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Abstract: Elucidating the impact of afforestation on soil bacterial community composition and its
potential function in afforestation is imperative for comprehending the biochemical processes of
land use change. This study employed high-throughput genomic sequencing to determine the
bacterial phylogenetic assembly and assess functional groups following afforestation encompassing
shrubland and woodland. Compared with non-afforested cropland, the soil organic carbon (SOC)
remained unchanged, but significant alterations were observed in the bacterial composition and
potential functions under afforestation. Afforestation enhanced bacterial diversity and even shifted
the bacteria from the r- to K-strategy, as indicated by higher oligotroph/copiotroph ratios. Soil
properties explained 66.45% and 68.9% of the total variation in bacterial community composition at
the phylum level and the functional group. A 60.44% decrease in soil water content, a 3.82% increase
in pH, a 7.5% increase in bulk density, and a 66.8% decrease in available phosphorus (AP) were the
main soil factors affecting both bacterial community composition and functional traits in afforestation.
In particular, lower available nutrients, AP, and nitrate nitrogen in afforestation drive the bacterial
life history strategies. We conclude that changes in bacterial metabolic functions due to reduced soil
available nutrients from dryland afforestation might be the main driver for microbial-inhibited SOC
accumulation. These results could provide strong microbiological evidence to help further evaluate
the importance of dryland afforestation.

Keywords: soil organic carbon; community composition; life history strategy; bacterial potential functions

1. Introduction

Approximately 41% of the Earth’s land surface is classified as drylands, with deser-
tification affecting about 25% of these regions [1]. China’s desertification-prone region
covers an area of more than 1.2 million km2, and the government has implemented several
ecological restoration projects, such as the Great Green Wall Programme and Returning
Farmland to Forests/Grassland Programme, to address desertification [2]. These projects
have converted large areas of cropland to afforestation land, thereby changing vegeta-
tion type and soil properties. The changed habitat characteristics affect the soil microbial
community composition [3]. Soil microbial communities regulate nutrient cycling, energy
flow, and the ecosystem’s response to anthropogenic disturbance and climate change [4].
Comprehending the variances in soil microbial communities among different land-use
types is essential for advancing our understanding of ecosystem functions and processes.
In addition, microorganisms are a prime bioindicator of the impact of environmental per-
turbations on soil quality due to their strong genetic adaptability, enabling them to swiftly
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respond to environmental fluctuations [5]. Therefore, monitoring and assessing the soil of
different land use types should also focus on soil microorganisms [6].

Bacterial diversity and composition are of great attention, as they are usually more
abundant than archaea and fungi [7]. Numerous studies have demonstrated that alter-
ations in land use exert substantial effects on the diversity and composition of bacterial
communities [8]. While the majority of studies indicate that dryland afforestation enhances
bacterial diversity [9–12], afforestation efforts have also been associated with declines in
bacterial diversity [13,14]. Focusing only on changes in bacterial diversity can mask subtle
differences between communities and individual populations [15]. There have been studies
showing that afforestation alters the composition of soil bacteria rather than their diver-
sity [16,17]. The response of the soil bacterial community composition to various land use
types is characterised by considerable variability, owing to their high sensitivity to habitat
alterations and the intricate nature of community composition [18]. Research findings
indicate that the soil bacterial structure following afforestation (forest and shrub planting)
is similar to that of the original soil [19]. The dominant soil bacterial populations from
adjacent non-afforested and forest planting have high similarity at the genus level [11]. In
contrast, many studies in arid regions have reported substantial alterations in soil bacterial
composition after land-use change and could not be recovered in the long term [20,21]. For
example, research conducted in the Loess Plateau showed that afforestation made the bac-
terial compositions shift from Proteobacteria to Actinobacteria [16] or from Actinobacteria
to Proteobacteria [9,22]. In addition, differences in the soil bacterial community composi-
tion between shrubland and woodland were much smaller than between shrubland and
cropland [23]. These uncertainties imply that an in-depth understanding of the shifts in soil
microbial communities across various land use types and the main factors controlling them
is crucial for preserving ecosystem functions and facilitating carbon cycling in drylands.

