling method was adopted in the experimental design, and represen-
tative forest areas were selected for UAV remote sensing flight to ensure the diversity and
universality of the collected data. The implementation area covers different forest types, in-
cluding coniferous, broad-leaved, and mixed forests, all located in different climatic zones,
ranging from temperate to subtropical. The experimental site is located in Lianhua Moun-
tain, Tai’an City, with geographical coordinates of 117◦40′0.4′′ east longitude, 36◦2′49′′

north latitude, and an altitude of 999 m. A forest survey conducted in the spring of 2022 in
the area revealed a local spread of pine wood nematode disease in the area. The images of
pine wood nematode trees were captured in August 2022 by DJI “Yu”MAVIC 2 and DJI
M600 unmanned aerial vehicles. The aim is to evaluate the adaptability and accuracy of the
proposed algorithm under different environmental conditions. The experimental design
and implementation areas are shown in Table 1.



Forests 2024, 15, 869 11 of 19

Table 1. Experimental design and implementation area.

Dimensionality Description

Experimental design Stratified sampling method to ensure data diversity

Implementation area It includes coniferous forest, broad-leaved forest, and mixed forest,
covering different climatic zones from temperate to subtropical

Algorithm accuracy Effective identification of pests and diseases
Adaptability Adaptability in different forest environments

Cost efficiency Explore ways to improve cost efficiency

This study applied an SVM classifier that integrates HOG cross-entropy for feature
training. During the training period, negative samples that are frequently misjudged are
filtered out and added back to the training set, gradually enhancing the predictive ability
of the model. After training, the SVM classifier learned and mastered the core parameters
of the HOG model. These parameters are used to score potential targets within the test
set, with TP, TN, FP, and FN of 65, 0, 95, and 22, respectively. Excluding areas with a
probability lower than 0.5 and removing windows with an overlap rate exceeding 30%, the
repeatability of the results was effectively reduced, resulting in the recognition result, as
shown in Figure 8. Among them, the red line represents accuracy, the green line represents
missed detection rate, and the blue line represents false detection rate. In Figure 8, the
missed detection rate of this method is 0.25, the false detection rate is 0.52, and the accuracy
is only 0.75, which fails to meet the expected working standards and is not sufficient to
meet the monitoring needs of forest protection work. Although algorithms can identify tree
diseases and pests, their performance still needs further improvement and optimization in
order to meet the requirements of practical applications.
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In Figure 9 the red box represents the detection range. Figure 9 shows the performance
of the trained model on the test set. In the context of Figure 9a,b, most of the deep object
detection models can accurately identify and locate tree diseases. However, Figure 9c
presents a challenge where the model fails to fully detect all trees affected by pine wilt
disease when vegetation coverage is lush and image features are numerous. This implies
the limitations of HOG features in processing small targets. In Figure 9d, the positioning
box may sometimes be inaccurate and even misjudge non-withered tree areas, which may
be related to the application of color features in mask processing. Therefore, although
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the combination of HOG and SVM models has shown some ability in detecting pine wilt
disease, its high missed detection rate has become a significant weakness. Given the rapid
spread of pine wilt disease, this high miss rate of this detection method does not fully meet
the requirements of FDP detection and requires further optimization and adjustment.
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3.2. Results and Analysis of YOLO-v3 Combined with CIoU Deep Object Detection Model

This study adopts Mobile-NetV2SSDLite, YOLO-v3, and other models such as Fast
Regional Convolutional Neural Networks and Single Shot Multibox Detector to identify
forest pests and diseases to obtain the training and detection results of the optimal model.
The performance of each model is compared and analyzed. To verify the effectiveness of the
detection method, this study used the TensorFlow open-source deep object detection model
learning framework to perform performance testing on the YOLOv3 tree pest and disease
detection method combined with CIoU. Meanwhile, for a comprehensive evaluation, the
proposed model was compared with other commonly used models such as YOLO-v3, Fast
Regional Convolutional Neural Networks (FRCNN), and Single Shot Multibox Detector
(SSD). The experiment used nodes equipped with high-performance GPUs and mobile
workstations, and Table 2 shows their software and hardware configurations.

