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Abstract: Vegetation is an important strategy for mitigating heat island effects, owed to its shading and
evaporative cooling functions. However, urbanization has significantly affected regional vegetation
phenology and can potentially weaken the cooling potential of vegetation. Previous studies have
mainly focused on national and regional vegetation phenology, but local-scale vegetation phenology
and dynamic variations in built-up areas remain unclear. Therefore, this study characterized the
vegetation phenology in the densely built-up area of Beijing, China over the period of 2000–2020
based on high-resolution NDVI data using Savitzky–Golay filtering and explored its spatiotemporal
characteristics and drivers. The results indicate that the vegetation phenology exhibits significant
spatial heterogeneity and clustering characteristics. Compared with vegetation in peripheral blocks,
vegetation in central urban blocks generally has an earlier start in the growing season (SOS), later
end in the growing season (EOS), and a longer growing season length (GSL). However, the overall
distribution of these parameters has experienced a process of decentralization along with urbanization.
In terms of drivers, vegetation phenology indicators are mainly influenced by background climate.
Specifically, SOS and GSL are mainly affected by temperature (TEP), whereas EOS is mainly influenced
by annual precipitation (PRE). Additionally, local environmental factors, particularly the percentage of
water body (WAP), also have an impact. Notably, the local environment and background climate have
a synergistic effect on vegetation phenology, which is greater than their individual effects. Overall,
this study extends the current knowledge on the response of vegetation phenology to urbanization
by investigating long-term vegetation phenology dynamics in dense urban areas and provides new
insights into the complex interactions between vegetation phenology and built environments.

Keywords: vegetation phenology; built-up environment; spatiotemporal characteristics; interactions

1. Introduction

Urbanization is an inevitable trend for thriving [1], but it poses great challenges to
regional ecological, social, and economic sustainability [2]. A typical process involves
replacing natural surfaces with artificial ones, which reduces the latent heat flux in built-up
areas and increases the sensible heat flux, thereby inducing the urban heat island (UHI)
effect and having profound impacts on regional thermal environments [3]. The global
warming and heatwave events also deteriorate the urban thermal environments, having
significant impacts on local livelihoods. In addition, urban warming can affect ecosystem
processes, especially vegetation phenology [4–7]. In particular, vegetation phenology
(e.g., germination, leaf development, fruiting), as a key representative of the life cycle
and seasonal activities of organisms in ecosystems, has been significantly affected by the
changes in thermal environments [8]. Owing to its intuitive and sensitive response to
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microclimatic changes, vegetation phenology is often used to examine and assess the
impact of urbanization on ecosystem structure and function and to reflect the complex
interactions between regional climate and habitats [9,10].

The development of remote-sensing technology has provided fundamental data for
mapping and monitoring vegetation phenology in complex urban areas. Remote-sensing-
monitoring methods determine phenological indicators based on time-series vegetation
parameters generated by remote-sensing inversion, in contrast with traditional direct
observations of phenology on the ground [11–13]. Its characteristics of continuous spatial
coverage and periodic observations are conducive to understanding the phenology of
natural ecosystems from a broader spatiotemporal perspective [14,15]. Accordingly, remote-
sensing monitoring is now one of the main technological approaches to investigate the
vegetation phenology response to urbanization and has been widely used in relevant
research. In particular, the vegetation parameters and land cover conditions inverted
by Landsat allow the study of vegetation phenological heterogeneity and urbanization
responses at local scales [16,17].

