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Abstract: This study shows an easy way to use electrochemistry and plasma layering to make
Cobalt-Blue-TiO2 nanotubes that are better at catalysing reactions. Once a titanium plate has been
anodized, certain steps are taken to make oxygen vacancies appear inside the TiO2 nanostructures.
To find out how the Co deposition method changed the final catalyst’s properties, it was put through
electrochemical tests (to find the charge transfer resistance and flat band potential) and optical tests
(to find the band gap and Urbach energy). The catalysts were also described in terms of their shape,
ability to stick to surfaces, and ability to inhibit bacteria. When Cobalt was electrochemically deposited
to Blue-TiO2 nanotubes, a film with star-shaped structures was made that was hydrophilic and
antibacterial. The band gap energy went down from 3.04 eV to 2.88 eV and the Urbach energy went up
from 1.171 eV to 3.836 eV using this electrochemical deposition method. Also, photodegradation tests
with artificial doxycycline (DOX) water were carried out to see how useful the study results would be
in real life. These extra experiments were meant to show how the research results could be used in real
life and what benefits they might have. For the bacterial tests, both gram-positive and gram-negative
bacteria were used, and BT/Co-E showed the best response. Additionally, photodegradation and
photoelectrodegradation experiments using artificial doxycycline (DOX) water were conducted to
determine the practical relevance of the research findings. The synergistic combination of light and
applied potential leads to 70% DOX degradation after 60 min of BT/Co-E irradiation.

Keywords: nanostructures; blue-TiO2 nanotubes; antimicrobial; antibiotics; photocatalytic

1. Introduction

There has been a global rise in the consumption of various substances such as vitamins,
immune boosters, combination medications, and cocktails of antivirals, antibiotics, steroids,
and antifungals. However, antibiotics and dyes have emerged as a significant cause for
concern [1–4]. Several species, including Salmonella and Pseudomonas aeruginosa, have
exhibited resistance to tetracyclines (TCs) [5,6], which are the second most utilized family
of antibiotics in both human and veterinary medicine. This resistance has emerged due to
the efficient elimination of tetracycline through glomerular filtration in urine. Doxycycline
(DOX) is a semi-synthetic tetracycline antibiotic that has a prolonged effect and is effective
against a wide range of bacteria [7,8]. As the literature reported [9–11], doxycycline has a
significant role in the COVID-19 therapy also.

Salmonella, a bacterial pathogen frequently associated with instances of foodborne
diseases, has the potential to be present in water and wastewater systems in the event of
fecal contamination. The treatment of leftover water to effectively eradicate microorganisms
is of utmost importance. It is important to acknowledge that Salmonella could persist in
water for a certain duration, especially in higher temperatures. However, its ability to
multiply is often dependent on the availability of a nutrition source [12,13]. Pseudomonas
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aeruginosa, a prevalent bacteria commonly detected in aquatic environments and terrestrial
habitats [14], can pose significant concerns in residual waters or wastewater. It is known for
its ability to survive in various environmental conditions and persist in water for extended
periods [15–17]. Treating residual waters to eliminate Pseudomonas aeruginosa is difficult due
to its resistance to many disinfection methods, including some antibiotics [18,19]. Therefore,
it is crucial to improve technological solutions for the elimination of organic substances
and germs from water sources.

