
Citation: Kim, R.; Torrens, P.M.

Boundary SPH for Robust

Particle–Mesh Interaction in Three

Dimensions. Algorithms 2024, 17, 218.

https://doi.org/10.3390/a17050218

Academic Editor: Antoine Vigneron

Received: 29 April 2024

Revised: 10 May 2024

Accepted: 11 May 2024

Published: 16 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Boundary SPH for Robust Particle–Mesh Interaction in
Three Dimensions
Ryan Kim *,† and Paul M. Torrens *,†

Department of Computer Science and Engineering, New York University, Brooklyn, NY 10012, USA
* Correspondence: kim.ryan@nyu.edu (R.K.); torrens@nyu.edu (P.M.T.)
† These authors contributed equally to this work.

Abstract: This paper introduces an algorithm to tackle the boundary condition (BC) problem, which
has long persisted in the numerical and computational treatment of smoothed particle hydrody-
namics (SPH). Central to the BC problem is a need for an effective method to reconcile a numerical
representation of particles with 2D or 3D geometry. We describe and evaluate an algorithmic
solution—boundary SPH (BSPH)—drawn from a novel twist on the mesh-based boundary method,
allowing SPH particles to interact (directly and implicitly) with either convex or concave 3D meshes.
The method draws inspiration from existing works in graphics, particularly discrete signed distance
fields, to determine whether particles are intersecting or submerged with mesh triangles. We evaluate
the efficacy of BSPH through application to several simulation environments of varying mesh com-
plexity, showing practical real-time implementation in Unity3D and its high-level shader language
(HLSL), which we test in the parallelization of particle operations. To examine robustness, we portray
slip and no-slip conditions in simulation, and we separately evaluate convex and concave meshes.
To demonstrate empirical utility, we show pressure gradients as measured in simulated still water
tank implementations of hydrodynamics. Our results identify that BSPH, despite producing irregular
pressure values among particles close to the boundary manifolds of the meshes, successfully prevents
particles from intersecting or submerging into the boundary manifold. Average FPS calculations for
each simulation scenario show that the mesh boundary method can still be used effectively with sim-
ple simulation scenarios. We additionally point the reader to future works that could investigate the
effect of simulation parameters and scene complexity on simulation performance, resolve abnormal
pressure values along the mesh boundary, and test the method’s robustness on a wider variety of
simulation environments.

Keywords: computational fluid dynamics; smoothed particle hydrodynamics; boundary condition;
mesh; signed distance fields; Voronoi regions; simulation

1. Introduction

The smoothed particle hydrodynamics (SPH) approach is a widely used, mesh-free,
Lagrangian representation of gaseous or fluid media that enjoys applications in a variety
of simulation tasks, which range from theoretical astrophysics to material science and
computational fluid dynamics (CFD) [1–4]. In particular, SPH is broadly appreciated for its
ability to provide numerical and computational support where model interactions between
fluid particles and simulated solids, walls, and structures are called for. Nonetheless, SPH is
troubled by an open, non-trivial challenge in the form of the “Boundary Condition” (BC) or
“Fluid-Surface Interactions” (FSI) problem [5]. FSI arises from a conundrum in the numeric
representation of fluid particles, wherein they have no direct means of interacting with
2D or 3D representations of boundary manifolds. FSI creates significantly thorny issues
for applications of SPH. At a minimum, two main criteria are expected for boundaries.
First, the boundary must prevent fluid particles from intersecting completely with the
boundary and therefore escaping the fluid domain. Second, the boundary must minimize

Algorithms 2024, 17, 218. https://doi.org/10.3390/a17050218 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17050218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4028-1583
https://doi.org/10.3390/a17050218
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17050218?type=check_update&version=2

Algorithms 2024, 17, 218 2 of 23

truncation of the density kernel of fluid particles close to or intersecting with the boundary
manifold [3,6]. If these criteria are not met, the resulting hydrodynamics markedly deviate
from real-world properties, often in ways that are visually and empirically unrealistic
in simulation.

One of the earliest known BC methods is Peskin’s “Immersed Boundary Method”
(IBM), which approximates boundary forces via a Dirac delta function [7,8]. The IBM has
seen success in various application fields [9] but exhibits unexpected spring-like behavior
in elastic boundaries [10]. Since the IBM, three broad perspectives dominate popular BC
methodologies: (1) Monaghan’s “Boundary Particles” method [11]; (2) fictitious “dummy”
particles, commonly referred to as “Ghost Particles” or “Mirror Particles” [12,13]; and (3) semi-
analytical wall boundaries via boundary integrals [14,15]. Hybrid variations of these methods
are also common, such as Yildiz et al.’s combination of boundary and ghost particles [16] or
Dalrymple and Knio’s “staggered” boundary particle rows approach [17,18], which share
resemblance with Marrone et al.’s “fixed” ghost particles variation for SPH [19,20].

Yet, for all their successes in advancing computational representations of hydrody-
namics, many of these methods are limited in one key respect: their ability to treat the
complexity of the boundary manifold. Consider, for example, the case of ghost particles.
They are incompatible with boundary manifolds that feature sharp edges, turns, or points.
Moreover, methodologies that involve 3D boundary particles suffer in computational
performance due to the difficulty of interpolating across 3D surfaces. There have been
noble attempts to circumnavigate this issue. For example, Müller attempted to resolve the
3D interpolation issue by using a Gaussian kernel to dictate the placement of boundary
particles, but alas, this method involves the subdivision of mesh triangles and can lead
to complications with bigger meshes [21]. Alongside challenges with absolute boundary
properties, it is often observed that boundary particles also suffer from aberrant effects
in the fluid particles as they grow close to the boundary. Invariably, this near-boundary
problem manifests in a range of compromising knock-on effects that are often unsatisfactory
for application domains. These issues may present as (1) the bouncing of fluid particles
due to the “bumpy” surface formed by boundary particles; (2) unexpected pressure forces
acting on fluids at the beginning of simulations; (3) tensile instability, wherein fluid parti-
cles close to the boundary sometimes clump together; and (4) the density kernel of fluid
particles close to the boundary being “truncated” beyond the initial layer of boundary
particles. As a result, corrections are needed, such as Monaghan and Katjar’s strategy
of having boundary forces dependent solely on fluid particles’ perpendicular distance to
the boundary [22]. Alongside the obvious deviation from empirical properties of known
hydrodynamic processes, We note that these four problems are largely unacceptable for
simulations that are designed to produce visual hydrodynamics, as in computer graphics
and special effects. Additionally, we point the reader to Vacondio et al.’s [23] summary
of key issues that still persist among existing boundary conditions, including whether a
boundary condition can remain consistent without compromising stability, how an initial
distribution of particles can avoid “shocks” due to initial interactions with boundaries, and
the need for a methodology for solid wall BCs representing actual 2D and 3D geometries.
The last point is of particular importance for certain fields where 3D meshes are the primary
means of representing geographic data or dynamic entities.

With the aforementioned open challenges for SPH modeling as motivation, in this
paper, we introduce, demonstrate, and then evaluate a BC methodology that is compatible
with triangle-based 3D polygon meshes that affords for rapid prototyping of particle
interactions between concave and convex boundary manifolds. This method—which we
refer to as boundary SPH, or BSPH—involves the direct calculation of the closest point of a
particle on a 3D boundary manifold, thereby also affording a signed distance calculation
to determine whether a particle is intersecting or encased by the boundary manifold.
As the online performance of the method in graphics applications is a topic of concern,
we also evaluate BPSH in Unity3D, where BPSH may be utilized to drive parallelized
particle operations via HLSL compute shaders. Our focus on 3D meshes as the primary

Algorithms 2024, 17, 218 3 of 23

representation of the boundary manifold is driven by three core motivations. First, in our
implementation of BSPH, the boundary manifold is already discretized through its triangle
faces, removing the need for the approximation of the boundary, as seen with the IBM
or boundary integrals. Second, BSPH does not rely on boundary particles, which can be
computationally expensive to manage in 3D simulations due to the need to interpolate
across the 3D manifold. Third, BSPH shows broad compatibility with manifolds that feature
complex geometry such as sharp edges, points, or concave segments, with which ghost
particles sometimes have compatibility issues. We propose the BSPH methodology with
the idea that simple scenarios involving 3D meshed objects can be rapidly developed and
implemented with game engines such as Unity3D, thus widening the range of possible
applications for SPH-driven simulation in demanding application environments that call
for realistic-behaving, realistic-looking, real-time performance in front of everyday users.

