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Abstract: With the rapid development of the new energy vehicle market, the demand for extruded
profiles for battery trays, mainly characterized by significant wall thickness differences in multiple
chambers, is increasing, posing new challenges to production and quality control. This study ex-
amines the multi-objective optimization problem in the design process of aluminum profile dies
with multi-cavity profiles and significant wall thickness differences. Using QFORM-extrusion pro-
fessional aluminum extrusion finite element analysis software and the response surface analysis
method, the standard deviation of the velocity (SDV), standard deviation of the pressure (SDP),
and thick wall hydrostatic pressure (TWHP) on the profile section at the die exit are optimized. By
analyzing the functional relationship between the key die structure parameters (the height of the
baffle plates, the length of the bearing, and the height of the false mandrel) and the optimization
objective, the optimal combination scheme of die structure parameters was obtained using the NSGA2
(non-dominated sorting genetic algorithm-2) multi-objective genetic optimization algorithm. The
results show that, compared with the initial design scheme, the standard deviation of profile section
velocity was reduced by 5.33%, the standard deviation of pressure was reduced by 11.16%, and
the thick wall hydrostatic pressure was increased by 26.47%. The die designed and manufactured
using this scheme successfully completed the hot extrusion production task, and the profile quality
met the predetermined requirements, thus verifying the effectiveness of this study in optimizing
the design of a multi-cavity aluminum profile die with significant differences in wall thickness for
complex structures.

Keywords: Al-Mg-Si alloy; extrusion; die design; response surface method; NSGA2

1. Introduction

Extrusion dies play a crucial role in aluminum profile production, and the optimization
of die design is a key strategy for improving the service life of the dies and eliminating the
abnormal production quality of the profile. In this critical technology field, scholars and
industry experts have achieved significant success through in-depth theoretical research and
rich practical experience. With the continuous advancement of computational technology,
the application of finite element analysis (FEA) technology in extrusion process analysis and
die design optimization has become increasingly widespread, promoting the development
of related research and practice [1–3]. Professional finite element analysis software such
as Deform-3D, HyperXtrude, and Qform Excitation not only improves the accuracy of die
design but also significantly shortens the design cycle. This software, through its high-
precision simulation capabilities, can predict material flow, stress distribution, temperature
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changes, and potential defects before actual manufacturing, effectively reducing the amount
of trial and error, lowering production costs, and improving the quality and consistency of
the final product [4–10].

However, currently, most researchers explore indicators related to the quality of profile
forming, usually using the standard deviation of cross-sectional flow velocity (SDV) as the
main evaluation indicator, and based on this indicator, carry out corresponding die design
optimization work [4–8,11,12]. The smaller the SDV value, the more uniform the distribution of
the discharge velocity at various positions on the profile section, which is crucial for ensuring the
dimensional accuracy and surface quality of the profile. This study suggests that this evaluation
method is suitable for profiles with simple structures and a uniform wall thickness. However,
with the rapid changes in the market, especially the widespread application of profiles in new
energy vehicle structural components, there have been some changes in the cross-sectional
structure of profiles. As shown in Figures 1 and 2, the side beam profile in the battery tray
assembly of new energy vehicles has the characteristics of multiple cavities, significant wall
thickness deviation, and local mass concentration. The wall thickness deviation at different
positions is close to tenfold, and in local key positions where the cross-sectional quality of the
profile is concentrated, poor welding or even voids may occur, as shown in Figure 3. Due to the
fact that such quality hazards are related to the safety of component use, the consequences, once
they occur, are unimaginable. Therefore, when manufacturing this type of profile, we cannot
only be satisfied with SDV optimization but also need to take filling and welding performance
as the primary evaluation indicators for die design and optimization. This is to ensure that the
product meets market demand and ensures safety.

Figure 1. 3D structural diagram of profiles.

Figure 2. Dimensional tolerances and key structures of profiles (A: The area of thick wall, B: The area
of thin wall, Sm: small mandrel).
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Figure 3. Dimensions and key structures of profile sections: (a) abnormal welding of profiles and
holes caused by abnormal filling; (b) abnormal hole filling at the thick wall of profile 2; (c) normal
cross-section of profile 2.

Another problem brought about by the significant wall thickness difference is that
there is a significant difference in hydrostatic pressure on both sides of the mandrel. When
the stiffness of the mandrel is insufficient (affected by the shape and size), the mandrel will
shift toward the low-pressure side (at the thick wall), potentially causing the profile size
to exceed the standard or even irreversible plastic deformation of the mandrel, which has
adverse effects on product quality and mold life. In addition, mandrel offset also leads to
the formation of obstruction or flow promotion angles [13,14], making it more difficult to
control the cross-sectional flow velocity of the profile and exacerbating the deterioration of
SDV indicators. In summary, in response to the new challenges brought by the structural
characteristics of multi-cavity profiles with significant wall thickness differences, selecting
effective evaluation indicators and collaborating with SDV indicators for optimization are
urgent problems that researchers need to solve.