Soil bacteria are pivotal in the terrestrial carbon cycle, exerting significant control
over both above- and below-ground carbon dynamics [24]. This balance can be subject to
change in response to changes in the environment. Microbial composition and functions
are influenced by trade-offs among the bacterial growth rate, resource utilisation efficiency,
and stress tolerance [25]. Recent research suggests that life history strategies can be de-
termined to meet this challenge of predicting alterations in soil carbon [26]. Metabolic
functions significantly contribute to the decomposition of litter and the circulation of other
macroelements [27]. Bacterial metabolic investments for resource acquisition may reduce
cell growth efficiency [28]. Afforestation significantly influences bacterial life strategies
and metabolic activities [14]. Blending life strategies and functional features could unveil
connections between soil microbiome and carbon accumulation post-afforestation.

Under land use change scenarios in the Mu Us desert dryland, field surveys were
carried out to further explore the impacts of afforestation on soil bacterial communities.
We postulate that afforestation in the arid northern drylands diminishes soil nutrients and
moisture, which may be unfavourable for bacterial viability due to limited soil moisture
and nutrient availability. This leads to a shift from the copiotrophic to oligotrophic bacteria
life history strategy and changes their functioning. Hence, this study aimed to (1) discover
the changing patterns of soil bacterial community composition throughout land use change
in dryland; (2) investigate the changing characteristics of the life history strategy and
functional groups across different land use types; and (3) identify factors influencing
bacterial composition and functions with the possible consequences of such changes.

2. Material and Methods
2.1. Study Site and Soil Sampling

The survey was carried out on Mu Us Sandy Land in the Ordos afforestation area,
Northeastern China (38.18–39.55◦ N, 107.51–108.50◦ E). This region falls under an arid to
semi-arid continental monsoon climate, and the average annual temperature is 6–8 ◦C.
The annual precipitation reaches around 360 mm, with more than 60% of precipitation
occurring during July and September. Soil types in this area encompass kastanozem and
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grassland aeolian sandy soil. We selected three sites, including Site1, Site2, and Site3
(Figure 1b), with three land use types (cropland, shrubland, and woodland) at each site
(Figure 1c). To ensure comparability, the three land use types were contiguous at each
site. The cropland was reclaimed in the 1970s, and the main crop for the last decade has
been Zea mays L., grown under traditional farming practices, which was irrigated using
sprinkler irrigation and an inorganic NPK fertiliser. The woodlands were planted with
Pinus sylvestris, Populus simonii, and Ulmus pumila L., and the shrublands were planted
with Artemisia ordosica Krasch and Caragana intermedia, as detailed in Table S1. Based on
the nearby farmers and support from the literature, the planting age of shrubland and
woodland was about 20–30 years [29]. At the end of May 2021, three 1 m × 1 m squares
were drawn within each land use type from each site. After removing the surface litter layer,
three soil samples from each square were collected from the 0 to 10 cm depth, combined
and sieved through a 2 mm sieve. A portion of the composite soil was promptly frozen
in liquid nitrogen and transported back to the laboratory. The samples were then stored
at −80 ◦C until DNA extraction. A portion of the remaining soil sample was used for the
determination of soil water content (SWC), microbial biomass carbon (MBC), ammonium
nitrogen (NH+

4 -N), and nitrate nitrogen (NO−
3 -N), and the other part was air-dried for the

determination of soil pH, sand content, soil organic carbon (SOC), total nitrogen (TN), total
phosphorus (TP), and available phosphorus (AP). Additionally, three soil cores measuring
100 cm−3 each were collected from every square to assess soil bulk density (BD).
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Figure 1. Location of the study area and sampling sites, (a) the climate zone of Ordos, (b) three
sampling sites located in Mu Us Sandy Land, and (c) three land use types for each sampling site.

2.2. Soil Physicochemical Properties Analysis

SWC and BD were assessed via the gravimetric method. MBC was determined us-
ing the fumigation–extraction method [30]. NH+

4 -N and NO−
3 -N were extracted with a

2 mol L−1 HCl solution and quantified utilising an auto-flow injection system (Foss Tecator,
Höganäs, Sweden). Soil pH was determined using a glass electrode with a soil–water ratio
of 1:2.5. TN was measured using the Kjeldahi digestion procedure [31]. TP and AP were
assessed using the molybdate colorimetric method [32] and the Olsen method [33], respec-
tively. SOC was determined by the Walkley and Black dichromate oxidation method [34].
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2.3. DNA Extraction, PCR Amplification, and Illumina Sequencing