2. Materials and Methods

This paper describes BSPH as an FSI methodology that enables interactions between
SPH fluid particles and mesh-based 3D geometries. Specifically, BSPH decomposes the FSI
problem into two smaller problems: (1) detecting a particle’s closest projection onto the
3D mesh surface; and (2) deriving the reflected velocity based on the boundary normal at
this closest projection. Key to this method is the concept of “Voronoi Regions” [24,25], or
the segmentation of a 2D or 3D space such that all points encased within a segment are
closest to one of a set of feature points. In this case, this FSI method can be generalized to
the following steps:

1. For each fluid particle and mesh triangle [p, t|p ∈ P, t ∈ T], project p onto the 2D plane
defined by t (projp) and determine the closest point on the triangle to this projection
(projp,t). Voronoi region tessellation is needed here to divide the 2D plane of each
triangle into regions that identify if projp is closest to either a vertex or edge or if projp
is located inside the triangle.

2. For each fluid particle p ∈ P, determine the closest point on the mesh such that the
distance between p and projp,t is minimized.

3. For each fluid particle, determine the boundary normal Nb based on the closest
projp,t’s position on the mesh as well as the signed distance from p to the closest
projp,t based on Nb.

This methodology shares conceptual similarities with the Gilbert–Johnson–Keerthi
(GJK) distance algorithm: both methodologies rely on Voronoi region tessellation [26].
However, the GJK algorithm is only applicable to convex geometries. We instead follow
concepts exhibited by a field of collision detection algorithms known as “Discrete Signed
Distance Fields” [27]. Such methods attempt to detect minimum signed distances between
query points and a 2D or 3D manifold by first “extruding” the faces, wedges, and vertices
of the manifold outward and inward, then querying which extrusion each query point is
located inside [28]. Mauche’s “Characteristic/Scan-Conversion” (CSC) method [29] is a
notable application of the concept that uses “scan-conversion” for the point-extrusion check.

We combine the strategies for the signed distance calculation from Payne and Toga [30]
and Baerentzen and Aanaes [31]. Payne and Toga’s strategy compares query points with
each triangle on a mesh to determine the closest point and offers suggestions for opti-
mization, such as calculating the sign of the distance separately from the distance mea-
surement and precomputing triangle vertices and normal components prior to runtime.
Both suggestions are realized through Baerentzen and Aanaes’ strategy of calculating the
“pseudonormal” vectors of edges and vertices of a mesh and deriving the signed distance
based on boundary normals and closest point alone. This is in agreement with Thürrner
and Wüthrich’s original method [32]. Particle–boundary interactions are adapted from
Furhmann et al.’s method [33], which also mentions the use of Voronoi Regions for fast
detection of closest mesh points but leaves this step ambiguous in its implementation.
More importantly, Furhmann et al.’s application re-positions particles based on the bound-

Algorithms 2024, 17, 218 4 of 23

ary normal of the closest point on the mesh for each particle, which we also adopt in
our implementation.

2.1. Triangle Mesh Basics

In 3D computer graphics and modeling, a polygonal mesh is a collection of vertices,
edges, and faces that define a volume in three-dimensional space. The “faces” of the mesh
are the rendered surface of the mesh, whose appearance may then be controlled by factors
such as color, material, and UV coordinates. Mesh types are usually defined by:

• Choice of face type: Meshes can be defined based on their face type. Typical face
types include triangles, quads, or n-gons.

• Choice of representation: This refers to the explicit format and type of data that are
stored about the mesh. Types include but are not limited to vertex–vertex (“VV”),
face–vertex meshes, and winged-edge meshes [34].

In our implementation, we strictly refer to the face–vertex mesh representation. Face–
Vertex triangle meshes store vertices as an array of float3 positions relative to the mesh
center. The faces (triangles) of the mesh are stored separately as an integer array three
times longer than the vertex list. A triangle is represented as a set of three integers, each
corresponding to an entry in the vertex array. Edges are not contained in this representation
and therefore have to be interpreted from the triangle array.

2.2. Pre-Processing 3D Meshes

Prior to the start of a BSPH simulation, we must pre-process each 3D mesh to better
fit our scheme. In particular, we must calculate and cache the following properties of
each mesh:

• Vertices: In mesh data, vertices are stored as float3 vectors that may overlap based on
how the mesh data was created. We must filter vertices into a condensed list where
each vertex is unique and no overlaps exist among vertices. For example, Unity3D’s
“Cube” primitive is originally represented by 24 vertices, which can be condensed
into 8 vertices. We also must calculate the pseudonormal vector of each vertex that
represents the boundary normal vector at the vertex. This pseudonormal vector is the
average of the pseudonormal vectors of all triangles connected to a vertex, weighted
by the angle of influence that the vertex has on the face area (see Figure 1).

• Edges: Edges are not stored in face–vertex triangle meshes and must be computed
manually. Edges are composed of two vertices, with a midpoint calculated based on
the average of its two vertices’ positions. We must also calculate the pseudonormal
vector of each edge that represents the boundary normal vector. We take advantage of
the idea that an edge can only connect two triangles at maximum and calculate the
pseudonormal vector as the average of the two faces’ pseudonormal vectors. If a mesh
is incomplete and is compsed of only one triangle, we simply set the pseudonormal
vector as the same as the connected triangle’s pseudonormal vector.

• Triangles: Triangles are stored as a tuple of index values that point to vertices in the
mesh’s vertices array. In our scheme, mesh triangles also feature a centroid position
based on the average positions of its vertices, a pseudonormal vector orthogonal to
the plane defined by the triangle, a signed distance float value from the triangle’s 2D
plane to the origin, and 2D pseudonormal vectors of each edge along the 2D plane
defined by the triangle. All of these properties need to be manually calculated.

When handling multiple meshes, we conduct this pre-processing operation on each
mesh individually, then concatenate the vertices, edges, and triangle arrays into global lists
of vertices, edges, and triangles. These global lists are segmented such that the vertices,
edges, and triangles of each mesh remain grouped together. References to these segments
are indexed by an additional fourth global list representing the mesh objects themselves,
with each item in this list storing the starting indices of that mesh’s vertices, edges, and
triangles in the global lists. Once aggregated, these global lists can be inserted into HLSL

Algorithms 2024, 17, 218 5 of 23

compute buffers that may then be stored in a GPU for use during the simulation step. For
reference, Table 1 and Figures 1 and 2 highlight the general formulae to calculate these
pseudonormal vectors, their 3D representations, and an overview of the pre-processing
step, respectively. See Appendix A for the pseudocode on this pre-processing operation.

Figure 1. Calculation of pseudonormal vectors of faces, edges, and vertices. The face pseudonormal
is the cross-product of two edges, while the edge pseudonormal is the unweighted sum of the two
triangles connected to the edge. The vertex pseudonormal is the weighted sum of all triangle face
pseudonormals, whose triangles are connected to the vertex, weighted by the vertex’s angle in
each triangle.

Table 1. List of triangle properties that are involved in particle–mesh interactions.