The hydrostatic pressure inside the die welding chamber is an important factor affect-
ing the welding performance of profiles and the filling ability of aluminum alloys [15–17].
The uniformity of the distribution of static water pressure on the cross-section can reflect
the degree to which each core of a multi-cavity profile may experience deflection during the
extrusion process due to pressure differences. Therefore, this article introduces new evalua-
tion indicators, namely the static water pressure at thick walls (TWHP) and the standard
deviation of pressure at each point of the profile cross-section (SDP), to characterize the
welding performance, filling performance, and core stability at key positions. The above
data can be obtained intuitively using finite element analysis software.

2. Research Objects and Methods

In this study, multi-objective optimization research was carried out for the extrusion
die design of new energy vehicles with complex multi-cavity profiles and significant
wall thickness differences. Based on QFORM 10.2.1 software, the Box–Behnken test was
designed. Through response surface analysis, the functional relationships between three
key design variables (the height of the baffle plates, the length of the bearing, and the height
of the false mandrel) and three key product quality objectives (the standard deviation of
the outlet velocity (SDV), the standard deviation of the pressure (SDP), and the thick wall
hydrostatic pressure) were identified. At the same time, to improve the accuracy of the
functional relationship, the flow stress constitutive equation of the alloy was considered
and modified.

The Pareto optimal solution set was obtained by calculating the nonlinear function
using the NSGA2 multi-objective genetic optimization algorithm. Combined with expert
scoring and the TOPSIS method, the best scheme was selected from the Pareto solution
set [18]. Finally, according to the optimization results, the die manufacturing was completed
and successfully applied in production.



Materials 2024, 17, 2126 4 of 20

2.1. Constitutive Equation of 6061 Alloy with a Specific Composition during Hot Deformation

Utilizing a reasonable constitutive model is vital for accurately describing the defor-
mation behavior of materials at high temperatures, under large strain, and with a high
strain rate. At the same time, the composition differences between alloys lead to significant
differences in flow deformation behavior even between alloys of the same series [19]. In
order to ensure the accuracy of simulation, isothermal hot compression tests were carried
out using a GLEEBLE-3500 thermal simulation testing machine for 6061 alloy cast rods.
The chemical component of the alloy was determined by an optical emission spectrometer
and shown in Table 1. The following paragraphs outline the specific test conditions:

Temperature: 370 ◦C, 420 ◦C, 470 ◦C, 520 ◦C
Strain: ε = 0.4, ε = 0.7, ε = 0.1, ε = 1.2
Strain rate: ε = 0.01 s−1, 0.1 s−1, 1.0 s−1, 5.0 s−1, 10.0 s−1

Table 1. The main alloying element content of the alloy (mass ratio/%).

Si Mg Fe Cu Mn Cr Zn Ti Al

0.474 0.853 0.1483 0.1747 0.0186 0.0565 0.0183 0.0142 Bal.

By conducting isothermal hot compression tests under different temperature and
strain conditions and recording the corresponding mechanical behavior data, the stress–
strain data of 6061 alloy under different deformation conditions can be obtained, as shown
by the scattered hollow block symbols in Figure 4.

Figure 4. Comparison of predicted stress and experimental stress using the modified parameter
model: (a) 0.01 s−1; (b) 1 s−1; (c) 10 s−1.

The default thermal deformation constitutive model of QFORM extrusion software
is the Hansel–Spittel model, as shown in Formula (1). Based on the data obtained from
isothermal hot compression tests, the thermal deformation constitutive equation can be
fitted [20,21], and the actual parameters of the constitutive model under specific alloy
composition conditions can be calculated, as shown in Table 2. The solid line curve in
Figure 4 represents the predicted values of the thermal deformation constitutive equation.

σ = A·em1T·εm2 · .
ε

m3 ·e
m4
ε ·(1 + ε)m5T·em7ε· .

ε
m8·T·Tm9 (1)
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where: σ—stress; ε—strain;
.
ε—strain rate; T—temperature; A, m1~m9—relevant material

parameters.

Table 2. Modification of Hansel–Spittel flow stress model.

Coefficient m1 m2 m3 m4 m5 m7 m8 m9 A

Value −4.82 × 10−4 −0.167 −0.062 −0.044 −1.21 × 10−3 0.59 4.390 × 10−4 −1.65 1.065 × 10−6

To evaluate the accuracy of the revised constitutive equation, the average relative
error (AARE) was used to calculate all measured and predicted data [22]. Its expression
is shown in Formula (2), where N is the total number of data used in this study and Ei
and Pi are the experimental and predicted true stresses (MPa), respectively. Through
calculation, the AARE value is 4.93%, indicating that the proposed constitutive model and
calculated material constants can well describe the relationship between the rheological
stress, temperature, strain rate, and strain of the studied material.