Urban vegetation phenology studies have been widely carried out with the support
of remote-sensing data, especially in developing countries with rapid urbanization, to
explore microclimate–urban environmental responses [18–20]. Most existing studies focus
on macro-scale city areas and are usually based on urban–rural dichotomies or urban–rural
gradients to explore the characteristics of vegetation phenology [21–23]. In these studies,
however, the built-up area was considered roughly as a whole, limiting the knowledge of
vegetation phenological heterogeneity at smaller scales. Moreover, urban built-up areas,
where high temperatures overlap with high population densities, are at significant risk of
heat stress. Therefore, it is necessary to assess vegetation phenology in urban areas, which
can provide references to enhance the resilience of ecosystem services against potential
climate change impacts and assist in predicting potential risks to public health. Exploring
the drivers of vegetation phenology can also help to understand the complex relation-
ship between local climate and urban morphology, which is a prerequisite for mitigation–
adaptation strategies [24,25]. Previous studies have focused on exploring the relationships
between built-up environmental factors (e.g., impervious surfaces, blue infrastructure,
and population) and vegetation phenology [13,19,26]. Furthermore, vegetation growth
can be potentially regulated by the background climate (e.g., hydrothermal conditions)
and its synergy with local drivers, whereas this has received limited attention [11,27–29].
Therefore, it is necessary to combine local environmental and background climatic factors
to examine their contributions and synergies to vegetation phenology in dense urban areas.

To address these research gaps, this study aims to characterize the vegetation phe-
nology of densely urbanized areas and explore the impacts of built-up characteristics and
background climate, with the core area of Beijing selected as the case study area. In general,
the core area of Beijing, which is one of the most urbanized and human-disturbed areas
in the world, is a suitable case study area. This study analyzed vegetation phenology
characteristics of urban built-up areas in detail using multi-source data, such as NDVI,
land cover, and meteorology, over the period of 2000–2020. The main objectives of this
study are as follows: (1) to examine the temporal trends and spatial patterns of regional
vegetation phenology using long-term and high-resolution vegetation indicators; and (2) to
explore the driving factors of regional vegetation phenology by integrating local environ-
mental and background climatic factors. The findings of this study are expected to offer
insights into environmental health monitoring, urban planning, and climate change assess-
ment, thereby contributing to sustainable urban development and effective management of
ecosystem services.

2. Materials and Methods
2.1. Study Area

Beijing (39◦28′ N–41◦05′ N, 115◦25′ E–117◦30′ E) is in the northern part of the North
China Plain. Its topography tends to be high in the northwest and low in the south-
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east [30], its average annual temperature is between 10–12 ◦C, and annual precipitation
is 644 mm [31]. In 2020, Beijing had a resident population of 21.893 million, an urban-
ization level of 87.5%, and a gross domestic product (GDP) of USD 521.099 billion. The
internal area of the Fifth Ring Expressway in Beijing was selected as the case study area
(Figure 1A), which covers an area of 667 km2, accounting for 4.06% of the area of Beijing’s
administrative division. The study area has a total resident population of 9.71 million,
accounting for 45% of the whole city population, with a regional average population den-
sity of 14,558 people/km2 (2017). Overall, this area is now a crowded and high-density
urban area after a long period of development and construction (Figure 1C). Moreover,
the thermal environment of the study area is deteriorating due to high-intensity surface
construction and anthropogenic heat emission, which can inversely affect the area’s veg-
etation phenology [32–34]. Since blocks are often the basic unit to characterize surface
characteristics and energy use, this study divided the study area into 2027 blocks based on
the distribution of road networks (Figure 1B) to better explore the regional heterogeneity of
vegetation phenology [35,36].

Forests 2024, 15, x FOR PEER REVIEW 3 of 19 
 

 

2. Materials and Methods 
2.1. Study Area 

Beijing (39°28′ N–41°05′ N, 115°25′ E–117°30′ E) is in the northern part of the North 
China Plain. Its topography tends to be high in the northwest and low in the southeast 
[30], its average annual temperature is between 10–12 °C, and annual precipitation is 644 
mm [31]. In 2020, Beijing had a resident population of 21.893 million, an urbanization level 
of 87.5%, and a gross domestic product (GDP) of USD 521.099 billion. The internal area of 
the Fifth Ring Expressway in Beijing was selected as the case study area (Figure 1A), which 
covers an area of 667 km2, accounting for 4.06% of the area of Beijing’s administrative 
division. The study area has a total resident population of 9.71 million, accounting for 45% 
of the whole city population, with a regional average population density of 14,558 peo-
ple/km2 (2017). Overall, this area is now a crowded and high-density urban area after a 
long period of development and construction (Figure 1C). Moreover, the thermal environ-
ment of the study area is deteriorating due to high-intensity surface construction and an-
thropogenic heat emission, which can inversely affect the area’s vegetation phenology 
[32–34]. Since blocks are often the basic unit to characterize surface characteristics and 
energy use, this study divided the study area into 2027 blocks based on the distribution 
of road networks (Figure 1B) to better explore the regional heterogeneity of vegetation 
phenology [35,36]. 