Consequently, the rise in water contamination has heightened the significance of
electrochemical technologies encompassing chemical, physical, and biological processes.
One illustration can be observed in the realm of water depollution, where photocatalysis
techniques utilizing TiO2 nanostructures are employed. Titanium dioxide (TiO2) a nontoxic
material, due to its great chemical stability, high resistance to photo corrosion, and inexpen-
sive cost, has been one of the most investigated materials in the past few years [20,21]. TiO2
photocatalysts that are efficient and stable can be developed out of nanomaterials with
morphologies ranging from 0D to 3D [22] and among all these forms, TiO2 nanotubes (NTs)
are a part of 1D titanium nanostructures and are remarkable nanostructured photocata-
lysts, in large part due to their exceptional electron transport capabilities [3,23,24]. While
nanostructured TiO2 possesses remarkable properties, it is not without its limitations. As a
semiconductor, it exhibits a forbidden energy band gap where electronic transitions take
place [25]. This band gap restricts TiO2 to respond only to UV light irradiation. The key
challenge in TiO2 studies lies in progressively reducing the energy of the forbidden band to
enable irradiation with visible light from the solar spectrum. Self-doping allows TiO2 to
have its electrical characteristics modified. The introduction of Ti3+, oxygen vacancies, and
surface disorders to TiO2 have all been linked to cathodization process. The resulting blue
TiO2 has a narrower band gap [26–28]. When about dopants, they may be interstitial, sub-
stitutional, or both in the event of incorporation, all of which influence its action. Titanium
dioxide changes its characteristics in response to its environment. It is challenging to com-
pare the efficiency of different deposition procedures (sol-gel, solid reaction/mechanical
activation, chemical vapor deposition, etc.) that use different precursors of metal ions in
photocatalytic degradation or synthesis of organic molecules [29–31].

TiO2 properties can be improved with a variety of elements, including metals and
non-metals [32,33] or by depositing [34] structures/elements in order to create a composite
with special photocatalytic properties. Ions of transition metals are by far the most common.
These elements are of particular interest because of the partial filling of their d-orbitals.
When incorporated into the titanium dioxide lattice, new energy levels arise close to the
conduction band [35,36]. Numerous has been undertaken to improve the photocatalytic
activity of TiO2 with a transition metal oxide such as Fe2O3, ZnO, CuO, NiO, Co3O4, and
V2O5 [37,38]. The presence of these metals efficiently enhances the properties of TiO2, result-
ing in a reduction in the band gap for photo-excitation (known as red shift) and a decrease
in the recombination rate of photogenerated electron-hole pairs [37]. Despite the extensive
exploration of various dopants, a significant focus has been placed on investigating Co-
deposition on TiO2 thin films. These films have attracted considerable attention due to their
ability to display ferromagnetic behaviour under typical room temperature conditions. This
characteristic makes them highly suitable for many applications. Additionally Co-TiO2
thin films also show promise in enhancing their photocatalytic properties within the visible
region, opening possibilities for efficient light-driven chemical reactions [39,40]. Several
different techniques for Cobalt deposition on TiO2 have been detailed in the research litera-
ture. These include sol-gel dipping [41,42], plasma treatment [43–46], electrodeposition [47],
electrochemical pulsed deposition [34,48], etc.

Boutlala et al. [41] reported obtaining thin films of Cobalt-TiO2 that were produced
using the sol-gel technique and deposited onto glass substrates, the predicted optical
band gap decreases from 3.30 to 2.96 eV. Nana Liu et al. reported obtaining a Co-P/TiO2
composite through electrodeposition and with a rate of methyl orange degradation of about
13.3% [47]. In order to facilitate the photocatalytic degradation of methyl orange in water,
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Dalt et al. [49] create a nanotube/TiO2 composite and the degradation rate was almost 39.8%.
In another paper [34], it was reported that the photoelectric catalysis process is enhanced
by the porous Co(OH)2 nanoflakes coated upon TiO2 nanotubes through electrodeposition,
which increases the specific surface area for light absorption and improves the contact
between the electrode and electrolyte.

Therefore, based on our rigorous analysis of the existing literature, we conclude that
the electrode used in this investigation has not been functionalized. When comparing
our findings to those in the literature, we find that some dyes, such methyl orange, have
been found to be degraded, although inefficiently, so here we report the degradation of
doxycycline using a new catalyst with compromising degradation results.

In this study, we introduce a new photo-electro-catalyst designed for the DOX degra-
dation from wastewater. Since the conductivity of TiO2 nanotubes can be improved by cath-
odization turning the color of TiO2 nanotubes from gray to blue as it was reported also in
the literature [50], we propose two steps of fabrication process of the photo-electro-catalyst:
blue TiO2 nanostructures are obtained through anodization followed by calcination, acti-
vation and cathodic polarization (cathodization) [51], which are then subjected to Cobalt
deposition through either electrochemical techniques or plasma treatment. The resulting
Cobalt-blue-TiO2 catalyst exhibits remarkable characteristics, including high interfacial
charge transfer efficiency and slow recombination due to the presence of more localized
defect states. The blue-nanotubes formation is verified by SEM, valence states by optical
analysis, and the presence of Co is verified by EDX as the literature also reported [52,53].