DNA extraction was performed from 0.5 g freeze-dried soil samples using the FastDNA
Spin Kit (MP Biomedicals, Santa Ana, CA, USA). The quality of the extracted DNA was
assessed using NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA), and its
integrity was confirmed via agarose gel electrophoresis. Polymerase chain reaction (PCR)
amplification targeting the V4–V5 region was conducted within the qualified sample de-
tection area using specific primer pairs. Standard bacterial genomic DNA (Escherichia coli
genome DNA) served as a positive control, and three replicate experiments were estab-
lished. Specific tag sequences compatible with the Illumina platform were added to the end
of the library with high-fidelity PCR using primers with index sequences. The amplified
products were detected by agarose gel electrophoresis, and the amplified products were
purified using AgencourtAMpure XP (Beckman Coulter, Brea, CA, USA) magnetic beads
to obtain the original library from a sample. Upon initial quantification of the results
obtained via agarose gel electrophoresis, the library concentrations of samples pre-labelled
with their respective indexes were suitably diluted. The PCR reaction mixture contained
4 µL of a 5× reaction buffer, 2.4 µL dNTP (2.5 mM), 0.8 µL NGMPCRFN5XX (10 µM),
2 µL NGMPCRRN7XX (4 µM), 0.2 µL Herculase® II Fusion DNA polymerase, 2 µL di-
luted PCR product and 10.6 µL ddH2O. The libraries were precisely quantified using the
Invitrogen Qubit3.0 Spectrophotometer (Thermo Fisher Scientific, USA). Subsequently,
the samples were blended following sequencing throughput necessities specific to each
sample. Mixed libraries were examined for the size of sequenced insert fragments by an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) to determine the
size of sequenced insert fragments. This examination ensured the absence of non-specific
amplifications within the 120–200 bp range and quantified the concentration of sequenced
libraries. The NovaSeq 6000 platform by Illumina, San Diego, CA, USA, employing the
SP-Xp (PE250) double-ended sequencing strategy conducted Illumina MiSeq sequenc-
ing (Genesky Biotechnologies Inc., Shanghai, China). The sequencing data underwent
bioinformatics analysis conducted with QIIME 2 (version 2018.11). Because of the need
to construct libraries and sequencing, the raw sequencing data contained some artificial
additives, such as adapter sequences, primers, and so on. After removing the possible
adapter sequences and primers using the cut adapt plugin, the quality of the raw data was
counted. The DADA2 plugin performed the quality filtering, noise reduction, splicing, and
de-chimerisation of the data and generated an amplicon sequence variant (ASV) abundance
table. Each ASV representative sequence was aligned with the database, thus completing
the taxonomic annotation of ASVs.

2.4. Statistical Analyses

The diversity plugin was utilised within QIIME2 to assess alpha diversity metrics,
encompassing the Chao1, Shannon index, and Simpson index. The ASVs representing
bacterial similarity between samples were then analysed utilising the Bray–Curtis distance
matrix of similarity (ANOSIM) to delineate overall differences in the composition. A vi-
sual representation of these results was achieved via non-metric multidimensional scaling
(NMDS). Furthermore, to discern variations in the relative abundance of bacterial groups
among different land use types, the linear discriminant analysis effect size (LEfSe) was
applied. To retain as many meaningful species taxa as possible, relative abundances were
removed from the analysis of rare taxa with <0.0005 [35]. The criterion of significance at
the categorical level was LDA > 3, p < 0.05. The constructed co-occurrence network utilised
the relative abundance of bacterial ASVs as weights, operating at the species level. ASVs
occurring in at least 60% of the samples were selected in each ecosystem. Pearson correla-
tion coefficients between species were calculated, correlated ASVs with p < 0.05, and the
top 200 ASVs were selected in descending order to construct the association network [36].
Network analyses were performed at the level of each of the 3 ecosystem bacterial phyla.
The network properties were computed in Gephi v 0.9.2. Bacterial life strategies were cate-
gorised according to phylum distinctions and community-level attributes [37]. PICRUSt2
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prediction is based on the measured bacterial ASVs and compares the GreenGenus 16S
rRNA full-length sequence database [38].

