
Citation: Kesireddy, A.; Medrano, F.A.

Elite Multi-Criteria Decision

Making—Pareto Front Optimization

in Multi-Objective Optimization.

Algorithms 2024, 17, 206. https://

doi.org/10.3390/a17050206

Academic Editor: Massimiliano

Caramia

Received: 31 March 2024

Revised: 8 May 2024

Accepted: 10 May 2024

Published: 10 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Elite Multi-Criteria Decision Making—Pareto Front Optimization
in Multi-Objective Optimization
Adarsh Kesireddy 1,2,* and F. Antonio Medrano 1,2

1 Conrad Blucher Institute for Surveying and Science, Texas A&M University–Corpus Christi,
Corpus Christi, TX 78412, USA; antonio.medrano@tamucc.edu

2 Department of Computer Science, Texas A&M University–Corpus Christi, Corpus Christi, TX 78412, USA
* Correspondence: akesireddy@islander.tamucc.edu

Abstract: Optimization is a process of minimizing or maximizing a given objective function under
specified constraints. In multi-objective optimization (MOO), multiple conflicting functions are
optimized within defined criteria. Numerous MOO techniques have been developed utilizing various
meta-heuristic methods such as Evolutionary Algorithms (EAs), Genetic Algorithms (GAs), and other
biologically inspired processes. In a cooperative environment, a Pareto front is generated, and an
MOO technique is applied to solve for the solution set. On other hand, Multi-Criteria Decision Making
(MCDM) is often used to select a single best solution from a set of provided solution candidates. The
Multi-Criteria Decision Making–Pareto Front (M-PF) optimizer combines both of these techniques
to find a quality set of heuristic solutions. This paper provides an improved version of the M-PF
optimizer, which is called the elite Multi-Criteria Decision Making–Pareto Front (eMPF) optimizer.
The eMPF method uses an evolutionary algorithm for the meta-heuristic process and then generates
a Pareto front and applies MCDM to the Pareto front to rank the solutions in the set. The main
objective of the new optimizer is to exploit the Pareto front while also exploring the solution area.
The performance of the developed method is tested against M-PF, Non-Dominated Sorting Genetic
Algorithm-II (NSGA-II), and Non-Dominated Sorting Genetic Algorithm-III (NSGA-III). The test
results demonstrate the performance of the new eMPF optimizer over M-PF, NSGA-II, and NSGA-III.
eMPF was not only able to exploit the search domain but also was able to find better heuristic
solutions for most of the test functions used.

Keywords: multi-objective optimization; Pareto front; Multi-Criteria Decision Making; Evolutionary
Algorithms; heuristics

1. Introduction

Most real-world problems are multi-objective (MO) in nature. In an MO problem,
a solution or set of solutions are to be found which are optimal for conflicting objective
functions. Pareto optimal solutions represent an optimal trade-off between objectives in
most real-world applications. In fact, for conflicting objectives where one Pareto optimal
solution is known, in order to find another feasible solution that improves in one objective,
one must worsen in one or more other objectives. Resource limiting constraints add to
the complexity of finding solutions, and for discrete decision variables, this results in a
problem that is classified as NP-Hard, where the time to solve to exact optimality grows
exponentially as the problem size increases linearly [1].

The main objective of an optimizer technique is to find a set of solutions which are op-
timal or near optimal for the conflicting objectives under the given constraints. Algorithms
with stochastic components are referred as meta-heuristics [2]. Stochastic optimization tech-
niques are often applied in solving black-box optimization problems [3]. Generally, most
real-world problems are classified as black-box optimization problems due to uncertainty
in the exact definition of the objective functions, constraints, and other uncertainties.

Algorithms 2024, 17, 206. https://doi.org/10.3390/a17050206 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17050206
https://doi.org/10.3390/a17050206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0005-1067-8434
https://orcid.org/0000-0002-5913-632X
https://doi.org/10.3390/a17050206
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17050206?type=check_update&version=2

Algorithms 2024, 17, 206 2 of 19

In multi-objective optimization (MOO), the search space needs to be explored to find
the best solutions for the objective functions. Exploration and exploitation of the search
area both need to be performed. Various techniques such as Non-Dominated Sorting
Genetic Algorithm-II (NSGA-II) [4], Non-Dominated Sorting Genetic Algorithm-III (NSGA-
III) [5], Particle Swarm Optimization (PSO) [6], and Ant Colony Optimization (ACO) [7]
have previously been developed to solve such difficult problems, and the new presented
technique will be evaluated against those. Some real-world applications of MOO include
finance [8], politics [9], mechanics [10], and spatial optimization [11].

On the contrary, if a set of feasible solutions is already provided, then Multi-Criteria
Decision Making (MCDM) is used to find the best solution from the given set of solutions.
In MCDM, a single best solution is generally selected from the provided set of solutions
depending upon the significance of the objective. Various methods for the selection of a
solution have previously been developed [12].

A decision maker (DM) first applies MOO techniques and obtains a set of Pareto front
solutions. Next, the DM applies MCDM techniques on the set of Pareto front solutions
to pick one best solution. Various researchers have previously implemented this process
in [13–15]. An optimizer combining both of these approaches was previously developed,
which was called Multi-Criteria Decision Making–Pareto Front (M-PF) optimizer [16]. The
main drawback of the M-PF optimizer is its tendency to converge toward one objective to
exploit its search area with low probability of exiting from local minimum fitness. Other
researchers have tried to combine the MOO and MCDM techniques [17] in which they
use predefined objective weights by decision maker (DM). One of the major issues with
predefined objective weights is that this results in a bias toward one of the objective
functions. In this paper, an improved version of the M-PF optimizer is developed, which
is called the elite Multi-Criteria Decision Making–Pareto Front (eMPF) optimizer. The
simultaneous objectives of the new optimizer include both exploitation of the search area
and also the exploration of a diverse solution set.

The main contribution of this paper is to present a better optimizer than the M-PF
optimizer with a lower possibility of being stuck in a local optimal fitness. The other
contribution is to reduce the time complexity over the M-PF optimizer. In experiments, the
new optimizer has better solution quality over the other evaluated test functions.

The structure of the subsequent sections of this paper is as follows. In Section 2,
the relevant literature review of MOO, Pareto front, Multi-Criteria Decision Making, and
Evolutionary Algorithms is presented. In Section 3, the new algorithm along with the
step-by-step process is explained. In addition, all of the test functions used for this paper
are explained. In Section 4, the results of the simulation are demonstrated, and the data are
interpreted in Section 5. Finally, in Section 6, the conclusions for this paper are provided.

2. Literature Review

This section provides an overview of Multi-Objective Optimization (MOO), Pareto
front (PF), Multi-Criteria Decision Making (MCDM), Evolutionary Algorithm (EA), and
Multi-Objective Evolutionary Algorithms (MOEA).

2.1. Multi-Objective Optimization (MOO)

The aim of an MOO is to find a set of optimal solutions for conflicting objectives which
may have constraints associated with them. Mathematically, MOO can be represented
as [18]

min[f1(x), f2(x), . . . , fn(x)] (1)

subject to ci(x) where i = 1, 2, 3, . . . , m. Here, f1(x), f2(x), . . . , fn(x) are the objective
functions, n is the number of objective functions, ci(x) are the constraints, and m is the
number of constraints.

In an MOO, the number of objective functions should be greater than or equal to 2.
Each optimal solution is a trade-off between objectives and may not be an optimal solution
for any objective function taken individually [19]. This conflicting nature of the objective

Algorithms 2024, 17, 206 3 of 19

functions and their corresponding constraints make the problem of finding the optimal set
of solutions challenging.

2.2. Pareto Front

A single solution from the given set of solutions is considered Pareto optimal only if
there exists no other feasible solution that improves any objective without worsening one
or more objectives. The Pareto dominance can be explained using Figure 1.