Moreover, this study aims to emphasize the dual functionality of the photocatalyst
obtained in our research. The photocatalyst possesses the unique ability to serve a dual
purpose: firstly, it can effectively eliminate pathogenic bacteria present in water, contribut-
ing to water purification efforts. Secondly, it exhibits photo-electro-catalytic properties,
enabling the efficient degradation and removal of organic compounds from water. By
showcasing the photocatalyst’s versatile capabilities, this research highlights its potential
in addressing both bacterial contamination and organic pollution in water sources. These
nano-materials are attractive for future prospects because they may be utilized in a variety
of applications, such as fuel cells, photocatalytic systems, and energy storage materials
such as smart windows, in addition to sensors for gas and hydrogen production [54–56].

2. Experimental
2.1. Catalyst Preparation
2.1.1. Blue TiO2 Nanostructures Electrochemically Obtained on Titanium Plates

Blue titanium dioxide nanostructures (BTs) were produced by anodizing recycled
Titanium (Ti) plates taken from the aerospace industry (considered waste products from
the production line) at 40 V for 2 h in a two-electrode cell. The precursor electrolyte is
composed of ethylene glycol (EG) (Sigma Aldrich, St. Louis, MO, USA), 10% (vol.) of
water, and 0.3% (vol.) of ammonium fluoride (NH4F) (Sigma Aldrich) (Solution 1). After
anodization, the sample was submerged to calcination in an oven at 450 ◦C for 2 h. After
this step, the sample is activated and more stabilized in the same anodization precursor
solution for 10 min at 4 V. As a final step, a reduction is made in an EG solution that also
contains H2O2 for 4 min at −40 V.

2.1.2. Cobalt Deposition on the Blue TiO2 Nanostructures

To highlight the most efficient Cobalt (Co) deposition method on BTs previously
obtained on titanium electrodes, two methods were applied: an electrochemical technique
and plasma treatment.

The pulsed chronoamperometry method was used for the electrochemical Co deposi-
tion (see Figure 1). Electrochemical deposition is related to electrophoretic deposition, and
takes place in an electrochemical cell, but unlike the electrophoretic process, electrodeposi-
tion involves a chemical bonding process. In electrochemical deposition, a solution is loaded
into an electrochemical cell, and the substrate (in this case Blue-TiO2/Ti (BT)) acts as one of
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the electrodes [57]. When voltage is applied, the deposition conducting/semiconducting
materials onto a substrate (often conducting) using an electric field, and a redox reaction
takes place [58].
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Figure 1. A description of the steps taken to create a photocatalyst with improved properties and an
inset of the set-up—irradiation equipment used for irradiation.

The method involves the use of a three-electrodes: BT samples previously obtained on
Titanium plates are the working electrodes immersed into a specific Co solution; Ag/AgCl,
KCl sat. and Pt mesh as the reference and counter electrodes, respectively. An Autolab
(PGSTAT 302N) potentiostat/galvanostat from Metrohm (Herisau, Switzerland) system
was used to control the parameters as well as collect data. Three steps were followed for
Cobalt-blue-TiO2 (BT/Co-E) photocatalyst preparation: (i) applying −1.5 V for 2 s to initiate
Co nucleation on BT substrate; (ii) maintaining open circuit potential for 5 s; (iii) followed
by applying −0.95 V for 5 s to initiate Co deposition. Steps (ii) and (iii) were performed
200 times.

According to the available research [45], an aqueous solution with a molar ratio of
Co(NO3)2: HNO3 = 1:1 was used to obtain an aqueous solution of Co(NO3)2. An aqueous
solution of hydrous Cobalt nitrate Co(NO3)2 ·6H2O that had been adjusted with HNO3
resulted in a solution that had a pH value of 4. As a result, a volume of solution containing
Co(NO3)2 with a molar concentration of 0.05 M was utilized, and it was then adjusted
using a volume of solution containing HNO3 with a concentration of 0.05 M.

