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Abstract: Iterative algorithms requiring the computationally expensive in general inversion of
linear operators are difficult to implement. This is the reason why hybrid Newton-like algorithms
without inverses are developed in this paper to solve Banach space-valued nonlinear equations. The
inverses of the linear operator are exchanged by a finite sum of fixed linear operators. Two types of
convergence analysis are presented for these algorithms: the semilocal and the local. The Fréchet
derivative of the operator on the equation is controlled by a majorant function. The semi-local analysis
also relies on majorizing sequences. The celebrated contraction mapping principle is utilized to study
the convergence of the Krasnoselskij-like algorithm. The numerical experimentation demonstrates
that the new algorithms are essentially as effective but less expensive to implement. Although the
new approach is demonstrated for Newton-like algorithms, it can be applied to other single-step,
multistep, or multipoint algorithms using inverses of linear operators along the same lines.

Keywords: hybrid-Newton-like algorithm; fixed sum of operators; Banach space; Fréchet derivative;
convergence
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1. Introduction

Let T1, T2 stand for Banach spaces; Ω ⊂ T1 be an open and convex set; and G : Ω −→
T2 denote a differentiable operator according to Fréchet [1–4].

A plethora of applications from diverse areas of research such as Optimization and
Computational Sciences are reduced using mathematical modeling [5–14] to locate a solu-
tion x∗ of a nonlinear equation like

G(x) = 0 (1)

The closed version of a solution x∗ ∈ Ω is possible only in special cases. Consequently,
most solution approaches utilized by researchers and practitioners are iterative when the
sequence is generated approximating the solution x∗.

The algorithm of successive substitutions or the algorithm of iteration or the Picard
algorithm is a simple and important algorithm for solving linear as well as nonlinear
equations. This algorithm originated in antiquity, appearing in the writings of Heron of
Alexandria in the second century B.C. in relation to root extraction. Later, Cauchy, as
well as Picard, employed this algorithm to assure the existence of solutions of differential
equations. It is defined for P : T1 −→ T1 and each n = 0, 1, 2, . . . by
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z0 ∈ Ω, zn+1 = P(zn).

Banach inaugurated the abstract formulation of this algorithm followed by Cacciopoli
and Weisinger. We refer the readers to the reference by Berinde [15], Krasnoselskij [16],
and Kantorovich et al. [3] for further information on the convergence conditions (see
also [17–23]). Concerning the convergence order of this algorithm, it is only linear. Thus,
there is a need for introducing algorithms of convergence order higher than one.

Newton’s algorithm is without a doubt the most well-known algorithm of convergence
order two for solving transcendental as well as scalar equations. It is written for each
n = 0, 1, 2, . . . as

x0 ∈ Ω, xn+1 = xn − G′(xn)
−1G(xn),

where G′ is the notation for the derivative of the operator G according to Fréchet [8,24,25].
The construction of Newton’s algorithm is based on linearization. Let x0 ∈ Ω be an
initial point. If the operator G is Fréchet-differentiable, one can write the Ostrowski [21]
representation

G′(x) = G(x0) + G′(x0)(x − x0) + d(x, x0),

where ∥d(x, x0)∥ = O(∥x − x0∥) as ∥x − x0∥ −→ 0. If x∗ ∈ Ω is a solution of the
Equation (1), it follows by the preceding representation that

G(x0) + G′(x0)(x∗ − x0) = −d(x∗, x0).

If x∗ is near to x0, then one can neglect the supposedly small quantity d(x∗, x0), leading to
a linear equation

G(x0) + G′(x0)(x − x0) = 0.

It is said that this equation is obtained from Equation (1) by the technique of linearization
or the tangent algorithm since this is the equation of the tangent line to the curve y = G(x)
at the point (x0, G(x0)) provided that G is a real function. It follows by this linearization
that x1 is a unique solution if G′(x0)

−1 exists. In this case, we can write

x1 = x0 − G′(x0)
−1G(x0).

If x0 is close to x∗, then maybe x1 is even closer. Thus, this process can be repeated with x1
replacing x0 leading to Newton’s algorithm. A main drawback with the implementation
of Newton’s algorithm is the inversion of the linear operator G′(xn) at each step of the
iteration. We address this issue in this paper. Our methodology applies to all single-step,
multistep methods, and quasi-Newton [5,10,20,26,27] using inverses along the same lines.
We shall demonstrate our methodology to a large class of algorithms involving inverses
including Newton’s algorithm as a special case.