Figure 1. Set of objective space solutions for objective functions f1, f2 along with A, B, and C solutions.

In Figure 1, all of the points represent the feasible solutions obtained for the objective
functions 1 and 2. Considering points A, B, and C and with the desire to minimize both
objective functions, the following conclusions can be made:

• Point A dominates point B in objective 1 and C in both the objectives.
• Point B dominates point A in objective 2 and C in both the objectives.
• Point C is dominated by both A and B points in both the objectives.

Here, points A and B are not dominating each other, and there are no other solutions
dominating them. Hence, points A and B are in the same Pareto front. Point C is dominated
by both solutions, thus pushing it to the next Pareto front.

To list all of the individuals into various Pareto fronts, first, all of the non-dominated
solutions PF1 are found from the entire solution set X. Next, the leftover solutions X− PF1
are considered to find PF2 non-dominated solutions. This process is repeated until all the
solutions are assigned a Pareto front number [20].

2.3. Multi-Criteria Decision Making (MCDM)

The aim of Multi-Criteria Decision Making (MCDM) is to obtain a single best solution
from a set of candidate solutions depending on the various criteria or the end user require-
ments. As per [21], MCDM was first developed by Benjamin Franklin while working on
the moral algebra concept.

In MCDM, weights are assigned to a criteria depending on the requirements from
the end user or problem type. Any of the methods such as Simple Additive Weighting
(SAW) [22], Analytic Hierarchy Process (AHP) [23], Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) [24], and the ranking method [25] are applied on the
individuals to find the best solution in the set of candidate solutions.

2.4. Evolutionary Algorithms (EA)

Evolutionary Algorithms (EAs) are a biologically inspired method for solving meta-
heuristic MOO problems. They are based on a population-based optimization process. The
initial step of EA is generating a total random population T = (p + q). The population is
evaluated against the objective functions, and fitness values are calculated. The individ-
uals in the population are checked against each other with methods such as the binary
tournament search method [26]. Let q be the individuals which need to be eliminated;

Algorithms 2024, 17, 206 4 of 19

these individuals are removed from the total population, leaving p = T− q individuals. A
new q population is added back to the kept population. To fill the q population, random
individuals from p are copied and randomized. Similarly, random elements in the total pop-
ulation T are mutated. When the process of evaluation, selection, removal, and mutation is
performed, these four steps are called a generation. The stop condition can be reaching a
given generation number or reaching fitness values of individuals in the population.

2.5. Multi-Objective Evolutionary Algorithm (MOEA)

In MOEA, the selection process is different from the above in Section 2.4. The Pareto
fronts are created for the entire population set. Various optimization techniques listed
in Section 1 are applied in the selection process to find the best individuals for the next
steps. MOEAs are classified into three categories: dominance-based, indicator-based, and
decomposition based [27]. Depending upon the selection process, the optimizer will fit into
the any of the above three categories.

3. Methodology

In this section, the developed algorithm is discussed in Section 3.1. The calculation of
weights of objective functions using entropy and degrees of diversification is explained
in Section 3.1.1. This is followed by the TOPSIS method [28], which is presented as it
will be used for the selection of policies from the Pareto front. The performance of the
optimizers are evaluated using the Pareto front spread (∆) (discussed in Section 3.2.1),
generational distance (GD) (discussed in Section 3.2.2), and the Pareto front spacing Sp
(discussed in Section 3.2.3). Moreover, the test functions used for this research are presented
in Section 3.3.

3.1. Algorithm

The eMPF optimization technique combines EA with MCDM, as shown in Figure 2.
Initially, a random population of T = (p+ q) is generated and evaluated in the environment.
The environment can be user defined as per requirements. With the fitness values evaluated
from the simulator, the Pareto fronts of the population are generated as discussed in
Section 2.2. This results in p better-performing individuals or policies over q individuals
or policies.

Figure 2. eMPF process flow chart.

Once the Pareto fronts are generated, the number of individuals to remove from the
required Pareto front set is determined on q individuals. If the number of individuals is
less than or equal to 3, then any of those individuals can be selected. If the number of
individuals is more than 3, then the TOPSIS method is applied on all the individuals of

Algorithms 2024, 17, 206 5 of 19

the Pareto front except for the extreme solutions, as shown in Algorithm 1. Before using
the TOPSIS method, weights for the objectives need to be found. Entropy and degree of
diversification are used to find weights for the objectives in this paper. The best outputs of
TOPSIS will be given priority over other individuals for survival. Next, priority is given to
extreme individuals. Finally, the priority of survival of individuals is given depending on
the ranking derived from the TOPSIS method.

Algorithm 1 eMPF selection process

Input: Pareto front P, Number of individuals to select N
Output: Selected individuals S
if N ≤ 3 then

S← Randomly select N individuals from P
else

E← Select individuals with the extreme fitness values from P
Calculate the weights of each objectives
Apply TOPSIS on individuals except E to rank individuals
S ← Select the best individual, individuals with the lowest fitness, followed by

individuals as per rank in TOPSIS
end if
return S

Once the q policies are removed from the population using mutation q, new individ-
ual policies are developed. The process of evaluation is repeated on p + q policies. The
methodology for the research is shown in Algorithm 1.

There are two major differences between the eMPF and M-PF optimizers. The first
difference is the selection of extreme fitness values in the Pareto front. This gives an
advantage to the eMPF optimizer of exploring the entire decision space over the M-PF
optimizer, which helps the optimizer explore the search area in between the extreme
fitness values. An extreme fitness value is the fitness value of an individual in the entire
population with the lowest (in minimization) or highest (in maximization) objective value
toward one objective function. The second difference is that in eMPF, the selection of
individuals is based on the individuals within the Pareto front. In M-PF, the first Pareto
front individuals are used for selection of the best individuals in the required Pareto
front, whereas in eMPF, the individuals in the same Pareto front are used for selection
of individuals. This transforms the optimizer from an indicator-based optimizer to a
dominance-based optimizer. The improvements in the performance of the optimizer are
shown in results section (Section 4).

From the aforementioned second variation between the eMPF and M-PF optimizers,
the time complexity is reduced for the eMPF optimizer. In M-PF, two loops, one each for
the first Pareto front and the other required Pareto front, are needed. With eMPF, only one
loop is necessary in the required Pareto front, reducing the overall time complexity with
O(n), where n is the number of individuals in the first Pareto front.

3.1.1. Calculating Weights of Each Objective

In the eMPF method, the weight of each objective is calculated in the process as shown
below [16]:

• The first step is to normalize the fitness values. The fitness values are normalized
using Equation (2),

Fij =
fij

ΣN
i=1 fi

(2)

where i is the individual policy, j is the objective number, N is the total number of
individual policies, f is the actual fitness value, and F is the normalized fitness value.

Algorithms 2024, 17, 206 6 of 19

• The next step is to find the entropy values (ej) of each objective using Equation (3),

ej = −h
N

∑
i=1

Fijln(Fij) (3)

where h = 1
ln(N)

, j is the objective fitness, N is the total number of individual policies,
F is the normalized fitness value from Equation (2), and i is the individual policy.

• Lastly, the weights (wj) of the objective are calculated using Equation (4),

wj =
1− ej

∑M
j=1 (1− ej)

(4)

where ej is the entropy value from the above step, j is the number of objectives, and M
is the total number of objectives.

By following the above listed steps, the weight of each objective function is calculated
for each generation in an MOEA.

3.1.2. TOPSIS

Once the weights of the objectives are calculated, the next step in the optimizer is to
use the TOPSIS method to rank the individual policies except for the extreme individuals
as shown in Figure 2. The TOPSIS method is as follows.

• Normalize the actual fitness values using Equation (5).

Fij =
fij√

∑m
j=1 f 2

ij

(5)

where i is the individual policy, j is the objective number, f is the actual fitness value,
and F is the normalized fitness value.