The plasma Cobalt-Blue-TiO2 (BT/Co-P) sample was obtained by deposited Cobalt
using plasma magnetron sputtering method onto BT plate support. We used a magnetron
plasma source, with 1 inch Co target (99.9% from Kurt Lesker Company, Dresden, Germany)
and RF power supply generator to generate plasma. Details about experimental plasma set-
up descriptions are presented in our previous report [59]. In the present work, we use the
following parameters: RF power supply of 100 W, a basic pressure at about 4 × 10−5 mbar
(without gases), and a working pressure 5 × 10−4 mbar for 100 sccm of Ar. The deposition
time of Co was 30 s.
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For an easy understanding of the work stages, the steps involved are shown in the
Figure 1.

2.2. Catalyst Characterization and Applicability

To study the morphological characteristics of obtained catalysts, SEM and EDX were
performed using Scanning Electron Microscope including Oxford EDX detector-analyser.

Optical characteristics were performed using Perkin Elmer (Turku, Finland) Lambda
650-850-950 UV-Vis spectrophotometer.

Wettability. The sessile drop method was used along with an optical contact angle
meter (Contact Angle Meter–KSV Instruments CAM 100 from Biolin Scientific, Västra
Frölunda, Sweden) fitted with a camera to determine the contact angles of distilled water
solvent onto samples.

Electrochemical methods as by Electrochemical Impedance Spectroscopy (EIS), Mott Schot-
tky, and Cycle Voltammetry were performed to investigate the interfacial charge-separation
efficiencies and stability of prepared photocatalysts, using potentiostat/galvanostat from the
Metrohm Autolab (PGSTAT 302N) system.

The chemical composition of the BT and BT/Co-E samples was analyzed by X-ray
Photoelectron Spectroscopy (XPS). The XPS analysis was conducted using a K-Alpha
Thermo Scientific (ESCALAB™ XI+, East Grinstead, UK) spectrometer equipped with a 180◦

double-focusing hemispherical analyzer. The peak positions were calibrated with respect
to the standard C1s peak (284.8 eV). The surface elemental composition was determined
by recording survey spectra at a pass energy of 50 eV. To evaluate the elemental bonding
states of the as-investigated samples, high-resolution spectra for C1s, O1s, Ti2p, and Co2p
binding energy regions were measured at a pass energy of 20 eV. Acquisition steps of
1 eV were used for the survey spectra and 0.1 eV for high-resolution spectra. The spectra
acquisition and processing were performed using the advanced Avantage data software
(Thermo Avantage v5 9921, East Grinstead, UK).

Antibacterial activity. The effectiveness of the materials’ antibacterial properties was
measured against two different harmful microbial strains Salmonella typhimurium–ATCC
14028 and Pseudomonas aeruginosa–ATCC 15442. Luria Bertani Agar (LBA) plates were used
for bacterial culture [60]. The LBA compositions are peptone (Merck, Rahway, NJ, USA),
10 g/L, yeast extract (Biolife, Layton, UT, USA) 5 g/L, NaCl (Sigma-Aldrich, St. Louis, MI,
USA) 5 g/L, and agar (Fluka, Whitby, ON, Canada) 20 g/L. The stock of bacterial culture
was kept at 4 ◦C.

Percentage of growth inhibition (I%) was used to assess antibacterial efficacy.

I% = [(B18 − B0)− (C18 − C0)]/(B18 − B0)× 100 (1)

where “I” is the rate of growth inhibition, B18 is the blank-compensated optical density
(OD) at 600 nm, B0 is the blank-compensated OD600 of the positive control organism at
0 h, C18 is the negative control-compensated OD600 of the organism in the presence of test
sample at 18 h, and C0 is the negative control-compensated OD600 of the organism in the
presence of test sample at 0 h.

Sterilized samples were incubated in a Laboshake Gerhardt shaker for 18 h at 37 ◦C
and 250 rpm in 10 mL of Luria–Bertani broth (the sterile medium was inoculated with
1% bacteria). To determine bacterial proliferation, the optical density of the samples and
the control (bacteria culture without sample) was measured at 600 nm using a UV-VIS
spectrophotometer (Jenway Spectrophotometer-Waltham, MA, USA).