AARE =
1
N∑N

i=1

∣∣∣∣Ei − Pi

Ei

∣∣∣∣ (2)

2.2. Finite Element Simulation of Profile Forming

The profile shown in Figure 1 was selected as the research object, and the difficulty of
die design for this product is shown in Figure 2. The area of thick wall A is 426 mm2, and the
area of thin wall B is 42 mm2, with a tenfold difference. The stiffness of the small mandrel
is insufficient. The deformation of the small mandrel caused by the superimposition of the
aluminum flow velocity difference on both sides and the pressure difference affects the
discharge flow velocity difference and pressure balance of the entire profile section. In the
process of die design adjustment, structural change can easily cause quality abnormalities
such as voids and looseness in area A. In this paper, the above design difficulties are
characterized by three indicators: speed standard deviation (SDV), pressure standard
deviation (SDP), and thick wall hydrostatic pressure (TWHP). The expressions of SDV
and SDP are shown in Equations (3) and (4), where Vi is the velocity of node i along the
extrusion direction on the cross-section and V is the average velocity of all nodes in the
profile section, where n is the number of nodes [1,2,11,12]; similarly, Pi is the hydrostatic
pressure at node i on the cross-section and P is the average static water pressure of all nodes
in the cross-section of the profile, where n is the number of nodes, which can be directly
read by QFROM extrusion. The TWHP is the average value of six points read from the
QFORM within the geometric center of the area in Figure 2. The geometric model of the
profile porthole extrusion die was established using SOLIDWORK 2016 software. The main
structure of the die is shown in Figures 5 and 6. The purple area in the figure represents
the height of the false mandrel, the green area represents the length of the bearing, and the
blue area represents the height of the baffle plates.

SDV =

√
∑n

i−1
(
Vi − V

)2

n
(3)

SDP =

√
∑n

i−1
(
Pi − P

)2

n
(4)
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Figure 5. Three-dimensional structure of shunt die.

Figure 6. Mesh generation before 3D model simulation.

2.3. Box–Behnken Test Design

The Box–Behnken experiment is a commonly used design experiment method that
is used to establish the relationship model between input variables (factors) and output
response. It is a multi-factor and multi-level design method that can quickly and effectively
determine the influence of factors on the response and optimize the experimental design.
Each factor in the experimental design usually has three levels to capture the linear and
quadratic effects of factors. Through the statistical analysis of the experimental results, the
mathematical model between the response and factors can be established, and then the
prediction, optimization, and parameter adjustment can be carried out [6,7,23].

In order to elucidate the functional relationship between the optimization objectives
SDV, SDP, the maximum thick wall hydrostatic pressure, and the design variables, such as
the height of baffle plates (0 mm, 3 mm, 6 mm), the length of the bearing (8 mm, 14 mm,
20 mm), and the height of the false mandrel (0 mm, 4 mm, 8 mm), the experimental design
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was carried out according to the Box–Behnken test method, and 17 three-dimensional
geometric models of the die were constructed according to the test requirements.

2.4. Response Surface Method and NSGA2 Multi-Objective Optimization Genetic Algorithm

The response surface methodology (RSM) is an optimization method that combines
the response surface from a set of experimental sample data, gives the surface equation,
and then solves the surface equation to obtain a set of optimal design variables. Unlike
other statistical methods, RSM not only considers the interaction between independent
variables and improves the fitting accuracy but also utilizes graphical technology to display
the functional relationship between the two, making the results more intuitive [6,7,23]. In
this paper, the second-order response surface equation is selected, and its model can be
expressed as follows:

y = β0 + ∑n
i=1βixi + ∑n

i=1βiix
2
i + ∑ ∑P<iβpixpxi + ε (5)

In recent years, various multi-objective optimization intelligent algorithms have been
rapidly developed, and various algorithms with excellent performance indicators have
emerged, such as DNEA, HREA, SMPSO, etc. Compared with these, the second-generation
NSGA2 (non-dominated sorting genetic algorithm II) with an elite retention strategy
does not have outstanding performance in fast non-dominated sorting algorithms [24].
However, as a classic multi-objective optimization algorithm, the NSGA2 algorithm has
been successfully applied in multiple fields, proving its applicability and practicality. It
has a solid theoretical and applied foundation. Thanks to the maturity of the algorithm,
multiple open-source NSGA2 implementation tools are available, and researchers and
engineers can easily apply the algorithm to their own problems. At the same time, some
aspects of its performance, such as computational efficiency and convergence, still have
certain advantages compared to other algorithms [25–27]. In this study, we use the NSGA2
algorithm to coordinate the calculation of the relationship between the three objective
functions. The specific optimization process is shown in Figure 7.