• Next, find the fitness weights by taking the product of the weight of each objective
with fitness values using the equation as shown below:

Wij = wj ∗ Fij (6)

where wj is the weight of each objective, and Fij is the normalized fitness value
calculated in Equation (5) for the individual policy i and objective j.

• Depending on the Wij value, the best and worst-performing individuals of each
objective are selected and flagged as the best or worst individual policy.

• The Euclidean distances between all of the individuals to both the best and worst
individuals are calculated and assigned as S−i , S+

i , where S+
i is assigned as the distance

to the best individual and S−i is assigned as the distance to the worst individual.
• The last step is to find the degree of approximation Di using Equation (7),

Di =
S−i

S−i + S+
i

(7)

where S+
i is assigned to the distance to the best individual, S−i is assigned to the

distance to the worst individual from the above calculations, and i is the individual
element.

Individual elements are sorted from low to high based on the degree of approximation
Di, where the first solution is the best one.

Algorithms 2024, 17, 206 7 of 19

3.2. Performance Evaluation

The performance of the optimizers first is determined by visual graphical inspection.
Next, the mean and standard deviations of the first Pareto front individual fitness values
are used for analyzing the performance of the optimizers. In addition, the Pareto front
spread metric (∆) [29], generational distance (GD) [30], and the Pareto front spacing is used
to evaluate the performance of the optimizers.

3.2.1. Pareto Front Spread (∆)

The spread metric is generally represented as ∆.

∆ =
d f + dl + ∑m−1

i=1 |di − d̄|
d f + dl + (m− 1)d̄

(8)

Here, d f and dl are the distances between extreme solutions of the Pareto front, di is
the distance between consecutive solutions, d̄ is the average of all di values, and m is the
number of solutions in the Pareto front. The higher spread value demonstrates the higher
distribution of solutions across the objective space.

3.2.2. Generational Distance (GD)

To calculate the generational distance, the Euclidean distance between the non-
dominated Pareto front and its nearest reference Pareto front value is calculated. The
generational distance is calculated using Equation (9).

GD =
1
n
(

n

∑
1

dj) (9)

Here, the generational distance is represented as GD, n is the objective function
number, and dj is the Euclidean distance between the reference Pareto front value to its
nearest non-dominated Pareto front value. In this paper, the reference Pareto front was
generated combining the Pareto fronts of 30 statistical runs by each optimizer.

3.2.3. Pareto Front Spacing (Sp)

One of the ways to measure the performance of an optimizer is by using the spacing
in the Pareto front [31]. The spacing determines how evenly the individuals are distributed
in the Pareto front. All of the individuals are said to be evenly distributed if the spacing Sp
value is 0.

To find out the spacing value, the distance between individual elements is calculated.
The standard deviation of the distance is spacing value Sp [32].

3.3. Test Functions

To demonstrate the performance of each optimizer, 21 test functions were used for this
research, as listed below:

• Binh and Korn Function [33];
• Chankong and Haimes Function [33];
• Fonseca–Fleming Function [34];
• Test Function 4 [35];
• Kursawe Function [36];
• Schaffer Function N1, and N2 [37];
• Poloni’s Two-Objective Function [38];
• Zitzler–Deb–Thiele’s Function N1, N2, N3, N4, and N6 [39];
• Osyczka and Kundu Function [40];
• Constr-Ex Problem;
• VR-UC Test 1, VR-UC Test 2[41];
• MSGA Test 1 [42];

Algorithms 2024, 17, 206 8 of 19

• Viennet Function [43];
• MHHM1, MHHM2 [44].

The equations for each test function and the constraints corresponding to the test
functions along with the search domain are presented in Appendix A.

4. Results

This section presents the results of using the eMPF, M-PF, NSGA-II, and NSGA-III
methodologies on the 21 test functions. As mentioned in Section 3.3, the test functions used
for the analysis along with the constraints and search domain are presented in Appendix A.
The mutation rate of 0.5 was used with the mean value of 0.0, and a Gaussian distribution
was used for the randomness in the population. A total of 100 individual policies were
used and iterated over 1000 generations. No other stopping condition was applied to any
of the test functions. All of the test functions were to be minimized over the generations.
As mentioned earlier, the goal of the eMPF method presented in this paper is to exploit the
environment while maintaining diverse solutions.

The mean and standard deviation of the fitness values of each test function along with
the methodology are shown in Appendix B. In addition, the generational distance (GD),
the Pareto front spread (∆), and the fitness spacing (Sp) are also calculated in Section 3.2.
All results are included in Appendix C.

5. Discussion

In this section, the performance of the eMPF optimizer is compared with the other
tested optimization techniques. The performance is evaluated with the test functions
mentioned in Appendix A. The objective and search space of all of the test functions used
are plotted and provided in the linked GitHub repository found at the end of this paper.

Binh and Korn Function: eMPF achieved a low standard deviation, demonstrating
its performance in obtaining quality solutions across all test runs. Moreover, it had the
lowest average of fitness compared with other optimizers in the first objective function.
When the spread (∆) was considered, eMPF had the highest spread value over the other
optimization techniques with a larger set of solutions generated over the Pareto front. The
eMPF optimizer had 50% better performance than the M-PF optimizer when compared
using the generational distance (GD).

Chancing and Haimes Function: For this test function, the minimum optimal solution
obtained for each objective function was the lowest with NSGA-III and M-PF and had
a difference of around 0.1 units higher than NSGA-II. However, eMPF showed a more
centered distribution of solutions along with consistently more reliable solutions. When
the spread (∆) was considered, eMPF generated a diverse set of solutions, and NSGA-III
offered the widest coverage of the Pareto front for this specific function. The generational
distance (GD) of eMPF was higher than that of the rest of the optimizers due to the extreme
solutions carried forward to the next generations. Figure 3 demonstrates the extreme
solutions generated by the eMPF optimizer. Holding on to these extreme solutions will be
beneficial when the complexity of the search space increases.

Fonseca–Fleming Function: eMPF demonstrated good performance, closely com-
peting with NSGA-II in finding the optimal solutions while surpassing it in average per-
formance and consistency. With the highest spread value, eMPF outperformed all other
methods in terms of diversity, indicating its superior capability to explore and cover a
wider range of the Pareto front.

Test Function 4: All the four optimization techniques had similar lowest, average, and
standard deviation values. However, eMPF surpassed the other techniques in the spread
(∆), showing its diverse set of solution generation capability.

Kursawe Function: M-PF surpassed all other optimization techniques in spread (∆),
proving its diverse solution set. In addition, M-PF outperformed all other optimization
techniques even in obtaining minimum values, average, and standard deviation. However,

Algorithms 2024, 17, 206 9 of 19

eMPF had more than 25% better performance in the generational distance (GD) than that
of M-PF.

Figure 3. Pareto front generated for the Chancing and Haimes function using NSGA-II, NSGA-III,
M-PF, and eMPF optimizers

Schaffer Function N1 and N2: eMPF was able to reach better results than other opti-
mization techniques with respect to the minimum values, mean, and standard deviations.
It also had higher spread (∆) values than other optimizers. NSGA-II and NSGA-III, while
offering competitive performances, were not able to match eMPF’s precision, consistency,
and diversity. eMPF outperformed the other optimizers by obtaining accuracy (minimum
values), consistency (low mean and standard deviation), and diversity (high spread).

Poloni’s Two Objectives: NSGA-II and eMPF optimization techniques had nearly the
same minimum value; however, eMPF had a better mean and standard deviation. NSGA-III
and M-PF optimizer had a better spread (∆) value than eMPF.

Zitzler–Deb–Thiele’s from N1, N2, N3, N4, and N6: All of the optimization techniques
had nearly the same performance in this set of functions, and there were negligible value
variances. For example, in Zitzler–Deb–Thielse’s N2, the difference between minimum
function 1 values between all optimizers was 0.000001 while considering the precision
value of 6. All optimization techniques performed equally well in all of these test functions.
In addition, eMPF had better performance than all other optimizers in the generational
distance (GD) except for the N4 test function.