Linear mixed models were employed to assess the impact of various land use types
on diverse soil properties and microbial diversity. Land use types, including cropland,
shrubland, and woodland, were treated as fixed factors while sampling locations (Site1,
Site2, and Site3) were considered random factors. If significant differences existed, the
variance between treatments was analysed using Tukey’s test (p < 0.05). Before conducting
linear mixed-effects model analysis, the normality and homogeneity of variance were
assessed for all data using Shapiro–Wilk and Levene’s tests, respectively. In cases where the
data did not meet the assumptions of normality and homogeneity of variance, log transfor-
mation was applied before analysis. The impacts of soil factors on bacterial phylum levels
and functional groups were assessed using transformation-based redundancy analysis
(tb-RDA). The analyses mentioned above were conducted utilising R software (v.4.0.2, R
Core Team, Vienna, Austria).

3. Results
3.1. Soil Properties and Microbial Biomass in Different Land Use Types

For various land use types, significant differences (p < 0.05) were observed in SWC,
pH, and BD, while the sand content remained relatively constant (Table 1). Both shrubland
and woodland SWC exhibited significantly lower levels than cropland, while soil pH and
BD were significantly higher than cropland (p < 0.05, Table 1). Compared with cropland,
shrubland and woodland displayed significant reductions in TP, NO−

3 -N, and AP content
(p < 0.05), while the alterations in TN and NH+

4 -N were not significant (Table 1).

Table 1. Changes in soil properties in different land use types.

Soil Properties Cropland Shrubland Woodland p

pH 8.52 ± 0.21 b 8.86 ± 0.15 a 8.83 ± 0.16 a <0.001
SWC (%) 4.55 ± 1.29 a 1.53 ± 0.8 b 2.07 ± 0.75 b <0.001

Sand 0.85 ± 0.04 a 0.87 ± 0.08 a 0.87 ± 0.05 a 0.474
BD (g cm−3) 1.4 ± 0.13 b 1.54 ± 0.07 a 1.49 ± 0.1 a <0.01
TN (g kg−1) 0.83 ± 0.18 a 0.54 ± 0.35 a 0.81 ± 0.53 a 0.285
TP (g kg−1) 0.38 ± 0.18 a 0.25 ± 0.05 b 0.24 ± 0.04 b <0.05

NO−
3 -N (mg kg−1) 40.01 ± 31.34 a 3.46 ± 2.98 b 4.01 ± 2.73 b <0.001

NH+
4 -N (mg kg−1) 6.69 ± 1.57 a 5.42 ± 0.96 a 5.54 ± 0.95 a 0.054

AP (mg kg−1) 5.09 ± 2.64 a 1.67 ± 0.63 b 1.69 ± 0.75 b <0.001

Note: SWC, BD, TN, TP, NO−
3 -N, NH+

4 -N, and AP represent soil water content, bulk density, total nitrogen, total
phosphorus, nitrate nitrogen, ammonium nitrogen, and available phosphorus, respectively. Values are the means
± SE (n = 9). Lowercase letters indicate significant differences within different land use types (p < 0.05) and p
indicates significant differences between land use types.

3.2. Soil Bacterial Diversity and Community Composition in Different Land Use Types

Compared to cropland, woodland significantly increased soil bacterial richness (Chao1)
and the Shannon index (p < 0.05, Figure 2a,b), while the Simpson index significantly
decreased (p < 0.05, Figure 2c). In shrubland, bacterial alpha diversity (richness and
Shannon index) also surpassed cropland, albeit insignificantly (p > 0.05, Figure 2a,b). There
were no significant differences between SOC, DOC, and MBC for different land use types
(Figure 2d–f).
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Figure 2. Differences in bacterial (a) richness, (b) Shannon index, (c) Simpson index, (d) soil organic
carbon (SOC), (e) dissolved organic carbon (DOC), and (f) microbial biomass carbon (MBC) across
the land use types (n = 9). Different letters indicate significant differences between different land use
types (p < 0.05).

ANOSIM analysis revealed significant divergence in bacterial structures across crop-
land, shrubland, and woodland, as evidenced by R > 0, indicating greater inter-group
disparities than intra-group variances (p < 0.01, Figure 3a,b). The relative abundance of
predominant bacterial phylum was Proteobacteria (23.6%), Acidobacteria (18.71%), Bac-
teroidetes (9.6%), Actinobacteria (17.85%), and Chloroflexi (6.82%) (Figure 3c). The relative
abundance of Proteobacteria and Bacteroidetes was highest in the cropland (Figure 3c).
The relative abundance of acidobacteria and actinobacteria in shrubland and woodland
showed a consistent pattern, both surpassing the levels observed in cropland (Figure 3c).
Unlike woodland, Chloroflexi exhibited higher relative abundance in shrubland compared
to cropland (Figure 3c).