Table 2. Hardware and software configuration table.

Hardware and Software
Project Node Configuration Workstation Mobile

Configuration

CPU Intel processor intel-Core i5
Internal memory 128 GB DDR5 RDIMM 156 GB DDR4

GPU NVIDIA NVIDIA GeForce GTX 1080
Operating system Linux Linux CentOS 8
Object detection Tensorflow 2.4.1 Tensorflow 2.4.1

CUDA CUDA 11.0 CUDA 11.0

During the training process, this study increased the number of samples through data
augmentation techniques, used Adam as the optimizer, and set the initial learning rate to
0.001. The training was conducted on 16 images per batch, and the model underwent a
total of 10,000 iterations until the average loss decreased to below 0.1. Figure 10 shows the
relationship between the loss value and iteration number of YOLO-v3 and YOLO-v3 CIoU
detection methods during training. The YOLO-v3 CIoU method shows a faster and more
stable decrease in loss during training. This indicates that the improved YOLO-v3 CIoU
model demonstrated better performance and convergence during the training process.
After completing the training, the proposed model will be subjected to performance testing
to verify its practical application effectiveness.
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Figure 11 shows the performance of different models after completing evaluation
testing. The accuracy of FRCNN is 80%, while SSD is 92%, and YOLO-v3 and its YOLO-v3
CIoU are 100%. In the recall rate, FRCNN, SSD, YOLO-v3, and YOLO-v3 CIoU are 96%,
94%, 93%, and 99%, respectively. In terms of accuracy, the four achieved 78%, 88%, 93%,
and 99%, respectively. The analysis time for a single image shows that FRCNN takes
10.61 s, SSD takes 0.21 s, YOLO-v3 takes 0.37 s, and YOLO-v3 CIoU takes 0.32 s. YOLO-v3
CIoU leads in comprehensive indicators, while FRCNN has lower applicability in practical
environments due to its high number of false positives. From the perspective of processing
timeliness, YOLO-v3 exhibits fast performance similar to SSD, far surpassing FRCNN.
Therefore, the proposed YOLO-v3 CIoU model balances speed and accuracy by less than
0.5 s and has an accuracy rate of over 95%, making it more suitable for fast and accurate
FDP detection tasks.
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Figure 12 shows the performance curves of YOLO-v3 and YOLO-v3 CIoU in identi-
fying tree diseases and pests. Usually, when a model has a high recall, its precision may
be low, and vice versa. In Figure 12, the YOLO-v3 CIoU model performs well on both
indicators, and compared to the unimproved YOLO-v3 model, it maintains a high recall
rate while increasing accuracy by 0.53. This indicates that the YOLO-v3 CIoU model has
made significant progress in the localization and identification of tree diseases and pests.
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3.3. Analysis of Training Results of Mobile-NetV2SSDLite Model for Diseases and Pests
under OCP

The core evaluation indicators for the performance of deep object detection models
usually include the average accuracy curve of the entire class and the cumulative loss curve,
which are directly related to the detection ability of the model in practical applications. This
study applies the Mobile-NetV2SSDLite deep object detection model to the identification
of tree diseases and pests and analyzes it on a well-organized test dataset. Figure 13 shows
the variation curves of the average accuracy curve and cumulative loss of the entire class
over 10,000 training cycles.
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In Figure 13, during the training process of the Mobile-NetV2SSDLite model, when the
training reaches 9000 times, the total loss value tends to stabilize, and the average accuracy
reaches a peak of 0.60, indicating that the research model has converged at this point.
Therefore, the Mobile-NetV2SSDLite model trained in ten thousand iterations was selected
for testing, and the results are shown in Figure 14. In Figure 14a,b, although the model
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successfully identified a suspected pine wilt tree, there are shortcomings in determining the
bounding box and optimization needed for non-maximum suppression. The localization
problem in Figure 14c,d suggests that the model may be limited in feature recognition due
to its lightweight. Although the Mobile-NetV2SSDLite model faces challenges, as shown in
Figure 14a, where most images of pine wilt disease trees were successfully identified, the
blurring and halo effects caused by the shooting height in Figure 14b have an impact on
the performance of the model. Therefore, Mobile NetV2SSDLite met the expectations of the
experiment in the detection of tree diseases and insect pests. It can identify whether there
are pine wood nematode disease trees in the image and complete the image preprocessing
task of edge computing.
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In OCP, although its computing power is limited, tests have shown that it can effec-
tively perform tree pest and disease detection tasks. After filtering out images of suspected
pine wilt disease trees, it sends them back to the ground computing terminal, reducing
the workload of the latter. In Figure 14e, the ground computing terminal runs well and
collaborates with the airborne platform to complete the detailed recognition task in the
second stage, demonstrating seamless docking at both ends and excellent recognition
performance.