  
Figure 1. Overview of the study area ((A) Topography of Beijing; (B) Regional block division; (C) 
Regional percentage of impervious surface urbanization and population). 

2.2. Data and Materials 
2.2.1. Vegetation Index Data 

The Normalized Difference Vegetation Index (NDVI) was adopted to extract vegetation 
phenology indicators. The NDVI is the most widely used vegetation index and provides 
important information about the greenness and growth status of vegetation by measuring 
its reflection of infrared and visible light [11,37]. The NDVI was obtained from the Multiscale 
Satellite Remote Sensing Normalized Difference Vegetation Index product (MUSES NDVI, 
https://zenodo.org/records/7063344 (accessed 1 December 2023)). The product utilizes the 
Vegetation Index and Reflectance Data Reconstruction (VIRR) algorithm to process Landsat 
surface reflectance data and produce an accurate, temporally continuous, and spatially com-
plete NDVI with a temporal resolution of 16 days and a spatial resolution of 30 m [38,39]. In 

Figure 1. Overview of the study area ((A) Topography of Beijing; (B) Regional block division;
(C) Regional percentage of impervious surface urbanization and population).

2.2. Data and Materials
2.2.1. Vegetation Index Data

The Normalized Difference Vegetation Index (NDVI) was adopted to extract vege-
tation phenology indicators. The NDVI is the most widely used vegetation index and
provides important information about the greenness and growth status of vegetation by
measuring its reflection of infrared and visible light [11,37]. The NDVI was obtained from
the Multiscale Satellite Remote Sensing Normalized Difference Vegetation Index product
(MUSES NDVI, https://zenodo.org/records/7063344 (accessed 1 December 2023)). The
product utilizes the Vegetation Index and Reflectance Data Reconstruction (VIRR) algo-
rithm to process Landsat surface reflectance data and produce an accurate, temporally
continuous, and spatially complete NDVI with a temporal resolution of 16 days and a
spatial resolution of 30 m [38,39]. In this study, the data were preprocessed through image
registration, clipping, and reprojection.

2.2.2. Driving Factor Data

Nine variables were selected as potential factors influencing vegetation phenology. The
variables can be grouped into two categories: local environmental factors and background

https://zenodo.org/records/7063344
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climatic factors (Table 1). The percentage of impervious surface (ISP) and percentage of
water body (WAP) were calculated based on the China Annual Land Cover Dataset (CLCD,
https://zenodo.org/records/8176941 (accessed 1 December 2023)). The data have a spatial
resolution of 30 m and show good consistency in timing [40]. Population density (PD)
was calculated based on the 100 m resolution population raster data from the WorldPOP
Program (http://www.worldpop.org.uk/ (accessed 1 December 2023)). These data are
commonly used in surveys and studies related to population due to their long time series,
high accuracy, and high spatial resolution characteristics [41,42]. The Digital Elevation
Model (DEM), derived from the Shuttle Radar Topography Mission (SRTM) and with
a spatial resolution of 90 m, was used to reflect the block elevation information. Mean
temperature (TEP), annual precipitation (PRE), relative humidity (HUM), and hours of
daylight (DH) were obtained from the National Meteorological Science Data Center of
China Meteorological Administration.

Table 1. Potential drivers selected for analysis.