Forests 2024, 15, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 2. Differences in bacterial (a) richness, (b) Shannon index, (c) Simpson index, (d) soil organic 
carbon (SOC), (e) dissolved organic carbon (DOC), and (f) microbial biomass carbon (MBC) across the 
land use types (n = 9). Different letters indicate significant differences between different land use types 
(p < 0.05). 

ANOSIM analysis revealed significant divergence in bacterial structures across 
cropland, shrubland, and woodland, as evidenced by R > 0, indicating greater inter-group 
disparities than intra-group variances (p < 0.01, Figure 3a,b). The relative abundance of 
predominant bacterial phylum was Proteobacteria (23.6%), Acidobacteria (18.71%), Bac-
teroidetes (9.6%), Actinobacteria (17.85%), and Chloroflexi (6.82%) (Figure 3c). The rela-
tive abundance of Proteobacteria and Bacteroidetes was highest in the cropland (Figure 
3c). The relative abundance of acidobacteria and actinobacteria in shrubland and wood-
land showed a consistent pattern, both surpassing the levels observed in cropland (Figure 
3c). Unlike woodland, Chloroflexi exhibited higher relative abundance in shrubland com-
pared to cropland (Figure 3c). 

 
Figure 3. Bacterial (a) non-metric multidimensional scaling (NMDS) ordination, (b) analysis of sim-
ilarity (ANOSIM), and (c) relative abundance (%) at the phylum level in different land use types (n 
= 9). R indicates the relative variability between samples, ranging from [−1 to 1]; R = 0: no distinction 
between the groups; and R > 0: the difference between the groups surpasses the difference within 
the groups. p < 0.05 indicates significant differences. 

Figure 3. Bacterial (a) non-metric multidimensional scaling (NMDS) ordination, (b) analysis of
similarity (ANOSIM), and (c) relative abundance (%) at the phylum level in different land use types
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To elucidate the factors influencing the varied impacts of land use changes on bacterial
structure, we conducted LEfSe analysis to identify significant enrichments of bacterial
taxa at various taxonomic levels across different land-use types (Figure 4). The relative
abundance of taxa included Gammaproteobacteria, Oxalobacteraceae, Xanthomonadales,
Hyphomicrobiaceae, Rhodospirillaceae, Massilia within Proteobacteria, and Cytophagia,
Cytophagales, Cytophagaceae, Chryseolinea, and Rufibacter within Bacteroidetes, which
were enriched in cropland (Figure 4). Actinobacteria exhibited enrichment in shrubland
and woodland, including taxa such as Solirubrobacterales, Aciditerrimonas, Rubrobacter,
Rubrobacterales, and Rubrobacteraceae in shrubland, and Acidimicrobiales, Pseudonocar-
dia, Conexibacteraceae, and Conexibacter in woodland (Figure 4). Moreover, Acidobac-
terium_sp._Ac_12_G8, belonging to Acidobacteria, showed higher relative abundance in
shrubland (Figure 4).
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Co-occurrence networks facilitate the examination of interaction dynamics among bac-
teria at the ASV level across cropland, shrubland, and woodland environments. The bacte-
rial co-occurrence networks in cropland, shrubland, and woodland comprised 665, 716, and
643 nodes, respectively, with corresponding link counts of 1885, 3262, and 2716 (Figure 5).
Significantly, the soil bacterial co-occurrence networks exhibited higher link densities in the
shrubland and woodland compared to the cropland (Figure 5). Moreover, the node counts
were notably greater in the shrubland than in both the cropland and woodland (Figure 5).
The modularity indices in cropland, shrubland, and woodland soils were 0.942, 0.891, and
0.841, respectively (Figure 5). Due to an increase in oligotrophic bacteria and a decrease in
copiotrophic bacteria in shrubland and cropland, the ratio of oligotrophic/copiotrophic
bacteria was higher than in cropland (Figure S1a). Additionally, the relative abundance
of bacterial rrn operon copies in woodland was lower (Figure S1b). Correlation analysis
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revealed a significant negative correlation between bacterial rrn operon copies and the
oligotroph/copiotroph ratio (p < 0.001, Figure S1c). There were four categories in the soil
potential function according to the PICRUSt2, with results indicating significant differences
in bacterial functional characteristics under different land-use patterns (Figure S2). The
relative abundance of the potential metabolism function in afforestation (shrubland and
woodland) was significantly higher than in cropland (Figure S2a). Specifically, the increase
in the relative abundance of the potential metabolism function in shrubland and wood-
land was mainly associated with amino acids, carbohydrates, terpenoids and polyketides,
glycan, and xenobiotic metabolism (Figure S2b). Afforestation significantly reduced the
abundance of cellular processes (Figure S2a), particularly those associated with cell growth,
death and cell motility (Figure S2b).
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Figure 5. Soil bacterial co-occurrence networks in (a) cropland, (b) shrubland, and (c) woodland and
the table of network characteristics for different land use types (n = 9). The nodes in the co-occurrence
network are coloured at the bacterial phylum level, with larger nodes indicating more links assigned
to the node. Nodes represent amplicon sequence variant (ASV), and links indicate significant co-
occurrence (p < 0.05). The nodes in the co-occurrence network are coloured with a bacterial gate level,
where larger nodes indicate more edges assigned to the node. The average degree reflects the average
number of links for all nodes, and betweenness centralisation measures the potential impact of a
given node on the connectivity of other nodes. Modularity quantifies the difference between the links
of the modules and the expected links of random networks with the same number of edges.