Photodegradation applicability. DOX (hydrochloride salt, MW = 480.9 g mol−1) was
purchased from DELOS Medica. As found in the literature [54], the antibiotic changes into
different species were based on the pH. These species are DXCH3± at pH 3, DXCH2± at
pH 6, and DXCH− at pH 9. Moreover, 70% of the molecule at pH 3 is DXCH3+, 98% of the
molecule at pH 6 is DXCH2±, and 75% of the molecule at pH 9 is DXCH− [61].

DOX photodegradation was carried out in a quartz cell enclosed in a faradaic cage
where outside light could not penetrate. Mercury vapor lamp used for the photodegrada-
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tion process works at 30 W and generates a white light [62,63] (the lamp is fitted with filters
from 200–600 nm wavelengths), illuminating the sample from one side of the reaction cell
at around 5 cm. A D Lab MS-PA magnetic stirrer was used to control the stirring of the
fluid. With NaOH and/or HCl solutions, the solution’s pH was adjusted to the desired
value. Prior to irradiation, 10 mL of a known concentration DOX solution was added in
the cell, and the stirring was turned on. Before being exposed to light, the photocatalyst
electrodes were immersed in DOX solution for 30 min to achieve optimal DOX adsorption
at the solid’s surface. A fixed volume of solution was exposed to light for various periods.

All the characterizations and tests were run in triplicate for maximum reproducibility,
averaging them, and calculating the standard deviation with the Excel function.

3. Results
3.1. Characterization of the Synthesized Electrodes
3.1.1. Physicochemical Characterization of BT, BT/Co-E, and BT-Co-P Electrodes by SEM,
EDX, and Wettability

After the anodization process, TiO2 electrode is observed as white, but turns into a
black color for 5 s after annealing at 450 ◦C, and after cathodic polarization it is stabilized
to a blue color (obtained stable BT electrode) caused by the electrochromic effect [64].

In fact, the electrochromic effect is caused by the change from Ti4+ to Ti3+ and the
intercalation of protons. The structure of BT film was well organized, and a thickening of the
tubular walls is observed with the outer diameter of the nanotubes of 100 nm approximately
(see Figure 2a). TiO2 is a 2-octahedron TiO6 base compound, with the Ti4+ ion in the centre
surrounded by six oxygen ions [65]. According to the scientific literature [66], the loss of
oxygen from the network releases free electrons. Self-doping occurs during the reduction
process in EG solution with H2O2 for 4 min at −40 V, resulting in numerous structural
defects in the TiO2 lattice that form shallow defect bands below the conduction band [67,68].
Thus, free electrons are either trapped in oxygen vacancies (VOs) to create color centers,
which leads to the blue color of the TiO2 nanostructures or are captured by Ti4+ and form
the Ti3+-VO-Ti3+ defect complex, which maintains charge neutrality. Exciton trapping is
mostly associated with Ti3+ and oxygen defects in TiO2 with numerous structural defects.

Following the metal deposition, SEM images were captured at different magnifications
to examine various structures. The presence of Cobalt on BTs is highlighted by the formation
of star-shaped nanostructures (BT/Co-E), according to Figure 2b. The BT surface was coated
in a uniform layer of Co that was electrochemically deposited. EDX analysis (Figure 3a)
confirms the presence of Cobalt in the BT nanostructure, revealing a weight of about 34.81%.

Furthermore, Co deposition on BT nanostructures was accomplished using plasma
technique. As a result, the SEM images for the BT/Co-P sample are displayed below
(Figure 2c). In contrast to the previously discussed sample (BT/Co-E), there is no apparition
of the formation of Co star-shaped structures. After Co deposition has been completed
by plasma, there is no noticeable morphological change within the BT substrate (see
Figure 2a,c).

Also, the EDX results for the BT/Co-P sample showed a small amount of Cobalt
(Figure 3b) of about 0.03%.

Contact angle analysis was used to investigate the wettability property of the samples.
The outcomes are shown in Table 1, and it can be observed that BT/Co-E had a minimal
contact angle. As the data show, Co presence was shown to be more effective at decreasing
the contact angle. The hydrophilicity of these photocatalysts was confirmed by reducing
the contact angle of surfaces with Co-Blue TiO2 compared to BT, which is an important
metric for antibacterial behaviour. The higher the antibacterial action, the lower the contact
angle [40].
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Table 1. Contact angle measurements.