Let us consider the popular Newton-like algorithm defined for y0 ∈ Ω and each
n = 0, 1, 2, ... by

y0 ∈ Ω, yn+1 = yn − L−1
n G(yn) (2)

Let L : Ω −→ L(T1, T2), the space of bounded linear operators mapping the space T1 into
T2. Notice that for Ln = G′(y0) or Ln = G′(yn), we obtain the modified and Newton’s
algorithm, respectively. There are two types of convergence usually studied for iterative
algorithms: the semi-local and the local analysis. The former uses the condition on the
initial guess y0, and the operator F and the solution y∗ are found in a neighborhood of
x0. The latter differs from the former since the convergence conditions depend on y∗ and
demonstrate how difficult is to choose the initial guess y0. The main challenge of local
analysis is that y∗ is usually unknown. Numerous papers have been presented dealing
with the semi-local as well as the local analysis of convergence for the Newton-like algo-
rithm (2) [2,24–26,28]. The convergence conditions involve Lipchitz–Holder or generalized
continuity conditions utilized to control the Fréchet derivative G′ of the operator F. By Ln
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in (2), we mean Ln = L(yn). The inversion of the linear operator at each step is computa-
tionally expensive or impossible in general. To essentially utilize the algorithm but without
the inverse, we replace it with a finite sum of linear operators related to L as follows:

Suppose:
There exists ∆ ∈ L(T1, T2) such that ∆−1 ∈ L(T2, T1) and (I − ∆−1(∆ − L(y))−1 ∈

L(T2, T1). Then, the Newton-like algorithm (2) can be rewritten as

y0 ∈ Ω,

yn+1 = yn − [I − ∆−1(∆ − Ln)]
−1∆−1G(yn), (3)

where I denotes the identity operator. The iterates of algorithms (2) and (3) coincide, since

[I − ∆−1(∆ − Ln)]
−1∆−1

= [∆(I − ∆−1(∆ − Ln))]
−1 = L−1

n .

Even if we replace algorithm (2) with algorithm (3), we still need to invert the linear
operator (I − ∆−1(∆ − Ln)) at each step of the iteration. But we can avoid this inversion if
we introduce for k a fixed natural number the operators Γ = Γ(x) = ∆−1(∆ − L(x)) and

Ak(x) = A = I + Γ + Γ2 + ... + Γk.

Then, consider the replacement of algorithm (2) defined for x0 = y0 ∈ Ω by

x0 ∈ Ω, xn+1 = xn − A∆−1G(xn). (4)

Algorithm (4) requires the inversion of the inversion of only the frozen linear operator
∆ at each step. Notice also that A is a linear operator. By letting k −→ +∞, and if

lim
k→+∞ Ak = L exists, then

L−1
n = L∆−1.

The condition
∥∆−1(∆ − L(x))∥ < 1 x ∈ Ω

guarantees the existence of this limit [5,8,16]. A possible choice for ∆ = I. If T1 = T2 = Ri, i
a natural number, and H denotes the Hessian of the operator G, then we can choose
∆ = H(x0)(semi-local case) or ∆ = H(x∗)(local case). The choice ∆ = H(x̄) has been
considered in [29], where x̄ ∈ Ω is an auxiliary point. In the more general setting of Banach
space ∆ ∈ L(T1, T2) which is the space of bounded linear operator form T1 into T2. As a
further example, if Ln = G′(xn), then ∆ = G′(xn) (semi-local case) or ∆ = G′(x∗) (local
case) or ∆ = G′(x̃). Other choices for ∆ are possible as long as they satisfy the convergence
conditions (H4) and (H5) (semi-local case) and (C1) and (C2) (local case) (see Section 2 and
Section 3, respectively).

We also study the Kransnoselskij-like or the Picard-like algorithm [15,16]

x0 ∈ Ω, xn+1 = Pk(xn), (5)

where
Pk(x) = P(x) = (1 − λ)x − λ(A∆−1G(x)− x), λ ∈ (0, 1]

for locating fixed points. If λ = 1, then algorithm (5) reduces to algorithm (4). The semi-local
analysis of convergence for algorithm (4) relies on majorizing sequences [3,24,25]. But the anal-
ysis for algorithm (5) depends on the celebrated contraction mapping principle [3,17,21,22].

The preceding reasoning justifies the study of the semi-local and local analysis of
convergence appearing in this paper. The rest of the paper is organized as follows: In
Sections 2 and 3, we develop the semi-local and local analysis of convergence for algo-
rithm (4). The convergence of the Krasnoselskij-like algorithm is presented in Section 4.
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The numerical experimentations demonstrating the efficiency of the new hybrid algorithms
are provided in Section 5. Concluding remarks and directions of future research complete
this paper in Section 6.

2. Semi-Local Analysis

Throughout this paper, we use the symbol U(x, α) to denote the open ball centered
at x ∈ T1 with radius α > 0, and U[x, α] is the closure of U(x, α). The following Banach
Lemma is used to prove our results.

Theorem 1 (Banach Lemma on Invertible Operators [3,15]). If M is a bounded linear operator
in T1, M−1 exists if and only if there is a bounded linear operator M1 in T1 such that M−1

1 exists and

∥I − M1M∥ < 1.

If M−1 exists, then

M−1 =
∞

∑
n=0

(I − M1M)n M1

and

∥M−1∥ ≤ ∥M1∥
1 − ∥I − M1M∥ .

Further, we use majorizing sequences to prove the semi-local convergence. Recall the
definition of a majorizing sequence.

Definition 1 ([3,5]). Let {xn} be a sequence in a normed space X. Then a nonnegative scalar
sequence {vn} for which

∥xn+1 − xn∥ ≤ vn+1 − vn ∀n ≥ 0 (6)

holds is a majorizing sequence for {xn}. Note that any majorizing sequence is necessarily nondecreas-
ing. Moreover, if the sequence {vn} converges, then {xn} converges too, and for v∗ = limn−→∞ vn

∥x∗ − xn∥ ≤ v∗ − vn.