Variable Category Description (Units) Reference

ISP Local environment Percentage of impervious surface
(%) [43,44]

PD Local environment Population density
(104 people/km2) [43,45]

WAP Local environment Percentage of water body
(%) [46,47]

DEM Local environment Mean elevation
(m) [46,48]

PRE Background climate Annual precipitation
(mm) [43,49]

TEP Background climate Mean temperature
(◦C) [43,49]

HUM Background climate Mean relative humidity
(%) [50,51]

DH Background climate Hours of daylight
(h) [52,53]

2.3. Analytical Methods
2.3.1. Extraction of Vegetation Phenology Indicators

This study focused on three vegetation phenology indicators: start of the growing
season (SOS), end of the growing season (EOS), and length of the growing season (GSL).
Vegetation phenology indicator extraction was based on preprocessed NDVI data using the
Savitzky–Golay filtering and amplitude method. This method utilized a local polynomial
least squares formula to smooth NDVI time-series data, enabling the identification of
subtle changes in the processing time series, as well as suppressing noise from clouds and
atmospheric disturbances [54,55]. SOS and EOS were identified as the dates when the
NDVI first and last crossed the phase NDVI amplitude thresholds, respectively. GSL was
set as the time interval between the SOS date and the EOS date (Figure 2). According to
previous studies, this threshold was set at 15% [18,33,56].

Considering the complexity of urban subsurface, this study excluded vegetation
phenology outliers using land cover data and reference phenology ranges [33]. Moreover,
the regional vegetation phenology results extracted from the study could not be validated
against field observations because of missing ground station observations, definitional
differences, etc. However, the reliability and accuracy of the method were verified in
previous studies with the comparisons with field observations [57–59]. Figure 3 presents
the SOS, EOS, and GSL information of the study area in 2020.

https://zenodo.org/records/8176941
http://www.worldpop.org.uk/
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2.3.2. Analysis of Vegetation Phenological Characteristics

Spatial autocorrelation analysis was used to assess the spatial distribution charac-
teristics of vegetation phenology indicators. The Moran’s I is the most commonly used
metric for this analysis, with the value ranging between −1 and +1. A higher positive value
indicates a higher spatial autocorrelation, meaning that properties of spatially distributed
neighboring things have similar trends or values. Conversely, it represents spatial neigh-
borhood properties with opposite trends or values [60]. This method comprises both global
and local Moran’s I values, to reflect the spatial autocorrelation for the overall study area
and individual spatial units, respectively.

Time-series analysis models (Mann–Kendall test and Sen slope estimator) were used
to examine the temporal characteristics of vegetation phenology indicators for each block
over the period of 2000–2020. Compared to traditional parametric tests, this model does
not require any assumptions regarding the variables. Moreover, it has a wide range of
detection and a high level of quantification, making it widely used in the temporal analysis
of climate and environmental variables [61].

2.3.3. Analysis of Vegetation Phenology Drivers

This study integrates Spearman correlation coefficients and the Geodetector Model
(GDM) to measure the contribution and interaction of local environmental features and
background climatic factors on vegetation phenology. The Spearman correlation coefficient
is a non-parametric parameter that does not require a specific data distribution, making
it more widely applicable than the Pearson correlation coefficient. In this study, it was
used to determine the contribution direction (+/−) of factors to the vegetation phenology
indicators. GDM is a robust statistical method for exploring the geographic factors of spatial
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divergence and revealing underlying drivers. Compared to traditional linear regression
models, GDM does not only detect the relative contribution of factors, but also assesses the
strength, direction, and relationship form (linear or nonlinear) of the interaction between
two factors [62]. Furthermore, there is no need to address the issue of multicollinearity
among factors during data analysis [63]. The factor detection module and interaction
detection module of the model were selected for analysis. The factor detection module
was used to measure the explanatory power of the independent variables relative to the
dependent variable, which was calculated using the following formula.

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (1)

where h = 1, 2, . . ., L, L is the number of factor classifications, and each factor is categorized
into five classes in this study based on the natural discontinuity method; Nh and N represent
the number of units in class h and the entire region, respectively; and σh

2 and σ2 represent
the variance in class h and the entire region, respectively. The interaction detection module
was used to measure the strength of the interaction and its type, consisting of five types,
such as nonlinear weaken, one-factor nonlinear weaken (uni-weaken), two-factor enhance
(bi-enhance), and nonlinear enhance and independent.