Property Notation Equation

Vertices Vt = [v1, v2, v3] (Usually provided in mesh data)

Centroid ct
v1+v2+v3

3

Face Pseudonormals * Nt

{
(v3 − v1)× (v2 − v1) if CCW
(v2 − v1)× (v3 − v1) if CW

Edge Pseudonormals Na,b | va, vb ∈ Vt

Nb = ∑
Ta,b
t Nt

∥∑
Ta,b
t Nt∥

, where Ta,b is the set of

triangles connected to the edge between
va and vb

Vertex Peudonormals Na|va ∈ Vt

Na = ∑
Tva
t αa,t Nt

∥∑
Tva
t αa,t Nt∥

, where Tva is the set of

triangles connected to va and αa,t is the
vertex angle of va in triangle t

* Note that Nt is calculated through the cross-product of two edges depending on a condition known as “counter-
clockwise”. This references the “winding order” of the mesh data. In a face–vertex triangle mesh where triangles
are sets of three integers, the order of these integers follow either a “Counter-Clockwise” (CCW) or “Clockwise”
(CW) order. For our implementation, we adhere to a CW order for the normal direction calculation.

Algorithms 2024, 17, 218 6 of 23

Figure 2. Visual representation of the pre-processing steps described for three mesh obstacles. The
first mesh is represented with blue, the second with light green, and the third with dark green. Each
mesh’s vertex, edge, and triangle data are stored into global lists that are then buffered into the GPU.

2.3. Single Particle–Triangle Scenario

Let us define a single pair of a particle and triangle (p, t)|p ∈ P, t ∈ T, where P is the
set of all particles in the fluid simulation and T is the set of all mesh triangles. p is a float3
position with some radius rp that represents either the particle’s smoothing kernel or visual
radius, while t is a triplet of three vertices v1, v2, v3. The 2D plane of t is notated as Planet.

2.3.1. Calculating Plane Projection

The first step is to project p onto Planet to determine projp (see Figure 3). The projection
equation is defined as follows:

projp = p + [Nt · (ct − p)]Nt (1)

where:

• p: The particle’s current position in 3D space; it also represents the vector from world
origin (0, 0, 0) to the particle’s current position.

• Nt: The triangle’s face pseudonormal vector.
• ct: The triangle’s centroid.
• Nt · (ct − p): The signed distance between p and Planet. A negative (−) distance

means that the particle is “above” the mesh triangle, while a positive (+) distance
means the particle is “below” the mesh triangle. Note that a positive sign does not
necessarily mean that the particle is submerged or intersecting with the mesh obstacle
as the particle may simply be in a concave segment of the mesh.

Algorithms 2024, 17, 218 7 of 23

Figure 3. Depiction of a single triangle t with three vertices, a centroid calculated from the average
position of the three vertices, and a face normal vector. With particle p with radius rp, the steps are to
first find projp and then calculate projp,t, which lies on either a vertex, edge, or within t.

2.3.2. Calculating the Closest Point and Corresponding Boundary Normal

After determining projp, we can calculate the closest point on t, or projp,t, and the
corresponding boundary normal Nb. This requires the tessellation of Planet into seven
Voronoi regions, discretized by t’s edges and their planar 2D normals (see Figure 4). An
edge’s planar 2D normal vector is calculated with the following equation:

N2D
a,b = −

(ct − va)− (ct−va)·(vb−va)
(vb−va)·(vb−va)

(vb − va)

∥(ct − va)
(ct−va)·(vb−va)
(vb−va)·(vb−va)

(vb − va)∥
(2)

Normally, we check the six outer regions before defaulting to projp being in the triangle.
We introduce an optimization step where we first check which vertex is closest to projp,
then check the connected regions to that vertex. This reduces the number of calculations
required from a 7-region check to a 4-region check.

Figure 4. The Voronoi Region tessellation of Planet based on the planar 2D normal vectors of each
edge. Regions are colored to distinguish them from one another in the visualization. The red dot
represents projp, a particle’s projection onto the 2D plane. (a) The original 7 regions that need to be
checked. (b) An optimization that considers a 4-region rather than 7-region check.

To calculate projp,t and the resulting boundary normal Nb, let us assume that the
closest vertex is designated as vc, with its assigned Voronoi region as Rc. The two other

Algorithms 2024, 17, 218 8 of 23

vertices of t are designated v1 and v2, the two edges connected to vc are designated as
E1 = v1 − vc and E2 = v2 − vc, their planar 2D normal vectors as N2D

1 and N2D
2 , and their

resulting Voronoi regions as R1 and R2. The region contained by t is designated as Rt.
Refer to Table 2 for how to check which region projp lies in and the resulting projp,t and Nb.
Figure 5 shows a visual representation of the steps listed.

Table 2. Region checks to identify which Voronoi region projp lies within.

Region Check Outputs

Rc
(projp − vc) · E1 ≤ 0 and
(projp − vc) · E2 ≤ 0

projp,t = vc

Nb is the vertex pseudonormal vector.

R1 (projp − vc) · N1 ≥ 0 projp,t = vc +
(projp−vc)·E1

E1·E1
E1

Nb is E1’s pseudonormal vector.

R2 (projp − vc) · N2 ≥ 0 projp,t = vc +
(projp−vc)·E2

E2·E2
E2

Nb is E2’s pseudonormal vector.

Rt Other checks fail; default condition
projp,t = projp

Nb is the face pseudonormal vector.

Figure 5. Example process of checking which Voronoi region projp lies in. Regions are colored to
distinguish them from one another in the visualization, and the red dot represents projp. The process
starts with Panel (a) and shows that region R1t is rejected. Panels (b) and (c) show the same with
regions R1t ,2t and R1t ,3t , respectively. The algorithm ends in Panel (d) where projp is determined to
be in region Rt. Therefore, projp,t = projp and Nb = Nt.

2.3.3. Calculating the Signed Distance

The signed distance from particle to triangle can be combined into a single expression
as provided by Baerentzen and Aanaes [31]:

dp,t = ∥(p− projp,t)∥sign((p− projp,t) · Nb) (3)

Algorithms 2024, 17, 218 9 of 23

This assumes that we are looking at a singular point without a radius to consider and
that the signed distance is negative if the point is contained inside the mesh boundary.
However, in the SPH scheme, we are dealing with particles with radius rp. To prevent the
kernel truncation issue, we need to detect the moment the smoothing kernel intersects with
the boundary manifold. Therefore, we provide an alternative form of the signed distance
function in consideration with rp:

dp,t = ∥(s− projp,t)∥sign((s− projp,t) · Nb) (4)

where s = p− Nbrp, which represents the innermost point on the smoothing kernel of
particle p. We follow the convention that the negative sign indicates that the particle’s
smoothing kernel is submerged into the boundary manifold, while a positive sign indicates
that the particle and its smoothing kernel are outside the boundary manifold.

2.4. SPH Fluid Interaction

For proper integration with any SPH scheme, this particle–triangle check must be
extended to all particles p ∈ P and all mesh triangles t ∈ T. The boundary condition must
be accounted for the scenario where, for each single particle p, its projp,t is within some
radius rp of the particle. Depending on the implementation, it is highly recommended
to make rp equivalent to the smoothing kernel of the particle in order to prevent kernel
truncation. p is therefore intersecting with the boundary if the distance between p and
projp,t is less than or equal to rp.

The general operational flow from mesh pre-processing to simulation runtime is
visualized in Figure 6. As a general rule of thumb, the mesh pre-processing step occurs
prior to the first frame of the simulation. The global mesh vertices, edges, triangles, and
obstacles arrays are buffered into the GPU and referenced during every simulation frame.
During the simulation, SPH particles are compared with every obstacle to identify whether
they are intersecting with any meshes in the scene.