Osyczka and Kundu Function: All of the optimization techniques had nearly the
same optimal value in terms of minimum values for each objective function. However, the
eMPF optimizer was able to find a more diverse set of solutions compared with the other
optimization techniques. Moreover, it was able to generate good solutions with greater
consistency. In addition, eMPF had the better generational distance (GD) than NSGA-II.

Constr-Ex Function: The eMPF optimizer was able to achieve the lowest minimum
values out of all of the optimizers. However, the average values were slightly higher than
other optimization techniques, making it somewhat skewed. This skew can be clearly seen
in Figure 4. The generational distance (GD) does concur with the results due to its higher
value for the eMPF. The spread (∆), on the other hand, showed good diversification of the
solutions generated by eMPF.

VR-UC Test Functions: In the VR-UC test function 1, eMPF had the better average
and the highest standard deviation compared with other optimizers. However, eMPF
had a higher generational distance (GD) than the other optimizers. Despite the higher
generational distance, the spread of solutions is better for the eMPF optimizer. In the

Algorithms 2024, 17, 206 10 of 19

VR-UC test function 2, all the optimizers had a negligible difference in the averages, the
generational distance (GD), and the spread (∆).

Figure 4. Search space solutions for Const-Ex function.

MSGA Test Function: eMPF outperformed all other optimizers in exploring the
lowest fitness values of both objectives and was able to produce reliable solutions. This
can be established with the lower mean and the higher standard deviations of the eMPF
optimizer when compared to other optimizers. In addition, eMPF had a better generational
distance (GD) and spread (∆) than NSGA-III and the M-PF optimizer.

Viennet Function: As mentioned in Appendix A, this was a three-dimensional mini-
mization multi-objective optimization problem. The average fitness values of the eMPF
optimizer were better than other optimizers in all of the three objective functions. The
eMPF optimizer had better generational distance (GD) than that of the M-PF optimizer,
and it also had the highest spread (∆) values over other optimizers.

MHHM Functions: These test functions also had three objective functions as men-
tioned in Appendix A. In both of the test functions, eMPF had the lowest average fitness,
lowest generational distance (GD), and highest spread (∆) values over the other optimizers.
This demonstrates eMPF’s dominance in generating better and more diverse solutions
when compared to other optimizers on these test functions. The Pareto front plot confirms
eMPF’s dominance, as shown in Figure 5.

Overall, eMPF was able to find diverse solutions in all test scenarios while maintaining
consistency in the solution set. Moreover, it was able to find better solutions than existing
optimization techniques. In challenging problems such as Zitzler–Deb–Thiele’s functions,
it was able to generate better solutions than NSGA-II and NSGA-III. Reliability was also
demonstrated with lower standard deviations for Schaffer functions and Poloni’s two
objective functions. The learning curves generated from the fitness values showed a higher
learning rate in most test scenarios than the other optimizers. Moreover, when the objective
functions were increased from two to three, the eMPF optimizer was able to perform better
than the other optimizers demonstrated using the Viennet and MHHM test functions.

However, the optimizer was not able to outperform other optimizers in all the test
functions. The reliability and diversification of the solutions obtained using eMPF were
not always better than other optimizer solutions. Additionally, when the true Pareto front
was a straight line, such as in the Chankong Haimes function, the solutions from eMPF
were not as reliable. This conclusion comes from using the generational distance (GD) and
the average fitness values. With a convex or concave Pareto front, eMPF always had the
minimum optimal solution and consistency with repeatable solutions.

Algorithms 2024, 17, 206 11 of 19

Figure 5. Pareto front for the MHHM functions.

6. Conclusions

With a greater spread (∆) than all the other mentioned optimization techniques, eMPF
has demonstrated its effectiveness in generating a diverse solution set. When the number of
objective functions was increased, eMPF consistently achieved better performance. In most
of the test functions, eMPF demonstrated its performance by reaching nearly the lowest
standard deviations. This proves its capabilities for achieving quality solutions over the
other methods. However, as mentioned in Section 5, there were certain cases where other
optimizers slightly outperformed eMPF, but overall, eMPF consistently performed either
best or near best. Future work will focus on evaluating eMPF performance in more than
three objective functions (many objective optimization) and in real world applications.

Author Contributions: Conceptualization, A.K.; methodology, A.K.; software, A.K.; validation, A.K.;
formal analysis, A.K.; investigation, A.K.; resources, A.K.; data curation, A.K.; writing—original draft
preparation, A.K.; writing—review and editing, A.K. and F.A.M.; visualization, A.K.; supervision,
F.A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: https://github.com/kesireddyadarsh/mdpiAlgorithm, accessed on 31
March 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MOO Multi-Objective Optimization
MCDM Multi-Criteria Decision Making
EA Evolutionary Algorithm
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
NSGA-II Non-Dominated Sorting Genetic Algorithm-II
NSGA-III Non-Dominated Sorting Genetic Algorithm-III
M-PF Multi-Criteria Decision Making–Pareto Front
eMPF elite Multi-Criteria Decision Making–Pareto Front
CCEA Cooperative Co-evolutionary Algorithms

Appendix A

This section contains all the test MOO functions used for this paper, including the
constraints and search domains of each MOO function.

https://github.com/kesireddyadarsh/mdpiAlgorithm

Algorithms 2024, 17, 206 12 of 19

Table A1. Multi-objective optimization test functions.

Function Test Function Constraints Search Domain

Binh and Korn Function f1(x) = 4x2
1 + 4x2

2
f2(x) = (x1 − 5)2 + (x2 − 5)2

(x1 − 5)2 + x2
2 ≤ 25

(x1 − 8)2 + (x2 + 3)2 ≥
7.7

0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 3

Chankong and Haimes Func-
tion

f1(x1, x2) = 2 + (x1 − 2)2 + (x2 − 1)2

f2(x1, x2) = 9x1 − (x2 − 1)2
x2

1 + x2
2 ≤ 225

x1 − 3x2 + 10 ≤ 0
−20 ≤ x1
x2 ≤ 20

Fonseca–Fleming Function f1(x) = 1− exp
(
−∑n

i=1

(
xi − 1√

n

)2
)

f2(x) = 1− exp
(
−∑n

i=1

(
xi +

1√
n

)2
) −4 ≤ xi ≤ 4

1 ≤ i ≤ n

Test Function 4 f1(x1, x2) = x2
1 − x2

f2(x1, x2) = −0.5x1 − x2 − 1
6.5− x1

6 − x2 ≥ 0
7.5− 0.5x1 − x2 ≥ 0
30− 5x1 − x2 ≥0

−7 ≤ x1
x2 ≤ 4

Kursawe Function f1(x) = ∑n−1
i=1

(
−10 exp

(
−0.2

√
x2

i + x2
i+1

))
f2(x) = ∑n

i=1
(
|xi|0.8 + 5 sin(x3

i)
) −5 ≤ xi ≤ 5

1 ≤ i ≤ 3

Schaffer Function N1 f1(x) = x2

f2(x) = (x− 2)2
−A ≤ x ≤ A
Values of A from
10 to 105

Schaffer Function N2 f1(x) =

−x x ≤ 1
x− 2 1 < x ≤ 3
4− x 3 < x ≤ 4
x− 4 x > 4

f2(x) = (x− 5)2

−5 ≤ x ≤ 10

Poloni’s Two-Objective Func-
tion

f1(x1, x2) = [1 + (A1 − B1(x1, x2))
2 + (A2 −

B2(x1, x2))
2]

f2(x1, x2) = (x1 + 3)2 + (x2 + 1)2

where
A1 = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2),
A2 = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2),
B1(x1, x2) = 0.5 sin(x1) − 2 cos(x1) + sin(x2) −
1.5 cos(x2),
B2(x1, x2) = 1.5 sin(x1) − cos(x1) + 2 sin(x2) −
0.5 cos(x2).