Hence, the study of the convergence of the sequence {xn} reduces to that of {vn}.

Let S = [0,+∞).
Suppose:

(H1) There exists parameters δ ≥ 0, γ ∈ [0, 1
2 ), an element x0 ∈ Ω, and an invertible

operator ∆ such that

∥A∆−1G(x0)∥ ≤ δ.

(H2) There exists a function w0 : S −→ S, which is nondecreasing as well as continuous
(FNDC), such that the equation w0(t) − 1 = 0 has the smallest positive solution.
Denote such solution by ρ and set S0 = [0, ρ).

(H3) There exist (FNDC) w : S0 −→ S and w1 : S0 −→ S. Define the scalar sequence {αn}
for α0 = 0, α1 = δ some γ ≥ 0, b̄ ≥ 0, and each n = 0, 1, 2, ... by

qn+1 = (1 + γ + ... + γk)(
∫ 1

0
w((1 − τ)(αn+1 − αn)dτ

+w1(αn) + b̄γk+1),

and
αn+2 = αn+1 + qn+1(αn+1 − αn). (7)
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The sequence {αn} is shown to be majorizing for algorithm (4) in Theorem 2. But first,
the convergence conditions are given for the sequence {αn}.

(H4) There exists ρ0 ∈ [0, ρ) such that for each n = 0, 1, 2, ...
qn+1 < 1 and αn ≤ ρ0.
This condition and the formula (7) imply that for each n = 0, 1, 2, ...

0 ≤ αn ≤ αn+1 ≤ ρ0

and there exists α ∈ [0, ρ0) such that limn→+∞ = α. The parameter α is the unique
least upper bound of the sequence {αn}.
It is worth noting that this sequence can be computed a priori and relates to the initial
approximation. Such conditions are weaker than the usual convergence conditions
given as functions of the starting point [3–5].
Next, we relate the scalar sequences and functions w0, w to the operators on algo-
rithm (4).

(H5) ∥∆−1(G′(v)− ∆)∥ ≤ w0(∥v − x0∥) for each v ∈ Ω.
Set Ω0 = U(x0, ρ) ∩ Ω.

(H6)

∥∆−1(G′(v2)− G′(v1))∥ ≤ w(∥v2 − v1∥), γ = ∥∆−1(∆ − L(v))∥,

and

∥∆−1(G′(v)− L(v))∥ ≤ w1(∥v − x0∥)

for each v, v1, v2 ∈ Ω0.
Set b = γ 1−γk

1−γ and b̄ = 1
1−b .

and
(H7) U[x0, α] ⊂ Ω.

The conditions (H1)–(H5) and the developed notations are utilized to show the main
semi-local analysis of convergence for algorithm (4).

Theorem 2. Suppose that the conditions (H1)–(H5) hold. Then, if the initial guess x0 ∈ Ω the
following assertions hold for the sequence {xn} generated by algorithm (4)

{xn} ⊂ B(x0, α) (8)

and there exists a solution x∗ ∈ B[x0, α] of the equation G(x) = 0 such that

∥x∗ − xn∥ ≤ α − αn, (9)

where the sequence {αn} is given by the formula (7) and α is its limit.

Proof. Notice that all the iterates {xm} (m a natural number) of algorithm (4) are well
defined. We present a proof based on mathematical induction. In particular, we show that
for each n = 0, 1, 2, ...

∥xn+1 − xn∥ ≤ αn+1 − αn. (10)

Assertion (9) holds if n = 0, by (4), (7), and the condition (H1), since

∥x1 − x0∥ = ∥A∆−1G(x0)∥ ≤ α1 − α0 < α.
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It also follows that the iterate x1 ∈ U(x0, α). Next, we show that the linear operator
A = A(xm) is invertible by using the restrictions on γ, b, b̄ given in the condition (H5):

∥I − A(xm)∥ = ∥Γ + Γ2 + ... + Γk∥

≤ ∥Γ∥+ ∥Γ∥2 + ... + ∥Γ∥k = ∥Γ∥1 − ∥Γ∥k

1 − ∥Γ∥

≤ γ
1 − γk

1 − γ
= b < 1 (11)

since γ ∈ [0, 1
2 ) by (11) and the condition (H1). Inequality (11) and Theorem 1 assure the

invertibility of the operator A, and

∥A−1∥ ≤ 1
1 − b

= b̄. (12)

Then, we can write by algorithm (2) in turn that

G(xm+1) = G(xm+1)− G(xm)− ∆A−1(xm+1 − xm)

= G(xm+1)− G(xm)− G′(xm)(xm+1 − xm)

+(G′(xm)− Lm)(xm+1 − xm)

+(Lm − ∆A−1)(xm+1 − xm)

= G(xm+1)− G(xm)− G′(xm)(xm+1 − xm)

+(G′(xm)− Lm)(xm+1 − xm)

+(Lm A − ∆)A−1(xm+1 − xm). (13)

But we have

Lm A − ∆ = Lm(I + Γ + Γ2 + ... + Γk)− ∆

= Lm − ∆ + (−∆ + ∆ + Lm)(Γ + Γ2 + ... + Γk)