Figure 7. Multi-objective optimization flow chart of NSGA2 algorithm [28].
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2.5. Optimization Objectives and Multi-Objective Decision Making

The three objective function optimization objectives studied in this paper are shown
in Formula (6):

(1) Min SDV(B,L,M) was designed to optimize the profile discharge balance.
(2) Min SDP(B,L,M)) was designed to stabilize the mandrel without deformation, and

optimized the dimensional accuracy of the profile and the service life of the die.
(3) Max TWHP(B,L,M) was designed to ensure the internal structure of the profile was

uniform and there were no fatal quality abnormalities such as porosity and voids.

minSDV(B, L, M)
min SDP(B, L, M)

maxTWHP(B, L, M)
0 ≤ B ≤ 6
8 ≤ L ≤ 20
0 ≤ M ≤ 8

(6)

where B is the height of the baffle plates and the value range is 0~6; L is the length of the
bearing, with a value range of 8~20; M is the height of false mandrel, value range: 0~8.

It is usually impossible to obtain the optimal value of the three objective functions
at the same time. How to choose or not needs to be judged by human subjectivity on
the importance of each objective function. Based on the Pareto optimal solution set and
subjective weight scoring, this paper uses TOPSIS method to evaluate and sort the items in
the solution set to obtain the final solution [18]. The specific process is as follows:

(1) The subjective weights of the three indicators are calculated according to the expert
scoring method (there are g experts in total):

βn = ∑g
nAan/g (7)

where Aan is the scoring value of the nth index given by the expert.

(2) The Pareto optimal solution set has t solutions in total. Taking three objective functions
as evaluation indexes, the index matrix s can be obtained.

S = (Smn)t×3 (m = 1,2,3,. . .. . .t; n = 1,2,3)

(3) Normalize the matrix:

S*
mn =

∣∣∣∣ Smn − Smax

Smax − Smin

∣∣∣∣ (8)

(4) Weighting each element of the index matrix to obtain the weighting matrix K:

K = (Kmn)t×2 =
(
β1·S*

m1,β2·S*
m2,β3·S*

m3

)
(9)

(5) The minimum element of each column in the weighting matrix is taken as the optimal
solution Y+

n , and the maximum element in the weighting matrix is taken as the worst
solution Y−

n .

Y+
n = min(K1n,K2n,K3n · · · · · ·Ktn) (10)

Y−
n = max(K1n,K2n,K3n · · · · · ·Ktn) (11)
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(6) Calculate the Euclidean distance (Kmn) between each element in the weighting matrix
and the optimal solution and the worst solution, Z+

m, Z−
m:

Z+
m =

√
∑3

n=1

(
Kmn − Y+

n
)2 (12)

Z−
m =

√
∑3

n=1

(
Kmn − Y−

n
)2 (13)

(7) The approximation index Rm between the m-th solution in the Pareto optimal solution
set and the optimal level is calculated and sorted in descending order (the greater the
Rm, the closer it is to the optimal level):

Rm =
Z−

m

Z−
m + Z+

m
(14)

2.6. Hot Extrusion Production Verification

The hot extrusion production test uses a homogeneous 6061 round cast rod with a
diameter of 228 mm and a length of 650 mm. The extruder is a 2500 t forward single-acting
extruder from the profile factory affiliated to the Hesheng group. The aluminum rod is
heated to 490 ◦C using a jet type fast heating gas furnace, and the extrusion die is placed in
a resistance-type die heating furnace at 510 ◦C for 8 h. The preheating temperature of the
extrusion barrel is 420 ◦C, and the propulsion speed of the master cylinder is 2.5 mm/s.
After extrusion, the material head is reserved for analysis and die repair. After the residual
material is cut off and the sandwich is shrunk, the middle part is taken for dimension
measurement.

3. Test Analysis
3.1. Data Analysis and Establishment of Response Surface Function Relationship

In accordance with the Box–Behnken test design, finite element simulation analysis
was carried out, and the relationship between 17 groups of design variables and the
objective function was obtained, as shown in Table 3.

Table 3. Box–Behnken test design parameters and results.

Number B/mm L/mm M/mm SDV SDP TWHP
(MPa)

1 3 14 4 13.72 14.58 36.35
2 3 20 0 14.69 13.79 57.76
3 6 8 4 13.27 15.94 39.7
4 6 14 0 13.68 15 48.18
5 0 8 4 16.15 14.45 48.4
6 3 14 4 13.72 14.58 36.35
7 6 14 8 12.58 15.81 25.3
8 6 20 4 13.39 14.87 42.01
9 3 8 8 13.98 15.37 31.75

10 3 8 0 17.02 15.26 49.88
11 3 20 8 13.68 14.09 36.98
12 0 20 4 14.56 13.46 52.76
13 0 14 0 15.78 13.74 55.72
14 3 14 4 13.72 14.58 36.35
15 3 14 4 13.72 14.58 36.35
16 0 14 8 14.21 13.83 39.39
17 3 14 4 13.72 14.58 36.35

According to the data in Table 3, the stepwise regression method is used to model the
response parameters in design expert 8.0, and the three quadratic regression models (the
height of the material baffle plates (B), length of the bearing (L), and height of the false
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mandrel (M)) and three mass objectives (SDV, SDP, and thick wall hydrostatic pressure
(TWHP)) are obtained, respectively. Tables 4–6 are variance analysis tables of each model.