When a particle is detected to be intersecting with (or submerged in) the boundary
manifold, the particle must be reflected away from the boundary to prevent truncation.
The simplest approach is to (1) reposition the particle so that its smoothing kernel is just
beyond the boundary manifold; and (2) adjust its velocity to reflect off of the boundary
manifold (see Figure 7). We take inspiration from Fraga Filho’s implementation of reflective
boundary conditions to implement particle–boundary interactions with respect to the
boundary manifold’s friction and restitution coefficients [35]. Given the velocity Vp for
particle p, the reflected vector is the component of two orthogonal sub-vectors:

V′Nb
= Nb ∗ |(Vp · −Nb)| ∗ crest (5)

V′T =
(
Vp + [Nb ∗ |(Vp · −Nb)|]

)
∗
(

1.0− c f riction

)
(6)

V′p = V′Nb
+ V′T (7)

where crest is the restitution coefficient that influences the strength of the reflection along
the boundary normal and c f riction is the friction coefficient that influences the strength of
the reflection along the tangent line of the boundary method at projp,t.

Algorithms 2024, 17, 218 10 of 23

Figure 6. Overview of the general operational pipeline from the pre-processing to simulation step. In
this visualization, three mesh obstacles are represented by blue, light green, and dark green. (a) Pre-
processing occurs prior to the first simulation step. (b) During each simulation step, parallelization
allows for each particle to be compared with each mesh obstacle and their vertices, edges, and triangles
in thread groups on the GPU. The final determination of the closest mesh and its corresponding
closest projection projp,t and boundary normal vector Nb is calculated for each particle.

Figure 7. Calculation of the reflected velocity vector V′p based on the particle’s initial velocity Vp, the
projected point of p on the boundary manifold projp,t, and the boundary normal vector Nb. Particle
p is represented by the light blue circle whose center is the darker, inner circle. V′p is derived from
combining V′T , the tangential component of the reflected velocity that is affected by the boundary’s
friction coefficient, and V′Nb

, the normal component of the reflected velocity that is affected by the
boundary’s restitution coefficient.

Algorithms 2024, 17, 218 11 of 23

3. Results

In order to assess its robustness in application, we evaluated the BSPH method in
different 3D environments that vary in simulation size and complexity of meshes. The
goal of this evaluation was to identify how successfully BSPH could prevent particles
from intersecting with a given mesh boundary manifold and how the average frames per
second (FPS) of the simulation would be affected. To yield empirical output, the resulting
pressure gradients of the fluid manifold were measured to test for pressure irregularities
around the mesh boundary. Each simulation was run with Müller’s weakly compressible
SPH variant [36], which uses Desbrun and Gascuel’s “Spiky” kernel for pressure force
operations [37], Müller’s custom kernel for viscosity force operations, and a Poly6 kernel for
all other operations, such as density calculations. Müller also stabilizes pressure operations
by modifying the ideal gas state equation to the following:

p = k(ρ− ρ0) (8)

where p represents pressure, k represents the bulk modulus, ρ represents density, and ρ0
represents the expected or ideal density of the fluid medium at rest.

The experimental setup was implemented in Unity3D (ver.2021.3.11f1), where meshed
objects were placed in the 3D world space and BSPH calculations were conducted using
an HLSL compute shader. To enable particle–mesh interactions, the mesh data of all 3D
meshed entities in the simulation space were pre-loaded into HLSL compute buffers and
transformed from local to world space whenever a mesh entity was updated in the 3D
scene; all particle–mesh calculations were also subsequently conducted in the GPU. Note
that double-precision values cannot be used as input or output data for HLSL data streams
when passing data between the CPU and GPU; thus, single-precision float values had to
be used instead in this version of the implementation. The setup was run on a PC with an
AMD Ryzen 5 5600G processor with 16 Gb of RAM alongside an NVIDIA GeForce RTX 3070
GPU with 8 Gb of VRAM.

3.1. Simple Setups

This series of evaluations focuses on particle–mesh interactions on flat and inclined
planes. In the ideal case, the mesh boundary method would prevent particles from inter-
secting with the plane, allow for the smooth movement of particles as they flow down an
inclined plane with a 10-degree slope, and prevent particles from flowing down the incline
in a no-slip condition. Unlike existing boundary particle methods where the boundary
particle manifold would create irregularities in the surface and cause particles to bound
erratically, our BSPH method should ideally prevent such erratic particle movements.
Simulation parameters for all simple setups are provided in Table 3.

Figure 8 depicts the results of the flat-plane simulation, which shows 64 particles in an
8 × 8 grid arrangement falling onto a completely horizontal plane. In this simulation, the
particles were spaced 0.125 m apart and also had a kernel radius of 0.125 m. The plane was
a 2 m × 2 m quad divided into two separate mesh triangles, such that the edge connecting
the two mesh triangles followed the diagonal of the quad. This also means that some
particles will fall directly onto this edge. Despite this fact, the particles’ pathlines and
positions indicate that the particles do not erratically move after landing and remain in
their original grid formation, even after coming to rest. No particles appear to penetrate
the mesh boundary, which in this case is the horizontal plane positioned above the ground
level of the simulation. This verifies the mesh boundary’s ability to repel particles and
prevent erratic interactions between particles and the mesh.

Algorithms 2024, 17, 218 12 of 23

Table 3. Simple setups—simulation parameters.

Flat-Plane

Number of Particles 64 Ideal Density ρ0 1000
Initial Spacing ab 0.125 Viscosity Coeff. 0.001
Render Size b 0.12 Bulk Modulus (k) 100
Particle Mass 1 Friction Coeff. (c f riction) 0.0
Kernel Radius b 0.125 Restitution Coeff. (crest) 0.25

10 deg. In-
clined Plane
(Slip)

Number of Particles 25 Ideal Density ρ0 1000
Initial Spacing ab 0.2 Viscosity Coeff. 0.001
Render Size b 0.12 Bulk Modulus (k) 100
Particle Mass 1 Friction Coeff. (c f riction) 0.0
Kernel Radius b 0.125 Restitution Coeff. (crest) 0.25

10 deg. In-
clined Plane
(No-Slip)

Number of Particles 25 Ideal Density ρ0 1000
Initial Spacing ab 0.2 Viscosity Coeff. 0.001
Render Size b 0.12 Bulk Modulus (k) 100
Particle Mass 1 Friction Coeff. (c f riction) 1.0
Kernel Radius b 0.125 Restitution Coeff. (crest) 0.25

a “Initial Spacing” refers to the initial spacing between particle centers during the initialization of a
simulation scene. b All distance units are in Unity3D meters.

Figure 8. The flat-plane simulation run with an 8× 8 grid of particles placed 0.125 m apart and forced
to fall onto a horizontal plane. Panels (a–f) depict the pathlines of the 64 particles as they fall, while
panel (g) shows the final result in Unity3D that corresponds with panel (f).

A similar setup was conducted with the plane at an angle of 10 degrees. This time,
the plane was a 5 m × 5 m quad, and a 5 × 5 grid of particles were placed 0.2 m away
from each other. The plane had a friction coefficient of zero. The particles were placed
further uphill from the quad center and are expected to “roll” down the incline. Figure 9
depicts the results of the inclined plane simulation, which shows the pathlines of 5 particles
among the 25 particles. The pathlines do not depict any erratic or abnormal behavior in the
particles’ movements and depict a consistent trajectory, fulfilling our expectations of the
interaction between rolling spheres and a smooth surface.

A third setup was conducted with the same parameters as the inclined plane, but
with a friction coefficient of 1.0. In this scenario, one should expect particles to “stick” to
the plane and not move when they land on the plane. Figure 10 depicts the results of
this scenario and shows that as the particles land, they do not move from their original
formation and stick in formation. This validates the idea that the velocity reflection equation
managed to suitably cancel out the tangential velocity component of the reflected velocity
vector for each particle, thus leaving them stuck in place.