= Lm − ∆ + ∆(Γ + Γ2 + ... + Γk)

−(∆ − Lm)(Γ + Γ2 + ... + Γk)

= Lm − ∆ + ∆Γ + ∆(Γ2 + ... + Γk)

−(∆ − Lm)(Γ + Γ2 + ... + Γk)

= ∆(Γ2 + ... + Γk)− (∆ − Lm)(Γ + Γ2 + ... + Γk) (14)

since Lm − ∆ + ∆Γ = 0 by the definition of Γ. Thus, we obtain from (14)

∆−1(Lm A − ∆) = Γ2 + ... + Γk − Γ(Γ + Γ2 + ... + Γk)

= −Γk+1. (15)

Then, it follows by (13), the conditions (H4), (H5), (13), the conditions (H4), (H5), (15), the
inductions hypotheses, and the triangle inequality, in turn, that

∥∆−1G(xm+1)∥ ≤
∫ 1

0
w((1 − τ)∥xm+1 − xm∥)dτ∥xm+1 − xm∥

+w1(∥xm − x0∥)∥xm+1 − xm∥+ b̄γk+1∥xm+1 − xm∥

≤
[ ∫ 1

0
w((1 − τ)(αm+1 − αm)dτ + w1(αm) + b̄γk+1

]
×(αm+1 − αm). (16)
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Consequently, by algorithms (4), (7), and (16), we obtain in turn that

∥xm+2 − xm+1∥ ≤ ∥A(xm+1)∆−1G(xm+1)∥
≤ ∥A(xm+1)∥∥∆−1G(xm+1)∥

≤ (1 + γ + ... + γk)

[ ∫ 1

0
w((1 − τ)(αm+1 − αm)dτ

+w1(αm) + b̄γk+1
]
(αm+1 − αm) = αm+2 − αm+1,

and
∥xm+2 − x0∥ ≤ ∥xm+2 − xm+1∥+ ∥xm+1 − x0∥

≤ αm+2 − αm+1 + αm+1 − α0 = αm+2 < α.

Hence, assertion (10) holds and the iterate xm+2 ∈ B(x0, α). By the condition (H4), the
sequence {αm} is complete as convergent to α. Therefore, by (10) the sequence {xm} is
also complete in the Banach space T1, and as such it converges to some x∗ ∈ B[x0, α](since
B[x0, α] is a closed set). By sending m −→ +∞ in (16), and the continuity of the operator G,
we deduce that G(x∗) = 0. Finally, the estimation for i a natural number

∥xm+i − xm∥ ≤ αm+i − αm,

shows (9), if i −→ +∞.

Next, a set is specified that contains only one solution of the equation G(x) = 0.

Proposition 1. Suppose: There exists a solution y ∈ B(x0, ρ1) of the equation G(x) = 0 for some
ρ4 > 0; the condition (H4) holds in the ball B(x0, ρ1), and there exists ρ2 ≥ ρ1 such that∫ 1

0
w0(τρ1 + (1 − τ)ρ2)dτ < 1 (17)

Set Ω2 = B[x0, ρ2] ∩ Ω. Then, the element y is the only solution of the equation G(x) = 0 in the
set Ω2.

Proof. Suppose that there exists a solution z ∈ Ω2 of the equation G(x) = 0 with z ̸= y.
Define the linear operator E =

∫ 1
0 G′(y + τ(z − y))dτ. By using the condition (H4) and (17),

we obtain in turn

∥∆−1(E − ∆)∥ ≤
∫ 1

0
w0(τ∥y − x0∥+ (1 − τ)∥z − x0∥)dτ

≤
∫ 1

0
w0(τρ2 + (1 − τ)ρ3)dτ < 1.

Thus, the linear operator E−1 ∈ L(T2, T1), and from the identity we obtain

z − y = E−1(G(z)− G(y)) = E−1(0) = 0.

Therefore, we conclude that z = y.

Remark 1.

(1) The limit point α can be replaced by ρ in the condition (H6).
(2) If all the conditions (H1)-(H6) hold in Proposition 1, take y = x∗ and ρ2 = α.
(3) The second hypothesis in the condition (H5) can be replaced as follows:

Suppose that there exists (FNDC) w2 : S −→ S such that equation w2(t)− 1 = 0 has an
SPS. Denote such solution by ρ3, and set γ ∈ [0, w2(ρ3)). Then, γ ∈ [0, 1). In this case, set
ᾱ = min{α, ρ3}, and replace α by ᾱ in the condition (H6).
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(4) The results for algorithm (3) or (2) can be obtained if we let k −→ +∞ in Theorem 1. A
possible choice for k = n, although a smaller value k = 1 or k = 2 is preferred to reduce the
computational cost (see also the numerical Section 6).

3. Local Analysis

In Section 3, we exchange the role of x∗ and the ”w” functions with x0, and the ”ψ”
function, respectively. But the computations are similar.