3. Results
3.1. Spatiotemporal Characteristics of Vegetation Phenology

The spatial heterogeneity of vegetation phenology was observed in the core area of
Beijing, as shown in Figure 4. The mean values of SOS for 2000–2020 ranged from the 76th
to the 126th day, EOS from the 299th to the 334th day, and GSL from 183 to 256 days. To
better illustrate the block distribution of vegetation phenology, this study employed the
natural discontinuity grading method (Jenks) to rank the vegetation phenology indicators
(Figure 4). Spatially, the earlier SOS blocks were predominantly located in the center of the
study area, with a gradual postponement from the center to the perimeter. In contrast, the
later EOS blocks were mainly located in the regional center and the northwest. Overall, the
central blocks had longer GSL than the surrounding blocks. Furthermore, the numerical
statistics of phenology indicated that the regional dispersion of SOS was greater than that
of EOS, meaning that the fluctuation of SOS between different blocks was greater than EOS
(Figure 4D).

The spatial autocorrelation analysis verified the spatial heterogeneity of vegetation
phenology (Figure 5A). The regional vegetation phenology indicators showed generally
significant positive spatial correlations (Moran’s I > 0, p < 0.05). At the 95% statistical
confidence level, there was a significant prevalence of low–low clustering for block SOS
(i.e., blocks and their neighboring blocks had smaller values than the overall regional level)
compared to other significant autocorrelation types. Conversely, EOS and GSL exhibited a
higher prevalence of high–high clustering (i.e., blocks and their neighboring blocks had
larger values than the overall regional level). Global Moran’s I showed an overall decrease
over the period 2000–2020. The distribution of SOS low–low agglomeration blocks, as
well as EOS and GSL high–high agglomeration blocks, were dispersed from the center
throughout the region (Figures A1–A3).

On temporal variation, the blocks and overall trends in vegetation phenology indica-
tors during the period of 2000–2020 are shown in Figure 6. For the SOS, 89% of the blocks
showed earlier trends, 54% of which were significant and concentrated in the northern
blocks of the region. Meanwhile, 81% of the blocks exhibited trends toward later EOS,
with 42% of these trends being significant and spatially dispersed. Most of the blocks
demonstrated lengthening GSL trends (89%), with 61% of these blocks showing significant
lengthening, particularly in the northern part of the region. Overall, the regional SOS
showed a significantly earlier trend (S = −0.75, p < 0.01), the EOS showed a significantly
later trend (S = 0.21, p < 0.05), and the GSL showed a significantly longer trend (S = 0.93,
p < 0.01) (Figure 6D).
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Figure 6. Trend in vegetation phenology indicators in the study area in 2000–2020. ((A) SOS trends in
blocks; (B) EOS trends in blocks; (C) GSL trends in blocks; (D) Regional trends and block statistics on
vegetation phenology indicators).

3.2. Drivers and Interactions to Vegetation Phenology

Table 2 and Figure 7 show the direction and strength of the contribution of local built-
up factors and background climatic factors to vegetation phenology indicators. Overall,
the indicators explained 69.85% (SOS), 52% (EOS), and 64.69% (GSL) of the vegetation
phenology indicators in the study area. For SOS, the most important local built-up and back-
ground climatic factors controlling its variation were WAP (−9.48%) and TEP (−12.84%),
respectively (Figure 7A). Unlike the SOS, the two primary factors affecting the EOS were
WAP (+5.28%) and PRE (+17.7%), both of which showed positive delayed effects (Figure 7B).
Furthermore, the two primary factors for GSL were WAP (+11.8%) and TEP (+11.71%), both
of which contributed to GSL lengthening (Figure 7C). In general, both local built-up factors
and background climatic factors play important roles in regulating vegetation phenology,
especially for SOS and GSL.

Table 2. Spearman’s correlation between vegetation phenology and drivers.