Algorithms 2024, 17, 218 13 of 23

Figure 9. The inclined plane simulation run with a 5 × 5 grid of particles placed slightly further than
the smoothing kernel radius and forced to fall onto the plane inclined at 10 degrees and with a friction
coefficient of 0. Panels (a–f) depict the pathlines of five of particles as they fall and “roll” down the
incline path, while panel (g) shows the screenshot of the particles during movement in Unity3D.

Figure 10. The inclined plane simulation run with a 5× 5 grid of particles placed slightly further than
the smoothing kernel radius and forced to fall onto the plane inclined at 10 degrees with a friction
coefficient of 1. Panels (a–f) depict the pathlines of five of particles as they fall and “stick” onto the
inclined plane. Panel (g) shows the screenshot of the particles at the end of the simulation run, where
they still remain uphill and in formation.

3.2. Water Tank Setups

Our BSPH method, despite its efficacy in the plane-based trials, still does not account
for pressure irregularities in particles close to the boundary manifold. To verify this, two
water tank simulations were conducted: one with an empty tank, and another with a
90-degree wedge placed on the floor in the middle of the tank. A third water tank setup
was also created to simulate a dam break scenario with the wedge acting as a slope, for
which we measured whether the mesh boundary method could handle fluid movement
from dam breaks. The tank itself was represented by an inverted mesh cube stretched
to fit a 10 m × 7.5 m × 2.5 m area. This means that the limits of the experiment space
were contained by mesh triangles, and therefore, all particle interactions with the water
tank were effectively particle–mesh boundary interactions. The tank and wedge mesh
boundaries both had a friction coefficient of 0 and restitution coefficient of 0.25. Simulation
parameters for all water tank simulations are provided in Table 4.

Algorithms 2024, 17, 218 14 of 23

Table 4. Water tank setups—simulation parameters.

Tank
(Empty)

Number of Particles 15,750 Ideal Density ρ0 1000
Initial Spacing ab 0.2 Viscosity Coeff. 0.001
Render Size b 0.05 Bulk Modulus (k) 250
Particle Mass 1 Friction Coeff. (c f riction) 0.0
Kernel Radius b 0.2 Restitution Coeff. (crest) 0.25

Tank (with
Wedge)

Number of Particles 13,500 Ideal Density ρ0 1000
Initial Spacing ab 0.2 Viscosity Coeff. 0.001
Render Size b 0.05 Bulk Modulus (k) 250
Particle Mass 1 Friction Coeff. (c f riction) 0.0
Kernel Radius b 0.2 Restitution Coeff. (crest) 0.25

Dam Break

Number of Particles 20,445 Ideal Density ρ0 600
Initial Spacing ab 0.15 Viscosity Coeff. 0.001
Render Size b 0.05 Bulk Modulus (k) 250
Particle Mass 1 Friction Coeff. (c f riction) 0.0
Kernel Radius b 0.2 Restitution Coeff. (crest) 0.25

a “Initial Spacing” refers to the initial spacing between particle centers during the initialization of a
simulation scene. b All distance units are in Unity3D meters.

In the first two water tank tests, particles had a kernel support radius of 0.2 m and
were initialized with 0.2 m of space between particles. The resulting pressure gradients
were measured at the end of the simulation, when the particles no longer exhibited any
movement and the fluid was still. The pressure gradients visualized here are calculated
based on the original pressure equation:

p = kρ (9)

and are expressed in Pascal units, though the SPH implementation in Unity3D still uses
Müller’s modified variant.

The empty tank scenario (Figure 11) was initialized with 15,750 particles, while the
tank with the wedge scenario (Figure 12) was initialized with 13,500 particles. Visual
analysis of both results show that irregular pressure values are most prominent along
the edges of the simulation area, where particles would interact with the inverted cube
and wedge meshes. Irregular pressure values can also be seen along the bottom of the
simulation space as well. This falls within expectation, as the mesh boundary method does
not account for the loss in pressure due to empty kernel space for particles touching the
boundary. Nonetheless, the simulation is stable enough to be at a standstill, and particles
show no sign of escaping the boundary manifold. The wedged tank simulation shows that
the particles do not penetrate the boundary formed by the wedge and instead follow its
contour as expected.

The final tank-based setup that we explored was a traditional dam break scenario
with the same incline wedge placed in the middle of the scene. Rather than identifying
pressure gradients along the boundary, the focus of this evaluation was to observe whether
particles penetrated the boundary due to excessive pressure and viscosity forces generated
from the fluid motion. In this setup, 20,445 particles were placed on one side of the tank
and were placed at intervals of 0.15 m. This means that the particles, upon initialization of
the simulation, were expected to expand outward and thus generate the necessary fluid
motion to simulate a dam break scenario. Figure 13 shows the status of the simulation
in Unity3D at 1-second intervals. As illustrated in screen captures, we can show that the
inverted cube and wedge meshes that represented the water tank dimensions successfully
contained all particles.

Algorithms 2024, 17, 218 15 of 23

Figure 11. A slice of the empty tank simulation depicting particles along the middle of the Z-axis and
the resulting pressure gradient at the end of the simulation run. Visual observation shows that while
the pressure gradient decreases with elevation, the sides of the simulation feature irregular pressure
values among particles closest to the mesh edge. Irregular pressure values can also be seen along the
bottom of the tank, where particles are touching the bottom of the cube mesh.

Figure 12. A slice of the wedged tank simulation depicting particles along the middle of the Z-axis
and the resulting pressure gradient at the end of the simulation run. Visual observation shows similar
results to the empty tank scenario, where the particles are directly touching or are in close proximity
to the mesh boundaries experience irregular pressure values. The particles successfully conform to
the manifold shape of the tank, following the general contour of the boundary in 3D space.

Figure 13. Screen captures of the dam break simulation from Unity3D, with each frame (a–d) depicting
the status of the simulation at 1-second intervals. Coloration is indicative of particle speed from
0 m/s (blue) to 5 m/s (green). The wedged slope shows particles following the sloped contour to
produce the wave-like flow that collides with the other side of the tank. The tank’s mesh boundary
successfully prevents all particles from escaping the tank.

Algorithms 2024, 17, 218 16 of 23

3.3. Concave Mesh and Fluid Flow Setups

A key value of our BSPH method is sourced in its ability to handle concave boundary
manifolds. To demonstrate this capability for BSPH, we established three fluid tests with
three different types of mesh objects: a convex sphere, a concave elongated torus, and a
concave bowl. Particles were parameterized with a support kernel radius of 0.2 m and
initialized in a 125 × 25 × 5 grid arrangement at the start of the simulation, totaling to
31,250 particles. Particles would flow rightward at an acceleration of 9.8 m/s, similar to that
of gravity. The sphere, torus, or concave bowl was placed along the particle path to interact
with the particles. The simulation parameters for all three fluid flow tests are provided in
Table 5.

Table 5. Fluid flow setups—simulation parameters.

Flow Field
(Sphere,
Torus, and
Bowl)

Number of Particles 31,250 Ideal Density ρ0 600
Initial Spacing ab 0.3 Viscosity Coeff. 0.001
Render Size b 0.1 Bulk Modulus (k) 250
Particle Mass 1 Friction Coeff. (c f riction) 0.0
Kernel Radius b 0.2 Restitution Coeff. (crest) 0.25

a “Initial Spacing” refers to the initial spacing between particle centers during the initialization of a
simulation scene. b All distance units are in Unity3D meters.

A first setup was designed to depict the resulting flow field around a concave sphere of
7.5 m radius. It was expected that particles would flow around the curvature of the sphere
and not intersect or be submerged within the sphere’s mesh manifold. Figure 14 shows the
resulting flow fields at approximately 3 s after the start of the simulation, when particles
are interacting with the sphere. As expected, the particles appear to flow around the sphere
and form two distinct flow fields as they proceed past the sphere. No penetration of the
mesh boundary was visually observed.