Suppose:

(C1) There exists a solution x∗ ∈ Ω of the equation G(x) = 0, and an invertible operator
∆ ∈ L(T1, T2) such that for each τ ∈ [0, 1], x ∈ Ω

∥
∫ 1

0
∆−1(G′(x∗ + τ(x − x∗))− ∆)dτ∥

≤
∫ 1

0
ψ(τ∥x − x∗∥)dτ,

for some (FNDC) ψ : S −→ S.
(C2) There exists γ ∈ [0, 1

2 ), such that

∥∆−1(A(x)− ∆)∥ ≤ γ.

Define the function g : S −→ S by

g(t) =
1 − γk+1

1 − γ

∫ 1

0
ψ(τt)dτ + γ

1 − γk

1 − γ
.

(C3) The equation g(t)− 1 = 0 has an SPS. Denote such a solution by ρ4.
and

(C4) U[x∗, ρ4] ⊂ Ω.

Theorem 3. Suppose that the conditions (C1)–(C4) hold. Then, the sequence {xn} with initial
guess x0 ∈ U(x∗, ρ4)−{x∗} exists in U(x∗, ρ4), stays in U(x∗, ρ4), and converges to x∗ such that

∥xn+1 − x∗∥ ≤ g(∥xn − x∗∥)∥xn − x∗∥ ≤ ∥xn − x∗∥ ≤ ρ4. (18)

Proof. Assertion (18) is shown by mathematical induction. Notice that all the iterates xm
exist by algorithm (4). We can also write, in turn, that

xm+1 − x∗ = xm − x∗ − A∆−1G(xm)

= xm − x∗ − A∆−1
∫ 1

0
G′(x∗ + τ(xm − x∗))dτ(xm − x∗)

= [I − A∆−1(
∫ 1

0
G′(x∗ + τ(xm − x∗))− ∆ + ∆)dτ](xm − x∗)

= [(I − A − A∆−1(
∫ 1

0
G′(x∗ + τ(xm − x∗))− ∆)dτ](xm − x∗). (19)

But, we have as in the semi-local case

∥A∥ ≤ 1 − γk+1

1 − γ
,

and

∥I − A∥ ≤ γ
1 − γk

1 − γ
. (20)

Hence, (19) turns into
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xm+1 − x∗ =

[
(I − A)− A(

∫ 1

0
∆−1(G′(x∗ + τ(xm − x∗))− ∆)dτ

]
(xm − x∗).

(21)
Using the conditions (C1)–(C3), we obtain

∥xm+1 − x∗∥ ≤
[

γ
1 − γk

1 − γ
+

1 − γk+1

1 − γ

∫ 1

0
ψ(τ∥xm − x∗∥)dτ

]
∥xm − x∗∥

≤ g(∥xm − x∗∥)∥xm − x∗∥ ≤ ∥xm − x∗∥ < ρ4. (22)

Thus, assertion (18) holds and the iterate xm+1 ∈ U(x∗, ρ4). Then, by (22), we obtain

∥xm+1 − x∗∥ ≤ d∥xm − x∗∥ ≤ dm+1∥x0 − x∗∥, (23)

where d = g(∥x0 − x∗∥) ∈ [0, 1). Therefore, we deduce from (23) that limm→+∞ = x∗, and
the iterate xm+1 ∈ U(x∗, ρ4).

Next, the uniqueness of the x∗ set is determined.

Proposition 2. Suppose: There exists ρ5 > 0 such that the condition (C1) holds in the ball
U(x∗, ρ5),

∥∆−1(G′(u)− M)∥ ≤ ψ0(∥u − x∗∥ (24)

for each u ∈ Ω and some (FNDC) ψ0 : S −→ S and there exists ρ6 ≥ ρ5 such that∫ 1

0
ψ0(τρ6)dτ < 1. (25)

Define the set Ω2 = U[x∗, ρ6] ∩ Ω. Then, the only solution of the equation G(x) = 0 in the set Ω2
is x∗.

Proof. Suppose that there exists y ∈ Ω3 solving the equation G(x) = 0 and y0 ̸= x∗. Define
the linear operator E1 =

∫ 1
0 G′(x∗ + τ(y0 − x∗))dτ. By the condition (C1), (24), and (25), we

have in turn that

∥∆−1(E1 − ∆)∥ ≤
∫ 1

0
ψ0(τ∥y0 − x∗∥)dτ

≤
∫ 1

0
ψ0(τρ6)dτ < 1,

Hence, L1 is invertible. Finally, from the identity y0 − x∗ = E−1(G(y0) − G(x∗)) =
E−1(0) = 0, we conclude that y0 = x∗.

Remark 2.

(1) We can set in Proposition 2 y0 = x∗ and ρ5 = ρ4.
(2) The parameter ρ4 defined in the condition (C3) is the radius of convergence for algorithm (4).
(3) As in the semi-local analysis if k −→ +∞, we obtain the results for algorithm (3). Another

choice for k = n. However, we shall choose a small value of k to save computational cost.

4. Convergence of the Krasnoselskij-like Algorithm

The contraction mapping principle has been used extensively to find fixed points
using iterative algorithms.
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Theorem 4 ([15]). Let Q : T1 −→ T1 be a contraction operator, with Lipchitz parameter ζ ∈ [0, 1).
Then, the operator Q has a fixed point x∗ ∈ T1 i.e., Q(x∗) = x∗, Moreover, for each initial guess
x0 ∈ T1 the Picard algorithm or the algorithm of successive substitutions xn+1 = Q(xn) converges
to x∗ ∈ T1.