3.3. Soil Factors Affecting Bacterial Community Composition and Function

Given the significant changes in the soil bacterial community composition due to
variations in land use types, further analysis was conducted to examine the primary soil
factors shaping the alterations in community composition (Table 2 and Figure 6). As
shown in Table 2, the bacterial richness and Shannon index were significantly positively
correlated with SOC and MBC. Moreover, TN and DOC were significantly positive, while
NO−

3 -N was negatively correlated with bacterial richness (p < 0.05, Table 2). The bacterial
oligotroph/copiotroph ratio significantly decreased with increasing SWC, NO−

3 -N, NH+
4 -N,

and AP, while it significantly increased with the increasing soil pH (Table 2).
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Table 2. Correlation between environmental factors and soil bacterial richness, Shannon index, and
oligotroph/copiotroph ratio.

Soil Factors Chao 1 Shannon Index Simpson Index Oligotroph/
Copiotroph Ratio

pH 0.053 0.107 0.018 0.381 *
SWC −0.170 −0.169 0.061 −0.411 *
Sand −0.185 −0.309 0.332 −0.275
BD −0.069 0.033 −0.100 0.220

SOC 0.519 * 0.414 * −0.387 * 0.102
TN 0.485 * 0.373 −0.384 * 0.020
TP −0.207 −0.216 0.015 −0.375

DOC 0.421* 0.314 −0.301 0.137
NO−

3 -N −0.412 * −0.364 0.152 −0.483 *
NH+

4 -N −0.064 −0.143 0.007 −0.381 *
AP −0.255 −0.368 0.428 * −0.488 **

MBC 0.636* 0.534 * −0.481 * 0.325
Note: SWC, BD, SOC, TN, TP, DOC, NO−

3 -N, NH+
4 -N, AP, and MBC represent soil water content, bulk density, soil

organic carbon, total nitrogen, total phosphorus, dissolved organic carbon, nitrate nitrogen, ammonium nitrogen,
available phosphorus, and microbial biomass carbon, respectively. Values are the means ± SE (n = 9). “*” and
“**” represent p < 0.05 and p < 0.01, respectively.
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Figure 6. Redundancy analysis to show the correlation between the bacterial communities and
soil properties under three land use types, including bacterial (a) phylum-level taxonomy and
(b) function category (n = 9). SWC, BD, SOC, TN, TP, DOC, NO−

3 -N, NH+
4 -N, AP, and MBC represent

soil water content, bulk density, soil organic carbon, total nitrogen, total phosphorus, dissolved
organic carbon, nitrate nitrogen, ammonium nitrogen, available phosphorus, and microbial biomass
carbon, respectively.

tb-RDA accounted for 66.45% and 68.9% of the variance in bacterial phylum-level
species and functional groups concerning soil factors, respectively (Figure 6). The first
two canonical axes explained 32.87% and 22.26% of the relationship between bacterial
phylum-level species and soil factors (Figure 6a), and similarly, they accounted for 32.22%
and 22.20% of the association between bacterial phylum-level species and soil factors
(Figure 6b). Additionally, the findings revealed the significant impacts of pH, SWC, BD,
TP, and AP on the bacterial phylum-level community composition (Figure 6a), whereas
the pH, sand content, BD, SOC, TN, DOC, NH+