−π ≤ x1 ; x2 ≤ π

Zitzler–Deb–Thiele’s Function
(ZDT) N1

f1(x) = x1
f2(x) = g(x)h(f1(x), g(x))
g(x) = 1 + 9

29 ∑30
i=2 xi

h(f1(x), g(x)) = 1−
√

f1(x)
g(x)

0 ≤ xi ≤ 1
1 ≤ i ≤ 30

Zitzler–Deb–Thiele’s Function
(ZDT) N2

f1(x) = x1
f2(x) = g(x)h(f1(x), g(x))
g(x) = 1 + 9

29 ∑30
i=2 xi

h(f1(x), g(x)) = 1− (
f1(x)
g(x))

2

0 ≤ xi ≤ 1
1 ≤ i ≤ 30

Zitzler–Deb–Thiele’s Function
(ZDT) N3

f1(x) = x1
f2(x) = g(x)h(f1(x), g(x))
g(x) = 1 + 9

29 ∑30
i=2 xi

h(f1(x), g(x)) = 1−
√

f1(x)
g(x) − (

f1(x)
g(x)) sin 10π f1(x)

0 ≤ xi ≤ 1
1 ≤ i ≤ 30

Zitzler–Deb–Thiele’s Function
(ZDT) N4

f1(x) = x1
f2(x) = g(x)h(f1(x), g(x))
g(x) = 91 + ∑10

i=2(x2
i − 10 cos 4πx1)

h(f1(x), g(x)) = 1−
√

f1(x)
g(x)

0 ≤ x1 ≤ 1
−5 ≤ xi ≤ 5
2 ≤ i ≤ 10

Algorithms 2024, 17, 206 13 of 19

Table A1. Cont.

Function Test Function Constraints Search Domain

Zitzler–Deb–
Thiele’s Function
(ZDT) N6

f1(x) = 1− exp−4x1(sin 6πx1)
6

f2(x) = g(x)h(f1(x), g(x))

g(x) = 1 + 9[∑10
i=2(xi)

9]0.25

h(f1(x), g(x)) = 1− (
f1(x)
g(x))

2

0 ≤ xi ≤ 1
1 ≤ i ≤ 10

Osyczka & Kundu
Function

f1(x) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2 −
(x4 − 4)2 − (x5 − 1)2

f2(x) = ∑6
i=1 x2

1

g1(x) = x1 + x2 − 2 ≥ 0
g2(x) = 6− x1 − x2 ≥ 0
g3(x) = 2− x2 + x1 ≥ 0
g4(x) = 2− x1 + 3x2 ≥ 0
g5(x) = 4− (x3 − 3)2 − x4 ≥ 0
g6(x) = (x5 − 3)2 + x6 − 4 ≥ 0

0 ≤ x1, x2, x6 ≤ 10
1 ≤ x3, x5 ≤ 5
0 ≤ x4 ≤ 6

Constr-Ex Problem f1(x1, x2) = x1
f2(x1, x2) =

1+x2
x1

x2 + 9x1 ≥ 6
−x2 + 9x1 ≥ 1

0.1 ≤ x1 ≤ 1
0 ≤ x2 ≤ 5

VR-UC Test 1 f1(x1, x2) =
1

x2
1+x2

2+1

f2(x1, x2) = x2
1 + 3x2

2 + 1

−3 ≤ x1, x2 ≥ 3

VR-UC Test 2 f1(x1, x2) = x1 + x2 + 1
f2(x1, x2) = x2

1 + 2x2 − 1
−3 ≤ x1, x2 ≥ 3

MSGA Test 1 f1(x1, x2) = (x2
1 + x2

2)
0.125

f2(x1, x2) = ((x1 − 0.5)2 + (x2 − 0.5)2)0.25
−5 ≤ x1, x2 ≥ 10

MHHM1 f1(x) = (x− 0.8)2

f2(x) = (x− 0.85)2

f3(x) = (x− 0.9)2

0 ≤ x ≥ 1

MHHM2 f1(x1, x2) = (x1 − 0.8)2 + (x2 − 0.6)2

f2(x1, x2) = (x1 − 0.85)2 + (x2 − 0.7)2

f3(x1, x2) = (x1 − 0.9)2 + (x2 − 0.6)2

0 ≤ x1, x2 ≥ 1

Viennet Function f1(x1, x2) = 0.5(x2
1 + x2

2) + sin x2
1 + x2

2

f2(x1, x2) =
(3x1−2x2+4)2

8 + (x1−x2+1)2

27 + 15
f3(x1, x2) =

1
x2

1+x2
2+1 − 1.1 exp (−(x2

1 + x2
2))

−3 ≤ x1; x2 ≤ 3

Appendix B

Thirty statistical simulation runs were performed using NSGA-II, NSGA-III, M-PF,
and the eMPF optimizer on the test functions mentioned in Appendix A.

Table A2. Results for the two-objective function using each optimization technique.

Test Function Method Minimum Mean Standard Deviation

Function 1 Function 2 Function 1 Function 2 Function 1 Function 2

NSGA-II 0.000948 4.005556 52.645992 17.283002 39.400303 12.500695
Binh and Korn NSGA-III 9.332152 4.533799 100.464088 10.277145 43.565188 13.756248

M-PF 9.498507 10.473067 32.993437 19.539373 18.265393 7.521567
eMPF 0.002037 4.023522 14.015699 29.174421 17.331893 5.806211

NSGA-II 10.119513 −217.695484 113.45425 −112.737342 62.128512 62.677727
Chankong Haimes NSGA-III 96.621684 −217.730419 213.296477 −210.363403 20.65679 24.166874

M-PF 57.01729 −101.645503 80.131923 −80.211533 48.913044 48.881173
eMPF 10.125042 −217.686516 127.519573 −127.352052 23.87205 24.71453

Fonseca–Fleming NSGA-II 0.000034 0.000042 0.578248 0.580166 0.296733 0.296151
NSGA-III 0.092419 0.032975 0.723804 0.497992 0.153209 0.159965

M-PF 0.070628 0.066346 0.609386 0.596173 0.226319 0.233033
eMPF 0.000022 0.000021 0.511756 0.499501 0.465786 0.466366

Algorithms 2024, 17, 206 14 of 19

Table A2. Cont.

Test Function Method Minimum Mean Standard Deviation

Function 1 Function 2 Function 1 Function 2 Function 1 Function 2

NSGA-II −6.504972 −8.499939 −1.534355 −8.145423 3.336720 0.277358
Test Function 4 NSGA-III −6.506321 −8.498921 −5.331177 −7.623771 3.929542 0.229023

M-PF −6.392928 −8.316240 −4.654117 −7.854135 1.901964 0.210908
eMPF −6.506243 −8.499792 −5.808833 −7.636678 2.520614 0.161645

NSGA-II −19.785629 −5.138218 −10.217168 −2.560673 3.696744 1.566748
Kursawe NSGA-III −19.800519 −2.761169 −12.516551 −1.290272 2.812103 0.732146

M-PF −12.427413 −3.105100 −9.705192 −1.623625 0.963143 0.812313
eMPF −19.823842 −5.133368 −12.190258 −1.771524 3.224230 1.219680

NSGA-II 0.000000 0.000000 1.309796 1.335708 1.171495 1.178720
Schaffer function N1 NSGA-III 0.458913 0.452471 2.092166 1.548018 1.830392 1.803354

M-PF 0.314452 0.365226 1.484631 1.911246 1.678226 1.713672
eMPF 0.000000 0.000000 1.118533 1.121366 0.726276 0.734062

NSGA-II −0.999966 0.000000 0.519161 7.217303 1.030891 4.693345
Schaffer function N2 NSGA-III −0.824930 7.796460 −0.624833 14.028193 0.942749 4.035698