Theorem 4 cannot be used if the operator Q has more than one fixed point. The fixed
points must be separated in this case. Let us consider Q0 to be a closed substep of Q0 with
Q0 ̸= ϕ. Then, the following result is available.

Theorem 5 ([15]). Suppose that the operator Q : Q0 −→ Q0 is a contraction with constant
ζ ∈ [0, 1). Then, the operator Q has a unique fixed point x∗ ∈ Q0. Moreover, for each x0 ∈ Q0, the
Picard algorithm converges to x∗. The convergence of algorithm (5) is based on Theorem 6.

Theorem 6. Let k be a fixed natural number. Suppose that the following conditions hold for
x, y ∈ Ω:

∥∆−1(L(x)− ∆)∥ < 1,

∥P(x)− P(x0)∥ ≤ p0∥x − x0∥,

∥P(y)− P(x0)∥ ≤ p∥y − x∥

and

∥P(x0)− x0∥ ≤ r
1 − p0

,

for some invertible operator and p0, p ∈ [0, 1), and U(x0, r) ⊂ Ω provided that r ∈ [0, 1
p0
). Then,

the operator P : Ω −→ Ω has a unique fixed point x∗ ∈ Ω, and the Krasnoselskij-like algorithm (5)
converges to x∗.

Proof. Notice that

∥P(x)− x0∥ ≤ ∥P(x)− P(x0)∥+ ∥P(x0)− x0∥
≤ p0r + ∥P(x0)− x0∥ ≤ r.

Thus, P : U(x0, r) −→ U(x0, r) is a contraction operator with constant p ∈ [0, 1). Set
Q0 = U[x0, r]. Then, the result follows from Theorem 5.

5. Error Analysis

The sequences {yn} and {xn} are generated by formulas (2) and (4), respectively.
We select a portion of the standard semi-local convergence result for the Newton-like
algorithm (2) [28].

Theorem 7. Let G : Ω −→ Y be Fréchet-differentiable and let L(x) ∈ L(T1, T2) be an approxima-
tion to the linear operator G′(x). Suppose that there exist an open convex subset Ω̃ of Ω, x0 ∈ Ω̃,
a bounded linear invertible operator K0(= L(x0)), and constants η, K > 0, K0, K1, µ, l ≥ 0 such
that for all x, y ∈ Ω̃ the following conditions hold:

∥L−1
0 G(x0)∥ ≤ η,

∥K−1
0 (F′(y)− F′(x))∥ ≤ K∥y − x∥,

∥K0(F′(x)− K1(x)) ≤ K0∥x − x0∥+ µ,

∥K0(A(x)− K0)∥ ≤ K1∥x − x0∥+ l,

l1 = µ + l < 1.

In addition, suppose that

h := ση ≤ 1
2
(1 − l1)2,
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where σ = max{K, K0 + K1}, and

Ū = U[x0, t∗] ⊂ Ω̃

where
t∗ = (1 − l1 −

√
(1 − l1)2 − 2h))/σ0

Then, the following assertions hold
The sequence {yn} generated by algorithm (2) remains in the ball U(x0, t∗) and converges to

a solution x∗ ∈ Ū of the equation G(x) = 0 and

∥L−1
n K0∥ ≤ s1 :=

1
1 − (K0t∗ + l)

(26)

Next, the sequences {yn} and {xn} are related to each other.

Lemma 1. Suppose that the conditions (H1)− (H5) for (∆ = K0), and those of Theorem 7 hold.
Then, the following error assertion holds for each n = 0, 1, 2, ...

∥xn+1 − yn+1∥ ≤ en, (27)

where

en = s1[(
∫ 1

0
w((1 − τ)∥xn − yn)dτ + w(∥xn − yn∥+ w1(∥xn − x0∥)∥xn − yn∥

+b̄γk+1∥xn+1 − xn∥]. (28)

Proof. Under the conditions of Theorems 2 and 7, the iterates {yn} and {xn} are well
defined by formulas (2), and (4), respectively. By subtracting (2) from (4) and pulling out
L−1

n , we can write, in turn, that

xn+1 − yn+1 = xn − yn + L−1
n G(yn)− A∆−1G(x)

= L−1
n [Ln(xn − yn)− G(xn) + G(xn) + G(yn)− Ln A∆−1G(xn)]

= −L−1
n (G(xn)− G(yn)− F′(yn)(xn − yn)

− L−1
n (F′(yn)− F′(xn))(xn − yn)− L−1

n (F′(xn)− Ln)(xn − yn)

+ L−1
n (∆ − Ln A)A−1(xn+1 − xn). (29)

We need, in turn, the following estimates obtained by the conditions of Theorems 2 and 7

∥K−1
0 (G(xn)− G(yn)− F′(yn)(xn − yn))∥

≤ ∥
∫ 1

0
sK−1

0 (F′(yn + τ(xn − yn))− F′(yn))dτ(xn − yn)∥

≤
∫ 1

0
sw((1 − τ)∥xn − yn∥)dτ∥xn − yn∥ (30)