Table 3 shows the results of the k-fold cross-validation method for model evaluation.
The average accuracy of the training set and verification set reaches 92.5% and 88.7%,
respectively, which proves the robustness of model evaluation.

Table 3. The results of the k-fold cross-validation method for model evaluation.

Number of Folds (k) Training Set Accuracy Verification Set Accuracy

1 0.925 0.88
2 0.93 0.895
3 0.92 0.9
4 0.935 0.875
5 0.915 0.885

Average 0.925 0.887

4. Discussion

A new forest pest detection method combining UAV remote sensing data and a deep
object detection model was proposed. The YOLO-v3 algorithm based on loss function
optimization was introduced. It aims to improve the efficiency and accuracy of forest pest
monitoring and represents an important improvement over traditional detection methods.
The experimental results show that the new model improved the processing speed, the
average image processing time is less than 0.5 s, and the accuracy is more than 95%, which is
obviously better than other comparison algorithms. These findings highlight the potential
for deep learning techniques to be used in forest protection and pest prevention programs.

However, the study also revealed the limitations of the model when dealing with
complex forest environments. This may be due to the model’s inadequate adaptability
to complex backgrounds. Future research should focus on improving the generality and
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adaptability of the model to more accurately identify pests and diseases in different forest
terrains. In addition, given the limitations of operational complexity and computing
resources, developing more efficient deep object detection models to reduce the dependence
on computing resources will be a key direction of future research. Compared with the
remote sensing system by Wang W et al., the optimized system uses the improved YOLO-v3
CIoU model to significantly improve the accuracy and recall rate, reaching 99% and 99%,
respectively, while those of the model by Wang W et al. are 93% and 93%. In addition,
the C4.5 algorithm performed well in predicting crop characteristics, but the prediction
accuracy of LAI and CC (the highest R2 was 0.841 and 0.883) was not superior compared
with the accuracy of the model in this study [34].

In this study, the optimized YOLO-v3 algorithm not only improves the accuracy of
pest detection but also significantly reduces the processing time, which is essential for
rapid responses to forest pest outbreaks and timely control measures. However, the actual
application effect of the model in a wider forest area needs to be further verified to ensure
its stability and reliability.

Another aspect of this research focuses on the application of optimization algorithms,
especially in the selection and adjustment of loss functions. Through the optimization
of the YOLO-v3 algorithm, more accurate identification of pests and diseases in complex
forest environments is realized. This not only improves the recognition ability of the
model but also provides a new perspective for future research direction. Nevertheless,
models still face challenges when dealing with highly heterogeneous and dynamically
changing natural environments. Therefore, future work needs to focus more on enhancing
the robustness and adaptability of the models. In the study by Li C et al., vegetation
parameters were compared with the remote sensing results of CRU (Climate Research Unit)
temperature observation data in the same period, and the vegetation situation was better
reflected in this study. The resolution of the CRU global meteorological dataset used is
0.5◦ × 0.5◦, which is rough compared with the 0.01◦ × 0.01◦ resolution of NDVI data. There
are some errors in the analysis of the impact of climate change on vegetation phenology,
especially in the detailed study of a small area. Although the study provided the overall
trend of NDVI change, it did not distinguish the different responses of different vegetation
types to climate change. Although the asymmetric Gaussian fitting method was used to
extract vegetation phenological factors, the S-G fitting method may lead to overfitting.
The ecological mechanism of this interaction and its specific impact on regional climate
feedback have not been fully explored. The feedback mechanism between temperature and
vegetation phenological factors needs to be further studied in detail [35]. Table 4 shows the
comparison of advantages and disadvantages between different methods.