Table 4. Regression model analysis of speed standard deviation.

Variance Source Sum of Squares Degree of
Freedom Mean Variance F Value p Value

Regression model 20.87 7 2.98 56.82 <0.0001
B 7.59 1 7.59 144.55 <0.0001
L 2.11 1 2.11 40.24 0.0001
M 5.64 1 5.64 107.56 <0.0001
BL 1.32 1 1.32 25.2 0.0007
LM 1.03 1 1.03 19.63 0.0016
L2 2.53 1 2.53 48.29 <0.0001
M2 0.51 1 0.51 9.7 0.0124

Residual 0.47 9 0.052 — —
Misfit 0.47 5 0.094 — —

Pure error 0 4 0 — —
Total 21.35 16 — — —

R-Squared = 0.9779, Adj R-Squared = 0.9607. S-Pred R-Squared = 0.8367, Adeq Precision = 28.315.

Table 5. Regression model analysis of pressure standard deviation.

Variance Source Sum of Squares Degree of
Freedom Mean Variance F Value p Value

Regression model 7.95 4 1.99 170.73 <0.0001
B 4.71 1 4.71 404.87 <0.0001
L 2.89 1 2.89 248.47 <0.0001
M 0.21 1 0.21 18.43 0.001

BM 0.13 1 0.13 11.13 0.0059
Residual 0.14 12 0.012 — —

Misfit 0.14 8 0.017 — —
Pure error 0 4 0 — —

Total 8.09 16 — — —
R-Squared = 0.9827, Adj R-Squared = 0.9770. S-Pred R-Squared = 0.9555, Adeq Precision = 46.787

Table 6. Regression model analysis of thick wall hydrostatic pressure.

Variance Source Sum of Squares Degree of
Freedom Mean Variance F Value p Value

Regression model 1264.76 7 180.68 189.18 <0.0001
B 210.95 1 210.95 220.87 <0.0001
L 48.91 1 48.91 51.21 <0.0001
M 762.84 1 762.84 798.72 <0.0001

BM 10.73 1 10.73 11.23 0.0085
B2 57.99 1 57.99 60.72 <0.0001
L2 134.71 1 134.71 141.04 <0.0001
M2 18.33 1 18.33 19.19 0.0018

Residual 8.6 9 0.96 — —
Misfit 8.6 5 1.72 — —

Pure error 0 4 0 — —
Total 1273.36 16 — — —

R-Squared = 0.9932, Adj R-Squared = 0.9880. S-Pred R-Squared = 0.9701, Adeq Precision = 45.823

It can be seen from Table 4 that the degree of freedom of the SDV regression model
is 7, and the residual degree of freedom is 9. The F value of the regression equation was
tested. By looking up the table of F-Vale under the conditions of different significance levels
(α), it can be seen that F0.05(7, 9) = 3.29, F0.025(7, 9) = 4.20, and F0.01(7, 9) = 5.61. In Table 4,
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F = 56.82 is far greater than the F value under each significant level, indicating that the
relationship between the SDV regression model and dependent variables is significant.

A P-test is conducted for each item in the regression equation. The item with p ≤ 0.05
has a significant impact on the dependent variable, the item with p ≤ 0.01 has a significant
impact on the dependent variable, and the item with p > 0.5 has no significant impact
on the dependent variable. Generally, this item is eliminated. After the BM and B2items
are removed and recalculated, the p values in Table 4 are in line with the judgment of
“extremely significant”.

“R-squared” is used to evaluate the fitting degree of the model, which is 0.9779,
indicating that the model has strong explanatory ability. In order to prevent overfitting
of the model, the “adj R-squared” value is introduced, which is 0.9607, further indicating
the high goodness of fit of the mold [29]. According to the “pred R-squared” test, the
goodness of fit between the predicted value of the model and the actual value is calculated
to have a value of 0.8367, and the deviation from “adj R-squared” is small, indicating that
the modified model has a better prediction ability. “Adeq precision” is used to measure the
signal-to-noise ratio. Generally, a value greater than 4 proves that the model is desirable.

Based on the above analysis, the SDV regression model expression was finally obtained
as follows:

SDV = +23.82148 − 0.77181×B − 0.86861×L − 0.67966×M + 0.031944×B×L + 0.021146×L×M + 0.021520×L2 + 0.021702×M2 (15)

The analysis steps in Table 4 were repeated to analyze Tables 5 and 6, and the SDP 290
and thick wall hydrostatic pressure regression model expression were obtained as follows:

SDP = +15.26990 + 0.19583×B − 0.10021×L − 4.06250E − 003×M + 0.015000×B×M (16)

TWHP= +80.43597 − 3.64000×B − 3.98722×L − 3.07500×M − 0.13646×B×M + 0.41236×B2 + 0.15712×L2 + 0.13039×M2 (17)

In order to verify the prediction ability of RSM, in this paper, three additional groups
of tests to use QFORM for numerical simulation were designed, and the results were
compared with the prediction results of RSM. The results are shown in Table 7. The error
between the predicted values and the simulation results is less than 7%, indicating that
the prediction results of RSM are relatively accurate and highly consistent with the actual
situation.