Sample Contact Angle (◦)
Water Solvent

BT 30 ± 0.13
BT/Co-P 10 ± 0.04
BT/Co-E 6 ± 0.05

3.1.2. Optical Parameters—Band Gap Energy and Urbach Energy

As the literature reported, TiO2’s high band gap (approximately 3.2 eV in the anatase
phase) limits its absorption to the solar spectrum’s ultraviolet rays, making titania powders
unsuitable for use as a visible light absorber [69].

As a result, the goal is to reduce the band gap, which in this case is reduced from
3.04 eV for BTs to 2.88 eV and 3 eV for BT films Cobalt modified with deposited Cobalt via
electrochemical and plasma methods, respectively (Figure 4a). This is critical for creating
visible light photocatalysis and studying other useful applications. The BT/Co-E sample
shows a decrease in absorption in the UV region and an increase in absorption in the visible
region in comparison to BT and BT/Co-P samples. The broad absorption in the visible
region in BT/Co-E sample is due to ligand field transition of Co2+ in octahedral coordina-
tion [70], these results also are sustained by other studies [65] where the substitution of
Co2+/Co3+ on the Ti4+ site was explained. When Co ions are electrochemically inserted
into the TiO2 lattice, repulsive interactions between the Co2+ ions and the surrounding
oxygen ions occur, separating the d-band states of Co2+ into ground and excited states,
resulting in a d–d electronic transition in the visible region [65].
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TiO2’s band gap was calculated by Tauc plot representing αhν vs. energy [71], were
Eg is the band-gap energy, hν is the energy of the incident photon and α is the absorption
coefficient [72]. The introduction of some localized defect states into the band gap of Blue
TiO2 by Cobalt deposition process is what causes the reduction in band gap in the case
of BT/Co-E and BT/Co-P catalysts. Because of the very low concentration of Cobalt in
the TiO2 network, as shown by the EXD data, the bandgap in the BT/Co-P sample is
extremely close to BT, making it difficult to influence other associated properties. The
BT/Co-E sample, on the other hand, had a lower band gap value due to a greater amount
of Cobalt injected into the TiO2 lattice, which resulted in an increased amount of localized
defect states associated with surface defect bands below the conduction band [67,68].

The Urbach tail, with an associated Urbach energy, is responsible for the absorption
tail produced by these localized defect states, which extends far into the band gap [66]. The
Urbach energy was calculated from the absorption spectrum using the formulas below [73]:

α = α0exp
(

hυ

Eu

)
and Eu =

(
d[αhυ]

d[hυ]

)−1
(2)
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Here, α0 is a constant and Eu is the Urbach energy.
The Urbach energy was calculated as Eu = 1/Slope, which is the inverse of the linear

region beneath the band gap slope, from the graph ln(α) = f (photon energy) (Figure 4b).
It is evident from the above that properties of the developed BT nanostructures electro-
chemically modified with Cobalt exhibit the performance features required for further
photocatalysis applications. As shown in Figure 4b, the Urbach energy increased from
1.171 eV to 3.836 eV, indicating that BT/Co-E catalyst has more structural defects than
BT. According to the EDX results (Figure 3a), a higher concentration of Co was loaded
using an electrochemical method, increasing the light absorption spectral range of BT/Co-E
catalyst to the visible region, and reducing the band gap, which is beneficial for improving
photocatalytic performance [65].

3.1.3. Antibacterial Activity

Co deposited on blue TiO2 nanostructures was tested for its antibacterial activity
against Salmonella typhimurium and Pseudomonas aeruginosa. TiO2 nanostructures are well
known for their photocatalytic activity, which can be utilized for antibacterial applications.
The addition of metal ions or metal nanoparticles, such as Cobalt, can further enhance
the photocatalytic and antibacterial properties of TiO2 nanostructures [74]. Depositing Co
nanoparticles onto the surface of TiO2 nanostructures can lead to enhanced photocatalytic
properties. These enhanced properties can promote the generation of reactive oxygen
species (ROS) when exposed to light, which can destroy bacterial cell membranes and
inactivate the bacteria [75].