Figure 14. Screen captures of the flow field simulation with a concave sphere with a radius of 7.5 m.
This visual was generated approximately 3 s after the start of the simulation. Panel (a) visualizes the
flow field as a cone field, while Panel (b) is a screen capture of the Unity3D simulation. The Unity3D
simulation uses a transparent sphere to highlight possible submerged particles. Both visualizations’
coloration represent particle speeds within a range of 0–30 m/s.

A second setup uses an elongated torus with a tunnel formed by the elongated inner
cavity of the torus. We established the torus with a depth of 1.32 m while being set to
0.35 m × 0.35 m in width and height. In addition, the torus was rotated off-axis by
45 degrees around the y-axis, creating a diagonal path that particles would be expected
to flow through, while particles outside the torus flow around the outer curvature of the
mesh. Figure 15 shows how particles flow through the cavity formed by the inner ring of

Algorithms 2024, 17, 218 17 of 23

the torus, and visual observation shows that particles collide strongly with the lip of the
torus near the tunnel entrance and proceed to flow through the mesh, as expected. Due to
the arrangement of the torus, particles outside of the tunnel follow the diagonal orientation
of the torus and reach a choking point near the end of the torus’ tunnel. Visual analysis
indicates that no particles appear to intersect or be submerged within the mesh boundary
manifold of the torus.

Figure 15. Screen captures of the flow field simulation with an elongated torus forming a tunnel that
particles are expected to flow through. This visual was generated approximately 3 s after the start of
the simulation. Panel (a) visualizes the flow field as a cone field, while Panel (b) is a screen capture of the
Unity3D simulation. The Unity3D simulation uses a transparent torus to highlight possible submerged
particles. Both visualizations’ coloration represent particle speed within a range of 0–30 m/s.

A third setup uses a bowl mesh meant to appear as a cooking pot. The opening of
the bowl was approximately 5 m in radius, and the bowl reached a depth of 3 m. Particles
were expected to initially hit the interior of the bowl, scatter, and remain in the bowl as
particles outside the bowl radius flowed past it. The results are shown visually in Figure 16;
particles hit the bowl and consequently bounce around in it. Within expectation, the bowl
mesh manages to prevent particles from moving through the bowl and creates a scattering
effect among particles within the bowl’s curvature.

Figure 16. Screen captures of the flow field simulation with a cooking pot mesh creating a cavity
where particles were expected to fall into and remain. This visual was generated approximately 3 s
after the start of the simulation. Panel (a) visualizes the flow field as a cone field, while Panel (b)
is a screen capture of the Unity3D simulation. The Unity3D simulation uses a transparent mesh to
highlight possible submerged particles. Both visualizations’ coloration represent particle speeds
within a range of 0–30 m/s.

Algorithms 2024, 17, 218 18 of 23

3.4. Mesh Boundary Performance

To quantify the performance of BSPH, we measured the average frames per second
(FPS) of each simulation scenario during runtime, when particle–mesh interactions were
most prominent. We parameterized the simulation complexity based on the number of
vertices, triangles, and edges present in each scene, as well as the number of particles used
in the simulation. The full results are reported in Table 6.

Table 6. Mesh boundary performance by scene.

Scene Num. Particles Num.
Obstacles Num. Vertices Num. Edges Num. Triangles Average FPS

Flat Plane 64 2 12 23 14 179.912

10 Deg Inclined
Plane (Slip) 25 2 12 23 14 268.041

10 Deg Inclined
Plane (No-Slip) 25 2 12 23 14 251.574

Tank (Empty) 15,750 1 8 18 12 179.894

Tank (with
Wedge) 13,500 2 14 30 20 189.525

Dam Break 20,445 2 14 30 20 149.303

Flow Field
(Sphere) 31,250 2 394 1170 780 155.875

Flow Field
(Torus) 31,250 2 392 1170 780 152.735

Flow Field
(Bowl) 31,250 2 144 408 272 150.070

Initial analysis indicates that the number of particles in the simulation affects the
average FPS of every simulation. Among scenario groupings (i.e. plane, tank, and flow
field), average FPS does not appear to change significantly. For example, we showed that
the FPS only dips by about 5 FPS between “Flow Field (bowl)” and “Flow Field (Sphere)”,
despite the jump in the number of triangles, edges, and vertices. The jump in FPS between
the “Dam Break” and “Tank (with Wedge)” scenarios appears to be largely driven by
the number of particles, though it is also possible that this jump could be affected by
particle–particle interaction calculations driven by the initial arrangement of particles in
either scenario. For example, in the “Dam Break” scenario, particles are condensed into
one side of the tank, while in the “Tank (with Wedge)” scenario, particles are more broadly
dispersed across the length of the tank. Further analysis is required to explain the effect of
initial simulation parameters on overall average performance of the simulation. Holistically,
the average FPS values for each scenario show that the affected mesh boundary method
can still be effectively run in tandem with parallelization schemes for SPH, insofar as when
simpler simulations, such as those covered in this report, are concerned.

4. Conclusions

This paper describes a new approach of implementing the SPH boundary method.
Our scheme, BSPH, takes advantage of 3D mesh architecture to create boundary mani-
folds that may be concave and feature complex geometry such as bowls or tunnels. The
method is inspired by existing work in graphics and uses concepts from discrete signed
distance fields, Payne and Toga’s closest point querying algorithm, and Baerentzen and
Aanaes’s methods for calculating normal vectors for faces, edges, and vertices. To evaluate
and establish robustness for BSPH in application, we tested a variety of simulations in a
Unity3D implementation that utilizes compute shaders to optimize kernel neighborhood

Algorithms 2024, 17, 218 19 of 23

calculations and parallelize particle operations. Our performance and empirical results
show promise in BSPH’s agility and ability to prevent submersion of particles into the
boundary manifold, and we were successful in demonstrating that BSPH operates with
similar effectiveness with both concave and convex mesh types. The average FPS perfor-
mance indicates that BSPH can be run effectively over commonplace scenarios that are
routine in computer graphics applications, for example in gaming and in special effects.
We plan to further test the limitations of the mesh boundary method to identify how initial
simulation parameters as well as the number of mesh vertices, edges, and triangles affect
the runtime performance of the simulation. Our future efforts will also study whether edge
cases can be identified through testing a more varied sample of mesh objects and whether
the particle–mesh projection step can be further parallelized for additional flexibility in
optimization. Furthermore, we will investigate the behavior of BSPH when integrated with
double-precision values during mesh data pre-processing and during simulation. Finally,
we aim to address the issue of irregular pressure values for particles close to the boundary
in future iterations of the mesh boundary method.

Author Contributions: R.K.: Conceptualization, idea brainstorming, and formation; methodology,
conceptualization, and mathematical formulation of the mesh boundary algorithm; software, im-
plementation of the Unity3D build for prototyping, and result aggregation; writing—original draft
preparation, submission drafting, and write-up; and literature review of existing boundary condition
methods. P.M.T.: Supervision, project oversight, and guidance; project administration, providing
the necessary computational hardware required to run SPH; and funding acquisition, aiding R.K. in
achieving GAANN fellowship funding. All authors have read and agreed to the published version of
the manuscript.