4 -N and AP emerged as significant factors
influencing bacterial functional groups (p < 0.05) (Figure 6b).
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4. Discussion
4.1. Changes in Soil Properties in Different Land Use Types

Due to the limited soil moisture and nutrients in dryland, cropland usually requires
irrigation, tillage, and fertilisation [39], as was the case in our study. Compared to undis-
turbed shrubland and woodland, agricultural practices greatly alter the physicochemical
properties of cropland soil [40]. The increased available nutrients (NO−

3 -N and AP) and
SWC in cropland are mainly attributed to irrigation, fertilisation, and the nutrients input
from crop residues [41,42]. Furthermore, the transpiration of shrubland and woodland in
drylands exceeds the amount of water replenishment, which leads to a further reduction in
soil moisture [43]. A study has shown that afforestation in alkaline soils leads to acidifica-
tion [44], which is contrary to our result. From this discrepancy, it can be speculated that the
vegetation in shrubland and woodland absorbs and utilises NO−

3 -N, which significantly
increases soil pH [45]. The conversion of cropland to afforestation in drylands means that
seasonal crops are replaced with long-term vegetation growth [46]. This change reduces
root development and soil disturbance, which, in turn, increases soil BD in shrubland
and woodland [47]. Despite the long-term vegetation growth, the lack of increase in SOC
in shrubland and woodland can be attributed to the slow process of plant residues and
microorganisms fixing and stabilising across soil aggregates or minerals [48]. The planting
age of shrubland and woodland ranges from 20 to 30 years, which was apparently not long
enough to increase carbon accumulation.

4.2. The Response of Bacterial Diversity and Co-Occurrence Networks to Land Use Types

The increase in bacterial diversity attributed to woodland root exudates and apoplastic
inputs providing a more diverse nutrient source for the bacterial microbial community [49]
is further evidenced by the positive correlation between DOC and bacterial diversity. This
finding is consistent with other increases in bacterial diversity associated with afforestation
in drylands [11,12]. The co-occurrence network showed that afforestation had a lower
degree of modularity, while the nodes and links were greater than cropland (Figure 5). A
high degree of modularity indicates a strong ecological niche differentiation [50]. Higher
available nutrients NO−

3 -N and AP in cropland promote the differentiation of bacterial
ecological niches [51]. Enhanced bacterial ecological niche specialisation in cropland may
diminish microbial interactions [50], potentially accounting for the observed reduction
in links. Crop cultivation in cropland could streamline the diversity of organic matter
while amplifying the prevalence of specific organic compounds. Therefore, fewer bacterial
taxa collaborate among organic compounds, leading to the segregation of modules [52].
Other studies have also reported a decreasing trend in the bacterial network complexity in
cropland [53], whereby more anthropogenic disturbances disrupt the structure of tightly
connected bacterial networks. Previous findings suggest that species in a module might
share similarities and overlap in ecological niches [54,55]. Overlapping ecological niches
induced complex interactions so that bacterial co-occurrence networks in shrubland and
woodland have more nodes and links. Furthermore, bacterial co-occurrence networks
in shrubland and woodland are complex (with high link counts and averaging) and are
more resistant to environmental disturbances than cropland [56]. Microbial networks
are not randomly assembled but rather aligned according to their ecological roles or
functions [52]. Changes in the bacterial co-occurrence network may consequently influence
its functional properties.

4.3. Changed Soil Properties in Shaping Bacterial Taxa-Specific

Actinobacteria and Acidobacteria are recognised as K-strategy oligotrophic bacteria,
prioritising stress resistance overgrowth rates [57]. In shrubland and woodland ecosystems,
the prevalences of Actinobacteria and Acidobacteria exceeded those observed in cropland,
which is likely attributed to their significant involvement in soil organic matter regula-
tion [58]. Actinobacteria and Acidobacteria are spore-forming bacteria that benefit from
their spores and filaments to mitigate damage caused by drought, heat, and infertility [22].
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Therefore, it can be inferred that the alteration in the relative abundance of Actinobacteria
and Acidobacteria might stem from the decline in soil properties (SWC, NO−