ISP PD DEM WAP PRE TEP HUM DH

SOS − ** − ** − ** − − ** − ** + ** − **
EOS − ** + ** + ** + ** + ** − ** − +
GSL + ** + ** + ** + ** + ** + ** − ** + **

**: p < 0.05.
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Figure 8 displays the results of interaction strength and type between paired drivers
to vegetation phenology. The synergy types of the selected factors were mainly nonlinear
enhancement and two-factor enhancement (Bi-enhancement). This implies that pairs of
factors acting together contribute more to vegetation phenology than individual effects. The
contribution of intragroup interactions related to background climatic factors was higher
than that of the two-aspect intergroup interactions and intragroup interactions related
to local built-up factors. Among these, the interaction of PRE with other background
climatic factors made a prominent contribution to SOS, EOS, and GSL variations. Moreover,
inter-group interactions differed among vegetation phenology indicators. TEP and WAP
interactions had a greater effect on SOS (Figure 8A). EOS was more affected by PRE and
WAP interactions (Figure 8B), and GSL was more affected by TEP and WAP interactions
(Figure 8C).
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4. Discussion
4.1. Differences of Vegetation Phenology in Densely Built-Up Areas

Overall, the vegetation phenology exhibited spatial and temporal heterogeneity in the
core area of Beijing. Spatially, there was earlier SOS, later EOS, and longer GSL in the central
region, compared with the surrounding area. In terms of temporal trends, the vegetation
phenology growth season generally experienced significant lengthening in 2000–2020 as the
region developed (Figure 1C). These results are consistent with those in previous studies
based on the urban–rural gradient or urban–rural dichotomy [22,23,33]. Regarding the
reasons for this, first, the higher temperatures and longer period of favorable temperatures
in built-up areas allow plants to start growing earlier [11]. Second, the increased convection
triggered by urbanization results in greater precipitation, providing essential moisture
replenishment to vegetation. This has a significant impact on phenology, particularly
EOS [20,64]. Third, phenology is subject to the influence of artificial interventions. On
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the one hand, the necessity for greening has led to the cultivation of more hardy and
drought-tolerant plants, which tend to have a longer growing period [65]. On the other
hand, the advancement of the SOS and the postponement of the EOS have benefited from
careful manual management. With urbanization, this change will continue.

Moreover, there were some differences in the trends and magnitudes of vegetation
phenology variation among the blocks. Due to diverse land cover types and different
human activity intensities within the region (Figures 1C and A4), microclimatic and envi-
ronmental conditions vary from one block to another [66–68]. This could significantly affect
the vegetation growth process, resulting in the significant spatial and temporal differences
(i.e., flowering, fruiting) among different blocks. On the one hand, the early development
of the regional center and the high intensity of anthropogenic disturbance drove changes
in vegetation phenology, resulting in “basins” (low–low clustering) of SOS values and
“highlands” (high–high clustering) of EOS and GSL values. Similarly, the peripheral areas,
which were underdeveloped in the early stages and had fewer anthropogenic disturbances,
showed opposite characteristics of vegetation phenology to the central areas. With regional
development, the population in the central urban areas saturated and slowed down, lead-
ing to a stabilization of vegetation phenology, while the peripheral areas (especially in the
northern part of the region) with ongoing population continued to influence vegetation
phenology (Figure A4). On the other hand, the central blocks had undergone “patchy”
urban renewal during the development process, increasing the heterogeneity of the veg-
etation [69]. In contrast, the peripheral areas formed relatively homogeneous built-up
environments during the process of rapid development. As a result of these processes,
vegetation phenology indicators in the core area of Beijing have evolved from a central
distribution to a regionally dispersed distribution.

4.2. Built-Up Environment-Driven Vegetation Phenology under Climate Change

Variations in vegetation phenology often result from a combination of background cli-
matic conditions and local built-up factors. It is crucial to understand the interrelationships
between these factors in predicting ecological responses and climate change adaptation.
In this study, a robust relationship between background climatic conditions (including
temperature, humidity, precipitation, and insolation) and vegetation phenology was also
demonstrated in small-scale regions, and the relative contribution was higher than that
of local built-up factors. This reflects the persistent effects of long-term climatic trends on
plant phenology. Long-term climate changes, such as global warming, lead to changes
in temperature, precipitation, and so on, which consequently affect plant ecosystems in a
variety of ways, from evapotranspiration to nutrient uptake and photosynthesis [70,71].