In terms of model accuracy and recall rate, the YOLO-v3 CIoU model showed sig-
nificant advantages, reaching 99.04%, while Wang W et al.’s method reachedonly 93.67%.
Compared with the rough data of 0.5◦ × 0.5◦ used by Li C et al., the CIoU method achieves
higher resolution based on NDVI data of 0.01◦ × 0.01◦. The research algorithm performed
well in predicting crop characteristics, and the CIoU model showed higher robustness and
adaptability in complex forest environments.

In terms of model implementation, this study also discussed the application of UAV re-
mote sensing technology in forest pest monitoring. The high-resolution images provided by
drones provide a rich source of data for deep learning models. However, this also presents
challenges in data processing and storage, especially in large-scale monitoring. Therefore,
optimizing data processing and transmission processes and improving computational
efficiency are key to realizingthe wide application of this method.

This research is of great significance to the field of forest ecology. By introducing
the YOLO-v3 algorithm and CIoU loss function, the accuracy and efficiency of forest pest
detection are significantly improved, and strong technical support is provided for forest
health monitoring. These findings are helpful in promoting the scientific and accurate
management of forest ecosystems and have great practical and theoretical value.
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Table 4. Comparison of advantages and disadvantages between different methods.

Contrast Dimension Research Method Wang W et al. Method [34] Li C et al. Method [35]

Precision 99.04% 93.67% Using CRU data, the resolution is
lower.

Recall rate 99.12% 93.85% /

Robustness
It has high robustness and can
effectively deal with complex

forest environments.

Although the C4.5 algorithm
performed well in the prediction

of crop characteristics, it was
inferior to the prediction of LAI

and CC in this study.

Analyses of the effects of climate
change on vegetation phenomena

fail to distinguish in detail the
responses of different vegetation

types.

Adaptability
It has good adaptability in

complex natural
environments.

Lower accuracy and recall rates
may limit its applicability under

different environmental
conditions.

The resolution is low, and the
adaptability is limited toa small

range of detailed studies

Data resolution High-resolution remote
sensing data. / The 0.5◦ × 0.5◦ resolution data

are used.

Innovation of method
The detection model is

optimized using the latest
CIoU loss function.

More traditional C4.5 algorithms
may lack innovation.

Relying on existing climate data
and methods may not be

methodologically innovative.

By integrating the model into existing forest management systems or decision support
tools, resource allocation can be optimized and the ability to cope with forest pests and dis-
eases can be improved, thus ensuring the sustainable use of forest resources and ecological
balance. In addition, the methodology and technical framework of this study can provide
references for other ecological monitoring fields and help promote the application of remote
sensing technology in environmental monitoring and natural resource management. In
summary, although this study has made some achievements in the field of forest pest detec-
tion, it still faces challenges in the universality, accuracy, and practicability of the model.
Future studies should focus on the applicability of the model in different environments
and explore more diverse data sources and algorithm optimization strategies to further
improve the efficiency and accuracy of forest pest detection. In addition, research should
take into account the feasibility and cost-effectiveness of practical applications to ensure
that these technologies can be effectively applied in practical forest protection efforts.

5. Conclusions

The integration of drone remote sensing data with deep object detection models,
particularly the optimized YOLO-v3 algorithm, demonstrates a promising approach to en-
hancing forest disease and pest detection capabilities. The results from the implementation
of this method indicate a notable improvement in processing speed and accuracy, with an
average image processing time of less than 0.5 s and an accuracy rate exceeding 95%. These
findings underscore the potential of the proposed model to significantly contribute to the
development of more efficient and effective forest inspection, protection, and prevention
strategies. Despite these advancements, the study identifies limitations in the model’s per-
formance in complex forest environments, highlighting an area for future research. Further
investigations should focus on enhancing the model’s adaptability and universality across
varied forest terrains. Additionally, exploring more advanced deep object detection models
that require fewer computing resources could provide valuable insights into improving the
practical applicability of these methods in forest protection and pest control efforts.
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