M-PF 0.178468 3.991629 0.742443 8.141138 1.744642 6.828264
eMPF −0.999503 0.000000 2.162599 0.964716 0.513256 1.922794

NSGA-II 1.000107 0.000011 6.867533 6.300837 5.010289 9.464460
Poloni’s two objectives NSGA-III 2.072667 8.096344 7.516216 13.666458 7.204542 11.749644

M-PF 2.646164 1.748814 12.385470 3.525388 5.237112 7.848127
eMPF 1.000656 0.000035 3.790499 2.429406 2.910871 3.427426

NSGA-II 0.000016 1.830778 0.259772 3.291023 0.295645 0.985772
ZDT’s N1 NSGA-III 0.000012 1.836794 0.294363 3.228128 0.313797 1.012261

M-PF 0.000016 1.852934 0.279310 3.224510 0.302015 0.972492
eMPF 0.000027 1.831970 0.284748 3.219609 0.305802 0.967179

NSGA-II 0.000020 3.360521 0.146886 4.209470 0.265380 0.626616
ZDT’s N2 NSGA-III 0.000018 3.397406 0.150892 4.200882 0.275458 0.627170

M-PF 0.000015 3.389850 0.124176 4.231827 0.244155 0.646990
eMPF 0.000015 3.384750 0.154723 4.262611 0.274839 0.691868

NSGA-II 0.000015 1.197987 0.302574 3.009383 0.295633 1.165188
ZDT’s N3 NSGA-III 0.000016 1.250750 0.288800 3.049543 0.294440 1.148127

M-PF 0.000015 1.230596 0.299095 3.019458 0.296260 1.142140
eMPF 0.000014 1.221293 0.306138 2.997215 0.302244 1.155063

NSGA-II 0.000014 28.918132 0.084849 64.349782 0.174179 32.479856
ZDT’s N4 NSGA-III 0.000017 30.178694 0.077131 69.368632 0.168524 34.873943

M-PF 0.000011 28.018323 0.081965 65.590350 0.166882 33.832099
eMPF 0.000013 27.480261 0.105229 62.256601 0.201626 31.532401

NSGA-II 0.280775 6.356673 0.492336 7.271715 0.278471 0.661174
ZDT’s N6 NSGA-III 0.280775 6.233513 0.499382 7.221104 0.281440 0.653730

M-PF 0.280775 6.276437 0.474475 7.257931 0.269862 0.630176
eMPF 0.280775 6.268319 0.491137 7.239478 0.285670 0.677693

NSGA-II −258.627419 5.194767 −164.898915 28.366042 62.986998 21.322610
Osyczka and Kundu NSGA-III −258.633516 5.433823 −168.598553 29.169913 62.053323 20.778173

M-PF −255.080484 5.367792 −162.235317 26.606650 60.836597 18.988171
eMPF −257.382419 5.312247 −167.069531 28.639926 61.643875 21.469461

NSGA-II 0.390717 1.007121 0.547760 4.747238 0.139116 2.426397
Const-Ex NSGA-III 0.390230 1.515615 0.441708 7.518592 0.093502 1.616727

M-PF 0.445405 1.175281 0.616617 2.902549 0.093789 1.547132
eMPF 0.391615 1.004618 0.766952 1.719732 0.099745 1.512755

VR-UC Test 1 NSGA-II 0.052761 1.000574 0.156242 17.296326 0.193932 10.902374
NSGA-III 0.052718 2.866609 0.074163 31.895484 0.086781 8.590167

M-PF 0.070903 2.921766 0.144710 7.997647 0.057197 3.582939
eMPF 0.053224 1.000024 0.705932 2.339642 0.174928 5.048489

Algorithms 2024, 17, 206 15 of 19

Table A2. Cont.

Test Function Method Minimum Mean Standard Deviation

Function 1 Function 2 Function 1 Function 2 Function 1 Function 2

VR-UC Test 2 NSGA-II −4.995860 −9.993871 −4.995082 −9.992874 0.002898 0.004093
NSGA-III −4.995535 −9.993506 −4.995059 −9.992905 0.002668 0.003992

M-PF −4.995112 −9.993227 −4.994349 −9.992267 0.003135 0.003989
eMPF −4.996121 −9.994576 −4.995738 −9.993998 0.002667 0.003675

MSGA Test 1 NSGA-II 0.234489 0.235890 0.706906 0.709010 0.197887 0.197780
NSGA-III 0.549158 0.491633 0.779350 0.734232 0.086980 0.100268

M-PF 0.554772 0.531218 0.768762 0.768141 0.051210 0.054106
eMPF 0.231459 0.229316 0.661794 0.670574 0.247905 0.247862

Table A3. Results of the minimum values for three objective functions using each optimization
technique.

Test Function Method Minimum

Function 1 Function 2 Function 3

Viennet NSGA-II 0.000051 15.000000 −0.099997
NSGA-III 131,609.806452 443,378.967742 0.000004

M-PF 4292.110524 10,870.875716 −0.002940
eMPF 0.000028 15.000026 −0.099998

MHHM1 NSGA-II 9.6666 × 10−11 7.3333 × 10−11 6.33333 × 10−11

NSGA-III 6.193743 × 10−5 4.7659963 × 10−5 3.433997 × 10−5

M-PF 2.4781883 × 10−5 7.064937 × 10−5 7.134097 × 10−5

eMPF 1.0666 × 10−10 9.6666 × 10−11 5.3333 × 10−11

MHHM2 NSGA-II 6.18220 × 10−6 1.7605 × 10−6 2.837620 × 10−6

NSGA-III 0.001283 0.001229 0.00249529
M-PF 0.00029338 0.0004046536 0.0006900754
eMPF 6.868939 × 10−6 1.63898 × 10−6 4.5422 × 10−6

Table A4. Results of the mean values for three objective functions using each optimization technique.

Test Function Method Mean

Function 1 Function 2 Function 3

Viennet NSGA-II 3.330086 15.285244 0.053903
NSGA-III 132,295.691684 445,689.241041 0.000004

M-PF 4607.780516 11,696.522534 0.001230
eMPF 0.572229 15.485611 −0.024929

MHHM1 NSGA-II 0.0034099 0.0009104 0.00341086
NSGA-III 0.0013004 0.0005224 0.00474447

M-PF 0.00443803 0.002016614 0.00459519
eMPF 0.0026903 0.00020094 0.00271158

MHHM2 NSGA-II 0.0054150 0.005925 0.00555724
NSGA-III 0.0035569 0.003649 0.0063590

M-PF 0.004642219 0.00528738 0.005879
eMPF 0.0042817 0.0046030 0.004078

Algorithms 2024, 17, 206 16 of 19

Table A5. Results of the standard deviations for three objective functions using each optimization
technique.

Test Function Method Standard Deviation

Function 1 Function 2 Function 3

Viennet NSGA-II 2.688537 0.511459 0.081092
NSGA-III 6979.937413 26,870.603732 0.000000

M-PF 2278.826105 7778.051973 0.010432
eMPF 0.330933 0.328919 0.049485

MHHM1 NSGA-II 0.00313115 0.00079 0.0031071
NSGA-III 0.0016641 0.0004383 0.00146057

M-PF 0.0045989 0.00074356 0.004502838
eMPF 0.001529 0.00059 0.0015419

MHHM1 NSGA-II 0.003749 0.00417569 0.0037675
NSGA-III 0.001986 0.0018050 0.0020722

M-PF 0.0032253 0.0035306 0.0034066
eMPF 0.0020989 0.0021489 0.002019

Appendix C

In this part, the Pareto front spread value obtained for the fitness values is presented.
The Pareto fronts generated for Appendix B were used to generate this. The code used for
generating this is in the Github link provided.

Table A6. Generational distance (GD), spread (∆), and spacing (Sp) of the test functions.