Local built-up factors were also important, especially for characterizing the vegetation
phenological heterogeneity at small scales. The impact of urbanization on vegetation
phenology and its spatial variability could be attributed to many confounding local built-
up factors. Previous studies have demonstrated that urbanization-induced subsurface
changes could be an important influence on microclimate, leading to different responses of
vegetation [72,73]. The significant associations between impervious surfaces, and water
bodies with vegetation phenology in this study validated this conclusion. Impervious
surfaces (e.g., areas covered by concrete, asphalt, and buildings) can absorb and store more
energy, which can result in areas meeting the temperature requirements for vegetation
to begin growing sooner [74,75]. Furthermore, local built-up factors, such as population
density (affecting anthropogenic heat emissions), topographical features (affecting solar
radiation), and the distribution of water bodies (affecting water supply), are also closely
related to vegetation phenology [76,77]. It is worth noting that the interactive contribution
of background climatic and local built-up factors is much greater than the effect of any single
factor on vegetation phenology. This interaction emphasizes the significance of considering
various aspects and scales when comprehending plant phenological changes in conjunction
with climate variability and urbanization factors [8]. Thus, a deeper understanding of plant
adaptations to climate and built-up environments can be achieved.
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4.3. Limitations and Future Studies

The study had several limitations. First, this study treats the regional vegetation
as uniform, whereas there are often differences in the characteristics of the vegetation
itself, such as vegetation structure, physiological status, and species differences, which
can lead to different patterns of phenological indicators, thus introducing uncertainty [78].
Second, it is necessary to select more representative and detailed climate and built-up
indicators for analysis. This includes climate extreme events, hydrological conditions,
artificial management, carbon dioxide concentration, soil, etc., to further improve the factor
system for a more comprehensive understanding of the mechanisms. Finally, the use
of remote-sensing data introduces computational uncertainty when deriving vegetation
phenology indicators due to differences in data sources, pixel mixing, and other issues (e.g.,
spatial and temporal resolution, and product processing) [79].

This study investigated vegetation phenology and its drivers in built-up areas, provid-
ing quantitative evidence of the response of vegetation phenology to high-density built-up
environments. In future studies, it is important to combine ground-based observations
with remote-sensing monitoring to overcome key challenges, such as collaborative mete-
orological monitoring and temporal resolution refinement. Furthermore, there is a need
to apply the research framework to more cities and synthesize a more comprehensive set
of background conditions to explore differences in phenological response patterns and
mechanisms. It is essential to promote research of assessing the health of urban ecosystems
and optimizing urban planning and management to improve the ecological resilience of
cities, promote sustainable urban development, and provide a more pleasant and healthy
living environment for residents.

5. Conclusions

This study examined the spatiotemporal characteristics of vegetation phenology and
its response to the local built-up and background climatic factors in the core area of
Beijing over the period of 2000–2020. The vegetation phenology showed significant spatial
heterogeneity. Compared to the surrounding blocks, the blocks in the central area showed
earlier SOS, later EOS, and longer GSL. However, the development process has undergone
a shift in clustering (low–low cluster for SOS, high–high cluster for EOS, and GSL) from
a central to a regionally dispersed distribution. Temporally, there were differences in the
magnitude and significance of vegetation phenology between blocks. Moreover, the study
area experienced a prior in SOS, a delay in EOS, and an elongation in GSL. The local
built-up and background climatic factors had a significant influence on the vegetation
phenology variation. The local environmental and background climatic factors that drove
the vegetation lifecycle varied and were WAP and TEP for SOS, WAP and PRE for EOS,
and WAP and TEP for GSL, respectively. Furthermore, the contribution of two-factor
interactions was generally greater than that of single-factor effects. Interactions within
groups of background climatic factors had a higher contribution than interactions between
groups of local built-up environment-background climate, and interactions within groups
of local built-up factors, sequentially. Overall, this study presents the characteristics of
vegetation phenology and its drivers in long-time-series high-density built-up areas, which
can help to expand the current research scope in this field. This study confirms that climate
change and urbanization-related factors drive regional vegetation ecological dynamics.
The spatiotemporal heterogeneity results also facilitate the development of more precise
urban planning and management strategies to make full use of the ecological services they
provide in each region.
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