Table 7. Comparison between RSM prediction results and numerical analysis results.

Number B/mm L/mm M/mm
Analog Value RSM Predicted Value Error

SDV SDP TWHP SDV SDP TWHP SDV SDP TWHP

1 0 20 1 14.63 13.38 57.97 14.82 13.26 60.59 1.30% 0.90% 4.52%
2 3.5 19 2 14.13 13.91 50.34 14.07 14.10 47.35 0.40% 1.39% 6.32%
3 6 12 8 13 16.08 25.13 12.15 15.93 25.41 6.54% 0.93% 1.11%

Remarks: B is the height of the baffle plates, L is the length of the bearing, and M is the height pof the false
mandrel.

3.2. Response Surface Interaction Analysis

Figure 8a shows the effect of the interaction between the length of the bearing and
the height of the false mandrel on the standard deviation of the section velocity. It can be
observed from the figure that the standard deviation of the section velocity (SDV) decreases
with the increase in the height of the false mandrel, indicating that the increase in the height
of the false mandrel has a positive effect on the balance of the profile discharge. In addition,
with the increase in the working band length, the SDV value first decreases and then
increases, which indicates that there is a specific working band length to minimize the SDV
value under this interaction condition. Figure 8b shows the effect of the interaction between
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the length of the bearing and the height of the baffle plates on the standard deviation of
the section speed. Under this interactive condition, the SDV value will decrease with the
increase in the height of the baffle plates, indicating that the greater the height of the baffle
plates, the better the balance of the profile discharge. With the increase in the height of the
bearing length, the SDV value first decreases and then increases, and the SDV value can be
optimized under a certain bearing length.

Figure 8. (a) Effect of bearing length and false mandrel height on SDV; (b) influence of baffle plate
height and false mandrel height on SDV.

The reason for the above phenomenon is that, in the process of profile forming, the
resistance at the position of mass concentration on the section is small, resulting in a faster
discharge speed at the thick wall compared to that at the thin wall. The greater the wall
thickness difference, the greater the velocity difference. The adjustment of the flow rate can
be conducted in two ways. The first way is to increase the resistance at the thick wall—that
is, to increase the length of the bearing or the height of the baffle plates. The resistance is
increased by increasing the friction force and changing the metal flow direction [19], and the
resistance increases with the increase in the size of the two structures. However, it should
be noted that if the resistance is too large, the metal flow at the thick wall will be excessively
inhibited, resulting in an increase in the velocity difference on the profile section, which
will lead to an increase in the standard deviation of the section velocity (SDV). The second
way is to reduce the supply of metal at this position, which can be achieved by increasing
the height of the false mandrel. Increasing the height of the false mandrel will reduce the
volume of metal involved in forming, thus reducing the flow rate of metal. However, if the
volume of metal involved in forming is too small, the corresponding section position of
the false mandrel may not only cause the flow rate to be too slow but also may produce
abnormal cavities.
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As shown in Figure 8a,b, combined with the comparison of F values in Table 4, it can
be seen that the order of primary and secondary factors affecting the SDV is B (144.55) > M
(107.56) > L (40.24).

Figures 9 and 10 show the influence of the interaction between the height of the
baffle plate and the height of the false mandrel on the pressure standard deviation and the
pressure at the thick wall. As shown in Figures 9 and 10, the increase in the height of the
false mandrel and the height of the baffle plate will increase the standard deviation of the
profile pressure and reduce the hydrostatic pressure at the thick wall. This is because the
resistance of the thick wall part is small, resulting in the low distribution of hydrostatic
pressure on the profile section, while the false core restricts the metal filling space, and the
material blocking platform restricts the metal flow to a specific area. These two factors
not only reduce the hydrostatic pressure at the thick wall but also increase the pressure
instability of the entire profile section, resulting in the increase in the pressure standard
deviation [30,31].

Figure 9. The influence of the height of the baffle plate and the height of the false core on the pressure
standard deviation.

Figure 10. The influence of the height of the baffle plate and the height of the false core on the thick
wall hydrostatic pressure.

According to the comparison of F values in Table 5, the order of major and minor
factors for the pressure standard deviation SDP is B (404.87) > L (248.47) > m (18.43).
According to the comparison of F values in Table 6, the order of the primary and secondary
factors for the TWHP is M (798.72) > B (220.87) > L (51.21).
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3.3. NSGA2 Multi-Quality Objective Optimization

According to the analysis in Sections 3.1 and 3.2, the three quality objectives examined
in this paper (SDV, SDP, and TWHP) are independent and have certain internal relations.
Finding a target to improve to the greatest extent without sacrificing the other two objectives
constitutes a Pareto optimal solution set problem. This paper uses the NSGA2 multi-
objective optimization genetic algorithm to solve the problem. The parameter settings
are as follows: the initial population number is 100, the crossover probability is 0.8, the
mutation probability is 0.1, and the number of iterations is 100. The Pareto optimal solution
set is obtained through MATLAB 2022a programming, as shown in Figure 11.