Funding: Ryan Kim was supported by a U.S. Department of Education Graduate Assistance in Areas
of National Need (GAANN) fellowship under award P200A210096.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Mesh Pre-processing Algorithm

Algorithm A1: Mesh Pre-Processing during Initialization
Data: M: list or array of meshes
Result: obstacles, vertices, edges, triangles: variable-length global lists of obstacles,

vertices, edges, and triangles
Initialize obstacles, vertices, edges, and triangles;
for m ∈ M do

PreprocessMesh(m, ref obstacles, ref vertices, ref edges, ref triangles);

Algorithms 2024, 17, 218 20 of 23

Algorithm A2: PreprocessMesh()
Data: m: mesh data, ref obstacles, vertices, edges, triangles : references to global

mesh data
Result: processed mesh data extended into obstacles, vertices, edges, triangles
// Initializing lists for this mesh’s vertices, edges, triangles
mvs← f loat3 variable-length array of vertices;
mes← list of edges of variable-length size;
mts← list of triangles of size |ts|/3;
// Initializing index mapper functions
vmap← int list mapping old indices to indices in mvs;
emap← dictionary map from int2 integer tuples to int indices in mes;
// Get original mesh data
vs← list of f loat3 vertex positions from m;
ts← list of int indices from m;
// Looping through all triangles
for ti = 0 to |ts|/3 do

// Loop through triangle’s vertices
PreprocessVertices(ti, ts, vs, ref mvs, ref vmap);
// Calculating triangle properties
PreprocessTriangles(ti, ts, mvs, vmap, ref mts);
// Update vertex normals
mvs[mts[ti].vertices[0]].normal+ = mts[ti].normal ∗mts[ti].angles[0];
mts[mts[ti].vertices[1]].normal+ = mts[ti].normal ∗mts[ti].angles[1];
mts[mts[ti].vertices[2]].normal+ = mts[ti].normal ∗mts[ti].angles[2];
// Updating edges, based on if they exist in mes
PreprocessEdges(ti, mvs, ref mts, ref mes, ref emap);

// Aggregating mesh data
o← new obstacle record;
o.vertices = (|vertices|, |mvs|);
o.edges = (|edges|, |mes|);
o.triangles = (|triangles|, |mts|);
vertices.extend(mvs), edges.extend(mes), and triangles.extend(mts);
Add o to obstacles;

Algorithm A3: PreprocessVertices()
Data: ti: Current triangle index, ts: original mesh triangles, vs: original mesh

vertices, ref mvs : reference to mesh’s condensed list of vertices, ref vmap:
reference to mesh’s mapper function for vertices

Result: Extending mvs for vertices not seen before, linking original vertices to
condensed vertices

// Loop through triangle’s vertices
for j = 0 to 3 do

vi = ts[ti ∗ 3 + j]← Get the index of the triangle’s vertex in vs;
v = vs[vi]← Get the f loat3 vertex position;
k← index of v in mvs if exists;
if v /∈ mvs then

Insert v into mvs;
k← index of v in mvs;

vmap[vi] = j;

Algorithms 2024, 17, 218 21 of 23

Algorithm A4: PreprocessTriangles()
Data: ti: Current triangle index, ts: original mesh triangles, mvs: mesh’s

condensed list of vertices, vmap: mapper from original vertex indices to
condensed vertices, ref mts : reference to mesh’s triangle data

Result: Extending mts with angle, center, and normal data
// Retrieving positions of triangle’s vertices
mts[ti].vertices = (vmap[ts[ti ∗ 3]], vmap[ts[ti ∗ 3 + 1]], vmap[ts[ti ∗ 3 + 2]]);
v1 = mvs[mts.vertices[0]].position← First vertex’s position;
v2 = mvs[mts.vertices[1]].position← Second vertex’s position;
v3 = mvs[mts.vertices[2]].position← Third vertex’s position;
// Updating vertex angles for this triangle
mts[ti].angles = (∠

(−−→v1v3,−−→v1v2
)
,∠

(−−→v2v3,−−→v2v1
)
,∠

(−−→v3v2,−−→v3v1
)
);

// Updating triangle’s centroid and orthogonal normal vector
mts[ti].center = (v1 + v2 + v3)/3;
mts[ti].normal = normalize(v2 − v1 × v3 − v1)← Right-hand Rule;

Algorithm A5: PreprocessEdges()
Data: ti: Current triangle index, mvs: mesh’s condensed list of vertices, ref mts :

reference to mesh’s triangle data, ref mes: reference to mesh’s edge data, ref
emap: reference to mapper function from int2 pairs of vertices to edges

Result: Extending mes with edges derived from vertex data in the current triangle
// Checking the first edge, comprised of v1 and v2
v1v2 = (mts[ti].vertices[0], mts[ti].vertices[1])← int2 key for emap;
if v1v2 /∈ emap then

e : new Edge;
e.vertices = v1v2;
e.triangles = (ti,−1)← Second index set to default for now;
Add e to mes;
emap[v1v2]← index of e in mes;

else
emap[v1v2].triangles[1] = ti← Second index set to current triangle;

// Similar calculations for v1v3 and v2v3...
// Aggregate edge indices into triangle data
mts[ti].edges = (emap[v1v2], emap[v1v3], emap[v2v3]);
// Calculating midpoint and pseudonormal for Edges
for e ∈ mes do

e.midpoint = (mvs[e.vertices[0]].position + mvs[e.vertices[1]].position)/2;
e.normal = mts[e.triangles[0]].normal;
if e.triangles[1] ̸= −1 then

e.normal =
normalize(mts[e.triangles[0]].normal + mts[e.triangles[1]].normal);

References
1. Reynolds, C. Big fast crowds on PS3. In Proceedings of the 2006 ACM SIGGRAPH Symposium on Videogames, New York, NY,

USA, 30–31 June 2006; pp. 113–121. [CrossRef]
2. Monaghan, J. Smoothed Particle Hydrodynamics and Its Diverse Applications. Annu. Rev. Fluid Mech. 2012, 44, 323–346.

[CrossRef]
3. Shadloo, M.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications:

Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34. [CrossRef]
4. Ye, T.; Pan, D.; Huang, C.; Liu, M. Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in

methodology and applications. Phys. Fluids 2019, 31, 011301. [CrossRef]

http://doi.org/10.1145/1183316.1183333
http://dx.doi.org/10.1146/annurev-fluid-120710-101220
http://dx.doi.org/10.1016/j.compfluid.2016.05.029
http://dx.doi.org/10.1063/1.5068697

Algorithms 2024, 17, 218 22 of 23

5. Zhang, C.; Zhu, Y.J.; Wu, D.; Adams, N.A.; Hu, X. Smoothed particle hydrodynamics: Methodology development and recent
achievement. J. Hydrodyn. 2022, 34, 767–805. [CrossRef]

6. Boregowda, P.; Liu, G.R. On the accuracy of SPH formulations with boundary integral terms. Math. Comput. Simul. 2023,
210, 320–345. [CrossRef]

7. Peskin, C.S. Numerical analysis of blood flow in the heart. J. Comput. Phys. 1977, 25, 220–252. [CrossRef]
8. Peskin, C.S. The immersed boundary method. Acta Numer. 2002, 11, 479–517. [CrossRef]
9. Hou, G.; Wang, J.; Layton, A. Numerical Methods for Fluid-Structure Interaction—A Review. Commun. Comput. Phys. 2012,

12, 337–377. [CrossRef]
10. Stockie, J.M.; Wetton, B.R. Analysis of Stiffness in the Immersed Boundary Method and Implications for Time-Stepping Schemes.

J. Comput. Phys. 1999, 154, 41–64. [CrossRef]
11. Monaghan, J. Simulating Free Surface Flows with SPH. J. Comput. Phys. 1994, 110, 399–406. [CrossRef]
12. Morris, J.P.; Fox, P.J.; Zhu, Y. Modeling Low Reynolds Number Incompressible Flows Using SPH. J. Comput. Phys. 1997,

136, 214–226. [CrossRef]
13. Colagrossi, A.; Landrini, M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys.