Test Function Method Generational Distance GD Spread (∆) Spacing (Sp)

Binh and Korn NSGA-II
NSGA-III
M-PF
eMPF

0.069016
0.378684
1.333222
0.770759

0.938548
1.530796
1.233198
1.584592

0.185688
0.554448
1.062628
1.040446

Chankong Haimes NSGA-II
NSGA-III
M-PF
eMPF

0.132257
6.711842
1.897858
10.481315

0.803492
1.600441
0.99258
1.220204

0.216754
3.754718
0.41429
2.947663

Fonseca Fleming NSGA-II
NSGA-III
M-PF
eMPF

0.000838
0.002347
0.000664
0.006234

0.86052
1.401653
1.134345
1.664327

0.001535
0.004618
0.00218
0.006798

Test Function 4 NSGA-II
NSGA-III
M-PF
eMPF

0.006338
0.133243
0.020431
0.081445

0.938548
1.530796
1.233198
1.584592

0.039957
0.287708
0.061413
0.14012

Kursawe NSGA-II
NSGA-III
M-PF
eMPF

0.006938
0.70871
0.127039
0.075359

0.803527
0.911151
1.19283
0.892111

0.336557
0.470105
0.334158
0.45627

Schaffer Function N1 NSGA-II
NSGA-III
M-PF
eMPF

0.000985
0.003258
0.003113
0.002111

0.772657
1.44585
1.44585
1.274417

0.002629
0.007116
0.00495
0.005048

Algorithms 2024, 17, 206 17 of 19

Table A6. Cont.

Test Function Method Generational Distance GD Spread (∆) Spacing (Sp)

Schaffer Function N2 NSGA-II
NSGA-III
M-PF
eMPF

0.001906
0.130632
0.010325
0.096201

0.742149
1.514319
1.319566
1.621567

0.006122
0.097936
0.023796
0.070892

Poloni’s Two Objectives NSGA-II
NSGA-III
M-PF
eMPF

0.0127
0.102661
0.031244
0.186827

1.47718
1.789741
1.791253
1.55847

0.737613
0.693373
0.664818
0.984685

Zitzler–Deb–Thiele’s N1 NSGA-II
NSGA-III
M-PF
eMPF

0.042448
0.052309
0.045381
0.048533

0.7066
0.712719
0.721581
0.685075

0.074755
0.077806
0.07787
0.147347

Zitzler–Deb–Thiele’s N2 NSGA-II
NSGA-III
M-PF
eMPF

0.073596
0.041085
0.068744
0.070442

0.697774
0.710485
0.738163
0.712368

0.19127
0.113637
0.120021
0.16111

Zitzler–Deb–Thiele’s N3 NSGA-II
NSGA-III
M-PF
eMPF

0.032912
0.030987
0.044047
0.040325

0.714989
0.660256
0.662726
0.72205

0.098628
0.102081
0.111724
0.084448

Zitzler–Deb–Thiele’s N4 NSGA-II
NSGA-III
M-PF
eMPF

0.810677
2.272926
2.018945
2.279626

0.744636
0.757631
0.786935
0.738201

9.043884
7.516822
8.574137
9.78726

Zitzler–Deb–Thiele’s N6 NSGA-II
NSGA-III
M-PF
eMPF

0.191495
0.099431
0.065991
0.092465

0.685276
0.59864
0.638246
0.69825

0.115021
0.140287
0.173285
0.260617

Osycak and Kundu Function NSGA-II
NSGA-III
M-PF
eMPF

1.504086
1.294484
1.316762
1.388888

1.178373
1.127386
1.132501
1.2232

3.283527
2.84922
3.077236
3.686033

Constr-Ex Problem NSGA-II
NSGA-III
M-PF
eMPF

0.00495
0.043087
0.02453
0.07408

0.714432
1.313374
1.179857
1.683737

0.012929
0.067725
0.042256
0.090675

MSGA Test 1 NSGA-II
NSGA-III
M-PF
eMPF

0.000538
0.013212
0.012998
0.003187

0.972065
1.038185
1.492854
1.242157

0.002284
0.015305
0.006631
0.004642

VR-UC Test 1 NSGA-II
NSGA-III
M-PF
eMPF

0.01332
0.070166
0.142823
0.38772

0.786952
1.427575
1.316431
1.695775

0.05018
0.176857
0.190408
0.402943

VR-UC Test 2 NSGA-II
NSGA-III
M-PF
eMPF

9.4 × 10−5

9.4 × 10−5

0.000324
0.000273

0.717724
0.636498
0.577738
0.712867

0.00000
0.00000
0.00000
0.00000

Vinnet Function NSGA-II
NSGA-III
M-PF
eMPF

0.00169
0.627138
1.615187
0.648107

0.782624
0.989541
1.21211
1.557092

0.015777
0.087255
0.169447
0.095202

Algorithms 2024, 17, 206 18 of 19

Table A6. Cont.

Test Function Method Generational Distance GD Spread (∆) Spacing (Sp)

MHHM1 NSGA-II
NSGA-III
M-PF
eMPF

6 × 10−6

2.8 × 10−5

1.8 × 10−5

2.3 × 10−5

0.772737
1.640253
1.620182
1.688381

1.1 × 10−5

3.3 × 10−5

2.6 × 10−5

3.5 × 10−5

MHHM2 NSGA-II
NSGA-III
M-PF
eMPF

0.000401
0.001194
0.000514
0.001207

0.651384
0.765195
0.798712
0.702216

0.003814
0.001724
0.003292
0.001756

References
1. Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman: San Francisco, CA, USA, 1979; Volume 174.
2. Hooshyar, M.; Huang, Y.M. Meta-heuristic Algorithms in UAV Path Planning Optimization: A Systematic Review (2018–2022).

Drones 2023, 7, 687. [CrossRef]
3. Muñoz, M.A.; Sun, Y.; Kirley, M.; Halgamuge, S.K. Algorithm selection for black-box continuous optimization problems: A

survey on methods and challenges. Inf. Sci. 2015, 317, 224–245. [CrossRef]
4. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
5. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting

approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [CrossRef]
6. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
7. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
8. Horn, J.; Nafpliotis, N.; Goldberg, D.E. A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the

First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Orlando, FL, USA,
27–29 June 1994; pp. 82–87.

9. Gunasekara, R.C.; Mehrotra, K.; Mohan, C.K. Multi-objective optimization to identify key players in social networks. In
Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM
2014), Beijing, China, 17–20 August 2014; pp. 443–450.

10. Stavroulakis, G.E.; Charalambidi, B.G.; Koutsianitis, P. Review of computational mechanics, optimization, and machine learning
tools for digital twins applied to infrastructures. Appl. Sci. 2022, 12, 11997. [CrossRef]

11. Murray, A.T.; Baik, J. Opensource spatial optimization in GIScience for strategic positioning. Trans. GIS 2023, 27, 646–662.
[CrossRef]

12. Sahoo, S.K.; Goswami, S.S. A comprehensive review of multiple criteria decision-making (MCDM) Methods: Advancements,
applications, and future directions. Decis. Mak. Adv. 2023, 1, 25–48. [CrossRef]

13. Chen, H.; Lu, C.; Feng, L.; Liu, Z.; Sun, Y.; Chen, W. Structural optimization design of BIW using NSGA-III and entropy weighted
TOPSIS methods. Adv. Mech. Eng. 2023, 15, 16878132231220351. [CrossRef]

14. Akbari, M.; Asadi, P.; Rahimi Asiabaraki, H. A Hybrid Method of NSGA-II and TOPSIS to Optimize the Performance of Friction
Stir Extrusion. Iran. J. Mater. Form. 2021, 8, 46–62.

15. Alkayem, N.F.; Cao, M.; Ragulskis, M. Damage diagnosis in 3D structures using a novel hybrid multiobjective optimization and
FE model updating framework. Complexity 2018, 2018, 3541676. [CrossRef]

16. Kesireddy, A.; Carrillo, L.R.G.; Baca, J. Multi-criteria decision making-pareto front optimization strategy for solving multi-
objective problems. In Proceedings of the 2020 IEEE 16th International Conference on Control & Automation (ICCA), Singapore,
9–11 October 2020; pp. 53–58.