Figure 11. Pareto optimal solution set.

3.4. Decision Results

Five experts scored the importance weight of the three optimization objectives. The
scoring range of each objective was 0–1. The higher the score, the higher the importance.
The total score of the three objectives was 1. The final score of each target was calculated
using Formula (12), and the weight of the SDV and pressure standard deviation were
determined. The weight of thick wall pressure was 0.3, 0.3, and 0.4, respectively. See Table 8
for specific scoring.

Table 8. Expert scoring.

Expert Serial
Number Index Weight of SDV Index Weight of SDP Weight of TWHP

1 0.2 0.3 0.5
2 0.3 0.3 0.4
3 0.2 0.4 0.4
4 0.3 0.2 0.5
5 0.3 0.4 0.3

Arithmetic mean 0.3 0.3 0.4

After obtaining the weight assignment, all 18 solutions in the Pareto optimal solution
380 set were sorted by the TOPSIS method, as shown in Table 9.
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Table 9. Order of Pareto optimal solution set obtained by decision.

Serial
Number

Design Variable Target Index Close
to Optimal
Level RmBaffle Block Bearing False

Mandrel SDV SDP TWHP

1 0.11 19.82 1.47 13.71 13.30 58.50 0.64
2 0.07 19.90 0.92 13.83 13.29 60.34 0.64
3 0.03 19.47 0.01 14.06 13.32 62.23 0.62
4 0.27 19.19 1.81 13.61 13.40 55.61 0.62
5 0.27 19.19 1.94 13.59 13.40 55.28 0.62
6 0.53 18.56 2.14 13.50 13.52 52.60 0.60
7 1.84 19.33 2.06 13.32 13.74 50.47 0.59
8 0.79 18.95 4.11 13.18 13.56 47.81 0.59
9 3.29 19.37 1.51 13.21 14.04 49.61 0.57
10 2.22 17.62 2.79 13.05 14.02 44.49 0.53
11 3.88 16.24 3.18 12.56 14.57 39.07 0.45
12 4.08 14.78 3.72 12.40 14.80 36.14 0.40
13 4.15 14.71 4.66 12.20 14.88 33.63 0.39
14 4.54 15.52 5.86 11.96 14.98 31.20 0.38
15 5.45 15.54 6.14 11.68 15.26 30.30 0.37
16 6.00 11.75 8.00 11.15 15.95 25.49 0.36
17 5.70 12.70 8.00 11.27 15.76 25.32 0.35
18 5.99 8.02 7.97 11.46 16.32 28.81 0.33

Taking the solution of No. 1 as the best scheme for the optimal design of the die in this
paper, considering the actual design and manufacture, the optimal design parameters are
confirmed to be as follows: a baffle block height of 0.0 mm, a bearing length of 20.0 mm, and
a false mandrel height of 1.5 mm. A three-dimensional model was established according to
the structural parameters of the optimal scheme and the initial scheme, and the extrusion
process was simulated and compared using QFORM. The comparison of the simulation
values of the two schemes is shown in Table 10. It can be seen from the table that the
standard deviation of speed, pressure, and hydrostatic pressure of the thick wall of the
optimal scheme were reduced by 5.33%, 11.10%, and 26.47%, respectively, compared with
the initial scheme. The die designed and manufactured according to the optimal scheme
successfully produced profiles and met the quality requirements. Thus, the effectiveness of
the optimization of a complex multi-cavity aluminum extrusion die is proved.

Table 10. Comparison results between the best scheme and the initial scheme.

Scheme Category
Design Variable Analog Value

B/mm L/mm M/mm SDV SDP TWHP

Initial plan 2 8 4 15.38 15.05 43.87
Optimal scheme 0 20 1.5 14.56 13.37 55.481

Optimization and promotion / / / 5.33% 11.16% 26.47%

Figures 12 and 13 show the profile section SDV, SDP and TWHP values at the die exit
of different design schemes. From the comparison of Figures 12a and 13a, it can be seen
that there is little overall difference in the cross-section velocity distribution of the profiles
in the two schemes, and the variation in the velocity difference is mainly concentrated on
both sides of the small mandrel. The comparison between Figures 12b,c and 13b,c shows
that the pressure distribution changes are mainly concentrated in thick wall area A, the
hydrostatic pressure value of the optimized thick wall area A is significantly increased, and
the distribution range of a high pressure value is increased. It can be seen that when the
length of the bearing increases from the initial design of 8 mm to 20 mm, the blocking effect
caused by friction restricts the flow of metal in thick wall area A, while the height of the
false mandrel decreases from 4 mm to 1.5 mm and the baffle plate is completely removed,
promoting more metal to gather in the thick wall area and increasing the volume of metal
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actually participating in the formation. Under the combined action of the two, the relative
velocity in area A decreases and the hydrostatic pressure increases, which plays a role in
balancing the velocity and pressure on the profile section.