3 -N and AP) in
shrubland and woodland. Many Proteobacteria and Bacteroidetes are considered r-strategy
copiotrophic bacteria [59]. Cropland has higher levels of labile nutrients compared to
shrubland and woodland, which favours the rapid growth of copiotrophs [60]. This is
further supported by the negative relationship between labile nutrients (NO−

3 -N and AP)
and the oligotroph/copiotroph ratio (Table 2). Higher available nutrients NO−

3 -N and AP
in cropland favour the rapid growth of Proteobacteria and Bacteroidetes [60,61]. Earlier
research indicates that an increase in readily decomposable soil organic matter triggers a
swift proliferation of r-strategy (copiotroph) bacteria [62]. There were no significant differ-
ences between land use types in DOC (Table 1). Conversely, the lower SWC in shrubland
and woodland limited the growth of Bacteroidetes [60]. The transition from cropland to
afforestation and declining nutrient levels serve as the primary catalyst for the transition of
bacteria from the r- to the K-strategy [63]. Metabolic variability is an essential characteristic
of K-strategy bacteria, which may scavenge a diverse array of carbon substrates [21]. An
increase in K-strategy bacteria stimulates the rate of microbial carbon mineralisation [64].
There were differences at the bacterial genus level, although shrubland and woodland
were similar at the phylum level, and Rubrobacter was the dominant actinobacterial genus
in shrubland, whereas Pseudonocardia and Conexibacter predominated in woodland
(Figure 4). Typically, Rubrobacter is widespread in some extreme dry environments, where
very low soil moisture in scrubland soils may be responsible for its accumulation [65].
The woodland root may provide a more favourable environment for the coexistence of
Pseudonocardia and Conexibacter in the rhizosphere [66]. It is worth noting that Massilia
enriched on cropland can help make soil phosphorus more available for uptake, thereby
promoting plant growth [67]. Therefore, studying variances in bacterial compositions across
distinct land use types at various taxonomic hierarchies has advanced our comprehension
of afforestation’s impacts on soil bacterial communities.

4.4. The Shift of Bacterial Potential Function to Land Use Change

Changes in the availability of soil nutrients could potentially trigger the metabolic
activity of amino acids, carbohydrates, and other organic compounds [68]. Its function in
metabolism helps the bacteria obtain energy, amino acids and carbohydrates from the soil
to sustain their growth [69]. Increased amino acid metabolism in shrubland and woodland
leads to increased secondary products [70]. Metabolism pathways associated with energy
production included lipid, energy and carbohydrate metabolism [71]. Although lipid
metabolism was unchanged and energy metabolism decreased by 0.06%, the 0.3% increase
in carbohydrate metabolism in shrubland and woodland still increased energy production.
Moreover, nucleotide pathways aid soil bacteria in adapting to environmental stress [72],
and the diminished nucleotide metabolic functions in shrubland and woodland environ-
ments hinder bacterial growth (Figure S2a). In summary, the nutrient limitation under
afforestation speeds up bacterial metabolism [73], implying that bacterial communities in
afforested soils are more capable of degrading organic matter. Increased organic matter
decomposition may also explain why apoplastic and root secretions increase in shrublands
and woodlands but not SOC. Increased soil pH and decreases in SWC also trigger changes
in the environmental adaptive capacity of bacteria [74]. Changes in the relative abundance
of bacterial functional groups suggest that resource availability and microbial interactions
are key to bacterial responses during land use conversion. Due to the limitations of the
PICRUSt2 function prediction analysis, this paper only provides a preliminary prediction
of the functions of the bacteria involved.

5. Conclusions

Afforestation resulted in increased bacterial diversity, more complex co-occurrence
networks, and a shift in the life history strategy from r to K. However, there was no increase
in soil organic carbon and microbial biomass. The predicted bacterial functions indicate
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that the shrubland and woodland were enriched in amino acids, carbohydrates, xenobiotics,
and glycan metabolism involved in organic matter degradation. Shifts in land-use types
lead to changes in soil properties, which is the most important factor affecting bacterial
composition and potential function. This study highlights the responsiveness of bacterial-
specific species to cropland-to-forest conversion. The resulting potential functional changes
may have implications for carbon dynamic processes in Mu Us Sandy Land. In the future,
the function of bacterial degradation of various carbon fractions in response to afforestation
and its contribution to the carbon cycle mechanism should be further investigated in
combination with functional genomics and metabolomics.
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