2003, 191, 448–475. [CrossRef]
14. Bonet, J.; Kulasegaram, S.; Rodriguez-Paz, M.; Profit, M. Variational formulation for the smooth particle hydrodynamics (SPH)

simulation of fluid and solid problems. Comput. Methods Appl. Mech. Eng. 2004, 193, 1245–1256. [CrossRef]
15. Ferrand, M.; Laurence, D.R.; Rogers, B.D.; Violeau, D.; Kassiotis, C. Unified semi-analytical wall boundary conditions for inviscid,

laminar or turbulent flows in the meshless SPH method. Int. J. Numer. Methods Fluids 2013, 71, 446–472. [CrossRef]
16. Yildiz, M.; Rook, R.A.; Suleman, A. SPH with the multiple boundary tangent method. Int. J. Numer. Methods Eng. 2009, 77,

1416–1438. [CrossRef]
17. Dalrymple, R.; Rogers, B. Numerical modeling of water waves with the SPH method. Coast. Eng. 2006, 53, 141–147. [CrossRef]
18. Dalrymple, R.A.; Knio, O. SPH Modelling of Water Waves. In Coastal Dynamics ’01; American Society of Civil Engineers: Reston,

VA, USA, 2012; pp. 779–787. [CrossRef]
19. Marrone, S.; Antuono, M.; Colagrossi, A.; Colicchio, G.; Le Touzé, D.; Graziani, G. δ-SPH model for simulating violent impact

flows. Comput. Methods Appl. Mech. Eng. 2011, 200, 1526–1542. [CrossRef]
20. Antuono, M.; Colagrossi, A.; Marrone, S.; Lugni, C. Propagation of gravity waves through an SPH scheme with numerical

diffusive terms. Comput. Phys. Commun. 2011, 182, 866–877. [CrossRef]
21. Müller, M.; Schirm, S.; Teschner, M.; Heidelberger, B.; Gross, M. Interaction of fluids with deformable solids. Comput. Animat.

Virtual Worlds 2004, 15, 159–171. [CrossRef]
22. Monaghan, J.; Kajtar, J. SPH particle boundary forces for arbitrary boundaries. Comput. Phys. Commun. 2009, 180, 1811–1820.

[CrossRef]
23. Vacondio, R.; Altomare, C.; De Leffe, M.; Hu, X.; Le Touzé, D.; Lind, S.; Marongiu, J.C.; Marrone, S.; Rogers, B.D.; Souto-Iglesias,

A. Grand challenges for Smoothed Particle Hydrodynamics numerical schemes. Comput. Part. Mech. 2020, 8, 575–588. [CrossRef]
24. Torrens, P.M. Exploring behavioral regions in agents’ mental maps. Ann. Reg. Sci. 2016, 57, 309–334. [CrossRef]
25. Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S.N. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams; John Wiley & Sons:

Chichester, West Sussex, England, 2009; ISBN 0-471-98635-6.
26. Gilbert, E.; Johnson, D.; Keerthi, S. A fast procedure for computing the distance between complex objects in three-dimensional

space. IEEE J. Robot. Autom. 1988, 4, 193–203. [CrossRef]
27. Jones, M.; Baerentzen, J.; Sramek, M. 3D distance fields: A survey of techniques and applications. IEEE Trans. Vis. Comput. Graph.

2006, 12, 581–599. [CrossRef]
28. Sigg, C.; Peikert, R.; Gross, M. Signed distance transform using graphics hardware. In Proceedings of the IEEE Visualization,

Seattle, WA, USA, 19–24 October 2003; pp. 83–90. [CrossRef]
29. Mauch, S. A Fast Algorithm for Computing the Closest Point and Distance Transform. 2000. Available online: https://www.

researchgate.net/publication/2393786_A_Fast_Algorithm_for_Computing_the_Closest_Point_and_Distance_Transform (ac-
cessed on 18 July 2023).

30. Toga, A.W.; Payne, B.A. Distance Field Manipulation of Surface Models. IEEE Comput. Graph. Appl. 1992, 12, 65–71. [CrossRef]
31. Baerentzen, J.; Aanaes, H. Signed distance computation using the angle weighted pseudonormal. IEEE Trans. Vis. Comput. Graph.

2005, 11, 243–253. [CrossRef] [PubMed]
32. Thürrner, G.; Wüthrich, C.A. Computing Vertex Normals from Polygonal Facets. J. Graph. Tools 1998, 3, 43–46. [CrossRef]
33. Fuhrmann, A.; Sobottka, G.A. Distance Fields for Rapid Collision Detection in Physically Based Modeling. Proc. GraphiCon 2003,

2003, 58–65.
34. Baumgart, B.G. A polyhedron representation for computer vision. In Proceedings of the May 19–22. 1975, National Computer

Conference and Exposition on—AFIPS ’75, Anaheim, CA, USA, 19–22 May 1975. [CrossRef]
35. Fraga Filho, C.A.D. Reflective boundary conditions coupled with the SPH method for the three-dimensional simulation of

fluid–structure interaction with solid boundaries. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 256. [CrossRef]

http://dx.doi.org/10.1007/s42241-022-0052-1
http://dx.doi.org/10.1016/j.matcom.2023.03.018
http://dx.doi.org/10.1016/0021-9991(77)90100-0
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.4208/cicp.291210.290411s
http://dx.doi.org/10.1006/jcph.1999.6297
http://dx.doi.org/10.1006/jcph.1994.1034
http://dx.doi.org/10.1006/jcph.1997.5776
http://dx.doi.org/10.1016/S0021-9991(03)00324-3
http://dx.doi.org/10.1016/j.cma.2003.12.018
http://dx.doi.org/10.1002/fld.3666
http://dx.doi.org/10.1002/nme.2458
http://dx.doi.org/10.1016/j.coastaleng.2005.10.004
http://dx.doi.org/10.1061/40566(260)80.
http://dx.doi.org/10.1016/j.cma.2010.12.016
http://dx.doi.org/10.1016/j.cpc.2010.12.012
http://dx.doi.org/10.1002/cav.18
http://dx.doi.org/10.1016/j.cpc.2009.05.008
http://dx.doi.org/10.1007/s40571-020-00354-1
http://dx.doi.org/10.1007/s00168-015-0682-0
http://dx.doi.org/10.1109/56.2083
http://dx.doi.org/10.1109/TVCG.2006.56
http://dx.doi.org/10.1109/VISUAL.2003.1250358
https://www.researchgate.net/publication/2393786_A_Fast_Algorithm_for_Computing_the_Closest_Point_and_Distance_Transform
https://www.researchgate.net/publication/2393786_A_Fast_Algorithm_for_Computing_the_Closest_Point_and_Distance_Transform
http://dx.doi.org/10.1109/38.135885
http://dx.doi.org/10.1109/TVCG.2005.49
http://www.ncbi.nlm.nih.gov/pubmed/15868824
http://dx.doi.org/10.1080/10867651.1998.10487487
http://dx.doi.org/10.1145/1499949.1500071
http://dx.doi.org/10.1007/s40430-024-04807-z

Algorithms 2024, 17, 218 23 of 23

36. Müller, M.; Charypar, D.; Gross, M. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, 26–27 July 2003; pp. 154–159.

37. Desbrun, M.; Gascuel, M.P. Smoothed Particles: A new paradigm for animating highly deformable bodies. In Proceedings of the
Eurographics Workshop, Poitiers, France, 31 August–1 September 1996; pp. 61–76.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Materials and Methods
	Triangle Mesh Basics
	Pre-Processing 3D Meshes
	Single Particle–Triangle Scenario
	Calculating Plane Projection
	Calculating the Closest Point and Corresponding Boundary Normal
	Calculating the Signed Distance

	SPH Fluid Interaction

	Results
	Simple Setups
	Water Tank Setups
	Concave Mesh and Fluid Flow Setups
	Mesh Boundary Performance

	Conclusions
	Appendix A
	References