Figure 12. Initial design scheme: (a) section velocity distribution, (b) section hydrostatic pressure
distribution, (c) thick wall hydrostatic pressure.

Figure 13. Optimization scheme: (a) section velocity distribution, (b) section hydrostatic pressure
distribution, (c) thick wall hydrostatic pressure.

Figures 14 and 15 show the initial design scheme and the optimized design scheme,
showcasing the pressure difference on both sides of the mandrel and the deflection of the
mandrel. As shown in the figures, 10 symmetrical points are taken on both sides of the
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mandrel, respectively, and the arithmetic mean after reading the average stress value is
calculated. In Figure 14, the average stress value near area A is 38.42 MPa and the average
stress value near area B is 121.82 MPa; in Figure 15, the average stress value near area A is
45.27 MPa and the average stress value near area B is 119.94 MPa. Through comparison,
it can be seen that design optimization results in an approximately 18% increase in the
average stress at the thick wall side of the mandrel under the condition that the pressure
at the thin wall side of the small mandrel is basically unchanged. The effect of this on the
mandrel is that the deflection deformation in the Y direction is reduced from 0.634 mm
under the initial design conditions to 0.316 mm.

Figure 14. (a) Pressure difference on both sides of core C and (b) Y-direction deflection in the initial
design scheme.

Figure 15. (a) Optimal design scheme hydrostatic pressure on both sides of core C and (b) Y-direction
deflection.

3.5. Verification of Hot Extrusion Test

Finally, the optimal design parameters of the die were determined to be as follows:
a baffle block height of 0 mm, a bearing length of 20 mm, and a false mandrel height of
1.5 mm. The die was designed and manufactured accordingly (as show in Figure 16a)
and the hot extrusion trial production was carried out according to the process conditions
determined in Section 1 (as shown in Figure 16b). After the trial production was completed,
the dimensions of the profile were inspected according to the product design drawings. As
outlined in Table 11, the product dimensional tolerance met the design requirements, and
the profile dimensional tolerance requirements could be met after slight local adjustment
of the die repair. Figure 16c shows the macroscopic metallographic observation results of
the profile, from which no voids or loose abnormal structures were found. The structural
density must meet the specified design criteria.
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Figure 16. (a) Physical drawing of die; (b) extrusion production process; (c) macrostructure of profile.

Table 11. Partial dimension test results.

Drawing Measured Determine

122.02 ± 0.35 122.08 OK
23.5 ± 0.2 23.36 OK
56 ± 0.25 55.92 OK
30 ± 0.2 29.86 OK
8 ± 0.2 8.07–8.03 OK

2.5 + 0.4/−0.2 2.67 OK
17.5 + 0/−0.3 17.46–17.42 OK
16.5 + 0.4/0 16.62–16.54 OK
20 + 0.4/0 20.12–20.08 OK

16.5 + 0.4/0 16.51–16.48 NG
23.32 + 0.4/0 23.42 OK

10 ± 0.2 10.02–8.86 OK

4. Conclusions

(1) This study achieved significant innovative results in the design of multi-cavity extru-
sion profiles with significant wall thickness differences for new energy vehicles. By
analyzing the specific requirements of the new profile structure in detail, this work
introduced two new evaluation indicators: the velocity standard deviation (SDV)
and thick wall hydrostatic pressure (TWHP). These two indicators not only provide
new dimensions for quality evaluation in the extrusion process of profiles but also
verify their significant correlation with quality objectives through analysis of variance,
proving their effectiveness in optimizing die design and improving profile quality.

(2) In addition, the FEM analysis software and response surface analysis method used in
this study established an accurate mathematical model for the complex relationship
between die design parameters and profile quality. Using the NSGA2 multi-objective
genetic optimization algorithm, this work optimized the velocity standard devia-
tion (SDV), pressure standard deviation (SDP), and thick wall hydrostatic pressure
(TWHP). The research results show that compared with the initial design scheme, the
optimized die design reduces the standard deviation of profile section velocity by
5.33%, the standard deviation of pressure by 11.16%, and the static water pressure in
the thick wall area by 26.47%. These improvements demonstrate the effectiveness of
this study in optimizing the design of complex aluminum profile dies with significant
wall thickness differences in multiple cavities.

(3) The optimized die was successfully applied in actual manufacturing and achieved suc-
cess in subsequent extrusion production experiments, effectively ensuring the dimen-
sional accuracy and metallographic structure quality of the profile. This achievement
not only improves the production efficiency and quality of profiles but also provides
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a new solution for multi-objective optimization of extrusion die design, and it also
provides valuable experience and reference for research and practice in related fields.
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