17. Méndez, M.; Frutos, M.; Miguel, F.; Aguasca-Colomo, R. Topsis decision on approximate pareto fronts by using evolutionary
algorithms: Application to an engineering design problem. Mathematics 2020, 8, 2072. [CrossRef]

18. Coello Coello, C.A.; González Brambila, S.; Figueroa Gamboa, J.; Castillo Tapia, M.G.; Hernández Gómez, R. Evolutionary
multiobjective optimization: Open research areas and some challenges lying ahead. Complex Intell. Syst. 2020, 6, 221–236.
[CrossRef]

19. Roy, B. Problems and methods with multiple objective functions. Math. Program. 1971, 1, 239–266. [CrossRef]
20. Long, Q.; Wu, X.; Wu, C. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison.

J. Ind. Manag. Optim. 2021, 17. [CrossRef]
21. Taherdoost, H.; Madanchian, M. Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia 2023, 3, 77–87.

[CrossRef]
22. Stević, Ž.; Durmić, E.; Gajić, M.; Pamučar, D.; Puška, A. A novel multi-criteria decision-making model: Interval rough SAW

method for sustainable supplier selection. Information 2019, 10, 292. [CrossRef]

http://doi.org/10.3390/drones7120687
http://dx.doi.org/10.1016/j.ins.2015.05.010
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.3390/app122311997
http://dx.doi.org/10.1111/tgis.13033
http://dx.doi.org/10.31181/dma1120237
http://dx.doi.org/10.1177/16878132231220351
http://dx.doi.org/10.1155/2018/3541676
http://dx.doi.org/10.3390/math8112072
http://dx.doi.org/10.1007/s40747-019-0113-4
http://dx.doi.org/10.1007/BF01584088
http://dx.doi.org/10.3934/jimo.2020009
http://dx.doi.org/10.3390/encyclopedia3010006
http://dx.doi.org/10.3390/info10100292

Algorithms 2024, 17, 206 19 of 19

23. Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [CrossRef]
24. Sarkar, A. A TOPSIS method to evaluate the technologies. Int. J. Qual. Reliab. Manag. 2013, 31, 2–13. [CrossRef]
25. Borgulya, I. A ranking method for multiple-criteria decision-making. Int. J. Syst. Sci. 1997, 28, 905–912. [CrossRef]
26. Blickle, T.; Thiele, L. A comparison of selection schemes used in evolutionary algorithms. Evol. Comput. 1996, 4, 361–394.

[CrossRef]
27. Sharma, S.; Kumar, V. A comprehensive review on multi-objective optimization techniques: Past, present and future. Arch.

Comput. Methods Eng. 2022, 29, 5605–5633. [CrossRef]
28. Li, X.; Wang, K.; Liu, L.; Xin, J.; Yang, H.; Gao, C. Application of the entropy weight and TOPSIS method in safety evaluation of

coal mines. Procedia Eng. 2011, 26, 2085–2091. [CrossRef]
29. Trautmann, H.; Rudolph, G.; Dominguez-Medina, C.; Schütze, O. Finding evenly spaced Pareto fronts for three-objective

optimization problems. In EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 89–105.

30. Ishibuchi, H.; Masuda, H.; Tanigaki, Y.; Nojima, Y. Modified distance calculation in generational distance and inverted
generational distance. In Proceedings of the Evolutionary Multi-Criterion Optimization: 8th International Conference, EMO 2015,
Guimarães, Portugal, 29 March–1 April 2015; Part II 8, pp. 110–125.

31. Riquelme, N.; Von Lücken, C.; Baran, B. Performance metrics in multi-objective optimization. In Proceedings of the 2015 Latin
American Computing Conference (CLEI), Arequipa, Peru, 19–23 October 2015; pp. 1–11.

32. Schott, J.R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Ph.D. Thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1995.

33. Binh, T.T.; Korn, U. MOBES: A multiobjective evolution strategy for constrained optimization problems. In Proceedings of the
Third International Conference on Genetic Algorithms (Mendel 97), Brno, Czech Republic, 25–27 June 1997; Volume 25, p. 27.

34. Fonseca, C.M.; Fleming, P.J. An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 1995, 3, 1–16.
[CrossRef]

35. Kita, H.; Yabumoto, Y.; Mori, N.; Nishikawa, Y. Multi-objective optimization by means of the thermodynamical genetic algorithm.
In Parallel Problem Solving from Nature—PPSN IV, Proceedings of the International Conference on Evolutionary Computation—The 4th
International Conference on Parallel Problem Solving from Nature, Berlin, Germany, 22–26 September 1996; Proceedings 4; Springer:
Berlin/Heidelberg, Germany, 1996; pp. 504–512.

36. Kursawe, F. A variant of evolution strategies for vector optimization. In Proceedings of the International Conference on Parallel
Problem Solving from Nature, Dortmund, Germany, 1–3 October 1990; pp. 193–197.

37. Schaffer, J.D. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the First International
Conference on Genetic Algorithms and Their Applications; Psychology Press: London, UK, 2014; pp. 93–100.

38. Khatamsaz, D.; Peddareddygari, L.; Friedman, S.; Allaire, D. Bayesian optimization of multiobjective functions using multiple
information sources. AIAA J. 2021, 59, 1964–1974. [CrossRef]

39. Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable multi-objective optimization test problems. In Proceedings of the
2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2002; Volume 1,
pp. 825–830.

40. Osyczka, A.; Kundu, S. A new method to solve generalized multicriteria optimization problems using the simple genetic
algorithm. Struct. Optim. 1995, 10, 94–99. [CrossRef]

41. Rendón, M.V. A non-generational genetic algorithm for multiobjective optimization. In Proceedings of the 7th Interational
Conference on Genetic Algorithms, East Lansing, MI, USA, 19–23 July 1997; pp. 658–665.

42. Lis, J.; Eiben, Á.E. A multi-sexual genetic algorithm for multiobjective optimization. In Proceedings of the 1997 IEEE International
Conference on Evolutionary Computation (ICEC’97), Indianapolis, IN, USA, 13–16 April 1997; pp. 59–64.

43. Vlennet, R.; Fonteix, C.; Marc, I. Multicriteria optimization using a genetic algorithm for determining a Pareto set. Int. J. Syst. Sci.
1996, 27, 255–260. [CrossRef]

44. Mao, J.; Hirasawa, K.; Hu, J.; Murata, J. Genetic symbiosis algorithm for multiobjective optimization problems. Trans. Soc.
Instrum. Control Eng. 2001, 37, 893–901. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ejor.2004.04.028
http://dx.doi.org/10.1108/IJQRM-03-2013-0042
http://dx.doi.org/10.1080/00207729708929453
http://dx.doi.org/10.1162/evco.1996.4.4.361
http://dx.doi.org/10.1007/s11831-022-09778-9
http://dx.doi.org/10.1016/j.proeng.2011.11.2410
http://dx.doi.org/10.1162/evco.1995.3.1.1
http://dx.doi.org/10.2514/1.J059803
http://dx.doi.org/10.1007/BF01743536
http://dx.doi.org/10.1080/00207729608929211
http://dx.doi.org/10.9746/sicetr1965.37.893

	Introduction
	Literature Review
	Multi-Objective Optimization (MOO)
	Pareto Front
	Multi-Criteria Decision Making (MCDM)
	Evolutionary Algorithms (EA)
	Multi-Objective Evolutionary Algorithm (MOEA)

	Methodology
	Algorithm
	Calculating Weights of Each Objective
	TOPSIS

	Performance Evaluation
	Pareto Front Spread ()
	Generational Distance (GD)
	Pareto Front Spacing (Sp)

	Test Functions

	Results
	Discussion
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