∥K−1
0 (F′(yn)− F′(xn))(xn − yn)∥ ≤ w(∥xn − yn∥)∥xn − yn∥, (31)

∥K−1
0 (F′xn)− Ln)(xn − yn)∥ ≤ w1(∥xn − x0∥)∥xn − yn∥

≤ w1(α)∥xn − yn∥ (32)

∥∆−1(∆ − Ln A)∥Γk+1∥ ≤ γk+1, (33)

and
∥K0G(xn)∥ = ∥B−1(xn+1 − xn)∥ = b̄∥xn+1 − xn∥ (34)

By summing up (30)–(34) and using the triangle inequality in (34), we obtain (27).
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It is convenient for the next result to define the function φ : [0,+∞) −→ R by

φ(t) = s1

[( ∫ 1

0
w((1 − τ)t)dτ + w(t) + w1(α)

)
t + s2

]
− t, where s2 = s1b̄γk+1η.

Proposition 3. Let all the conditions of Lemma 1 hold. Suppose, in addition, that the equation
ψ(t) = 0 has the smallest solution s∗ > s2. Then, the following assertion holds for each n =
0, 1, 2, . . .

∥xn − yn∥ ≤ s∗. (35)

Proof. The estimate (27) for n = 0 implies ∥x1 − y1∥ ≤ s2 ≤ s∗, which is true by the choice
of s∗. Suppose that (35) holds for all integer values m smaller or equal to m. Then, we have
by the induction hypothesis, and (2) that

∥xm+1 − ym+1∥ ≤ em ≤ s1(
∫ 1

0
w((1 − τ)s∗)dτ + w(s∗) + w1(α))s∗ + s2 = s∗, (36)

by the definition of s∗.

6. Numerical Examples

The examples use Ln = G′(xn), ∆ = I, which are independent of x0 and x∗.

Example 1. The solution sought for the nonlinear system

g1 = u − 0.1 sin u − 0.3 cos v + 0.4

g2 = v − 0.2 cos u + 0.1 sin v + 0.3.

Let G = (g1, g1). Then, the system becomes

G(s) = 0 f or s = (θ1, θ2)
T .

Then

G′((u, v)) =
[

1 − 0.1 cos(u) 0.3 sin(v)
0.2 sin(u) 0.1 cos(v) + 1

]
.

Algorithm (2)
xk+1 = xk − G′(xk)

−1G(xk).

Algorithm (4), k = 1, ∆ = I

A1(x) = I + (I − G′(x)),

p1(x) = x − (I + (I − G′(x)))G(x), (37)

xn+1 = p1(xn).

Algorithm (4), k = 2, ∆ = I

A2(x) = I + (I − G′(x)) + (I − G′(x))2,

p2(x) = x − A2(x)G(x), (38)

xn+1 = p2(xn).

Algorithm (4), k = 3, ∆ = I

A3(x) = I + (I − G′(x)) + (I − G′(x))2 + (I − G′(x))3,

p3(x) = x − A3(x)G(x), (39)

xn+1 = p3(xn).
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Algorithm (4), k = 4, ∆ = I

A4(x) = I + (I − G′(x)) + (I − G′(x))2 + (I − G′(x))3 + (I − G′(x))4,

p4(x) = x − A4(x)G(x), (40)

xn+1 = p4(xn).

Algorithm (4), k = 5, ∆ = I

A5(x) = I + (I − G′(x)) + (I − G′(x))2 + (I − G′(x))3 + (I − G′(x))4 + (I − G′(x))5,

p5(x) = x − A5(x)G(x), (41)

xn+1 = p5(xn).

Algorithm (4), k = 1, 5 , ∆ = G′(x0)

xn+1 = xn − A∆−1G(xn),

Γ = ∆−1(∆ − G′(x)), (42)

A = I +
k

∑
i=1

Γi.

Thus, the comparison shows that the behavior of method (4) is essentially the same as Newton’s
method (2). However, the iterates of method (4) are cheaper to obtain than Newton’s. As observed in
Tables 1–4, the number of iterations required for the proposed methods with k ranging from 3 to 5
closely aligns with those of Newton’s method.

Table 5 shows the results of calculations to determine the Computational Order of Convergence
(COC) and the Approximated Computational Order of Convergence (ACOC) aiming to compare the
convergence order of method (4) with the convergence order of Newton’s method (2).

Table 1. Number of iterations to achieve tolerance ε = 10−9 with initial guess x0 = (1, 1) and
∥I − G′(x0)∥ = 0.3129 < 1.

Algorithm Iterations Algorithm Iterations

(2) Newton 4 (2) Newton 4
(37), k = 1 6 (42), k = 1 8
(38), k = 2 5 (42), k = 2 6
(39), k = 3 4 (42), k = 3 5
(40), k = 4 4 (42), k = 4 5
(41), k = 5 4 (42), k = 5 4

Table 2. Number of iterations to achieve tolerance ε = 10−9 with initial guess x0 = (0, 0) and
∥I − G′(x0)∥ = 0.1414 < 1.

Algorithm Iterations Algorithm Iterations

(2) Newton 3 (2) Newton 3
(37), k = 1 5 (42), k = 1 3
(38), k = 2 4 (42), k = 2 3
(39), k = 3 3 (42), k = 3 3
(40), k = 4 3 (42), k = 4 3
(41), k = 5 3 (42), k = 5 3
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Table 3. Number of iterations to achieve tolerance ε = 10−9, where x0 = (−15,−15) and
∥I − G′(x0)∥ = 0.257 < 1.

Algorithm Iterations Algorithm Iterations

(2) Newton 5 (2) Newton 5
(37), k = 1 7 (42), k = 1 9
(38), k = 2 5 (42), k = 2 7
(39), k = 3 5 (42), k = 3 6
(40), k = 4 5 (42), k = 4 6
(41), k = 5 5 (42), k = 5 5

Table 4. Number of iterations to achieve tolerance ε = 10−12, where x0 = (−15,−15) and
∥I − G′(x0)∥ = 0.257 < 1.

Algorithm Iterations Algorithm Iterations

(2) Newton 7 (2) Newton 7
(37), k = 1 8 (42), k = 1 12
(38), k = 2 7 (42), k = 2 8
(39), k = 3 7 (42), k = 3 8
(40), k = 4 7 (42), k = 4 7
(41), k = 5 7 (42), k = 5 7

Definition 2. The computational order of convergence of a sequence {xn}n≥0 is defined by

ρn =
ln |en+1/en|
ln |en/en−1|

,

where xn−1, xn, xn+1 are three consecutive iterations near the root α and en = xn − α [6].

Definition 3. The approximated computational order of convergence of a sequence {xn}n≥0 is
defined by

ρ̂n =
ln |ên+1/ên|
ln |ên/ên−1|

,

where ên = xn − xn−1. xn, xn−1, xn−2 are three consecutive iterates [6].

Table 5. Computational Order of Convergence and the Approximated Computational Order of
Convergence, where x0 = (−15,−15), ε = 10−12.

Algorithm COC ACOC

(2) Newton 1.8624 1.9697
(37), k = 1 0.863 1
(38), k = 2 0.2695 1.0438
(39), k = 3 1.9714 2.3569
(40), k = 4 1.8354 1.9453
(41), k = 5 1.8642 1.9661

(42), k = 1 0.9065 1.0118
(42), k = 2 0.5912 0.999
(42), k = 3 0.7321 0.9926
(42), k = 4 1.933 2.0151
(42), k = 5 1.8679 1.9578

Table 5 demonstrates that the convergence of the proposed methods closely corre-
sponds with the convergence of Newton’s method, particularly for values of k ranging
from 4 to 5 with the convergence order closely approximating 2.
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Example 2. Let T1 = T2 = R3 and Ω = U[x∗, 1]. The mapping G is defined on Ω for
Θ = (Θ1, Θ2, Θ3)

tr ∈ R3 as

G(Θ) = (Θ1, eΘ2 − 1,
e − 1

2
Θ2

3 + Θ3)
tr.

Then, the definition of the derivative according to Fréchet [2,3,8,13,30] gives for the mapping G that

G′(Θ) =

 1 0 0
0 eΘ2 0
0 0 (e − 1)Θ3 + 1

.

The point x∗ = (0, 0, 0)tr solves the equation G(a) = 0. Moreover, G′(x∗) = I. The conditions of
Theorem 3 hold, provided that γ = γ(t) = (e − 1)t, ψ(t) = (e − 1)t, and k = 1. Then, we can
take ρ4 ∈ (0, 0.2909883534).

Example 3. Let U[0, 1] stand the space of continuous functions mapping the interval [0, 1] into
the real number system. Let T1 = T2 = K[0, 1] and Ω = U[x∗, 1] with x∗(κ) = 0. The operator G
is defined on U[0, 1] as

G(z)(κ) = z(κ)− 4
∫ 1

0
κz(τ)3dτ.

Then, the definition of the derivative according to Fréchet [2,3,8,13,30] gives for the operator G

G′(z(w))(κ) = w(κ)− 12
∫ 1

0
κτz(τ)2w(τ)dτ

for each w ∈ U[0, 1]. Therefore, the conditions of Theorem 3 hold for x∗ = 0, k = 1 G′(x∗(κ)) = I
if we choose γ = γ(t) = 6t and ψ(t) = 6t. Then, we obtain ρ4 ∈ (0, 0.83̄).

7. Concluding Remarks

The difficulty of implementing the Newton-like algorithms is addressed in this paper.
In particular, the computation of L−1

n required at each step of the Newton-like algorithms
is avoided with the introduction of algorithm (4) (or algorithm (5)), where the inversion
only once of a fixed linear operator is required to implement it. The inverse of the linear
operator is exchanged with a finite sum of linear operators related to G′. Both the local
and the semi-local convergence analysis of these algorithms is comparable to Newton’s in
the sense that the number of iteration steps to reach a predetermined tolerance of error is
essentially the same. The numerical examples are used to demonstrate that algorithm (4)
or algorithm (5) are reliable replacements of the Newton-like algorithms for all practical
purposes. We plan to study extensions of the presented algorithms like

xn+1 = xn − G̃(xn)G(xn),

where G̃ is a conscious approximation to the inverse of a linear operator (like Ln) which
may be a divided difference or some other operator [18,30–35].
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