Figure 5 shows the antibacterial effect of the tested samples against the before men-
tioned bacteria. The antibacterial tests indicate that Co deposited on blue TiO2 nanos-
tructures are highly effective against both Gram-negative and Gram-positive bacteria
compared to a BT sample. A possible mechanism would be explained by the fact that
when Co-deposited on TiO2 is exposed to light, it can generate electron-hole pairs. These
can subsequently produce ROS-like hydroxyl radicals and superoxide anions. These ROS
can attack bacterial cells, damage the cell membrane, and even interfere with cellular
functions, leading to bacterial death. The “blue TiO2” usually indicates a phase of TiO2
with oxygen vacancies, which imparts a blue color. Oxygen vacancies can improve the
charge carrier separation and enhance the photocatalytic activity. In combination with Co
deposition, blue TiO2 can provide even better photocatalytic and antibacterial performance
than regular TiO2.
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According to the contact angle results (Table 1) all samples are hydrophilic. Bacteria
tend to adhere more to hydrophilic (high wettability) surfaces. This is often attributed to the
increased surface energy and the capability of such surfaces to form hydrogen bonds with
bacterial cells. While bacteria might adhere more to hydrophilic surfaces, these surfaces
can also facilitate easier removal of bacteria when water flows over them, especially if
the adhesive forces between the bacteria and the surface are not too strong. Surfaces
can be functionalized not just to control wettability but also to introduce antibacterial
properties. For instance, surfaces can be coated with antibacterial agents that can kill or
inhibit bacterial growth upon contact. The effectiveness of such agents might be influenced
by the wettability of the surface. A surface’s wettability can also affect how bacteria
encounter photocatalytic materials. Hydrophilic surfaces might allow bacteria to spread
out and maximize contact with photocatalysts, enhancing the rate of bacterial eradication
when exposed to light.

By designing surfaces where bacteria can easily attach and subsequently be removed,
water purification systems can be made more effective. The antibacterial activity of Co-
deposited TiO2 can be employed in various fields such as water disinfection, air purification,
self-cleaning surfaces, and antibacterial coatings for medical devices [75].

The antibacterial performance of Co-deposited on blue TiO2 nanostructures might
vary based on factors such as Co concentration, preparation method, light source, and
exposure time. Optimizing these factors can maximize the antibacterial efficacy of the
nanostructures [76].

3.1.4. Electrochemical Features of the Developed Electrodes

Electrochemical impedance spectroscopy (EIS) and Mott Schottky (MS) were used to
estimate the charge transfer and recombination process at the electrode/electrolyte inter-
face [77]. The EIS measurements for BT, BT/Co-E, and BT/Co-P are carried out at free
potential in 0.9% NaCl solution and in the frequency domain between 0.01 and 10,000 Hz
with an amplitude of ±10 mV. The Nyquist plots for these measurements are shown in
Figure 6a. A Randles equivalent circuit, depicted in the inset of Figure 6a, was proposed
to understand electrode behaviour by associating the arc radius with the charge transfer
resistance (Rct) at the obtained catalyst/NaCl solution interface, which is in parallel with a
constant phase element (CPE). Rct values for BT, BT/Co-E and BT/Co-P were determined
as 370 kΩ, 76 kΩ, and 143 kΩ, respectively. The BT/Co-E film with the lowest Rct value
has the highest interfacial charge transfer efficiency and the slowest recombination rate,
which is an important factor to consider in catalytic degradation applicability.
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where C is capacity of the space charge layer, q is the elementary charge, ε0 is the vacuum
permittivity, ε is the dielectric constant, ND is the concentration of donors, E is the applied
external bias, Ef is the flat band potential, k is the Boltzmann’s constant, and T is the
absolute temperature.

The slope of the Mott-Schottky plot reveals the donor concentration (ND), and the flat
band potential (Efb), which is calculated by extrapolating to 1/C2 = 0, and is dependent
on the recombination rate and interfacial charge transfer [21]. In contrast to normal TiO2,
which has a positive slope [78], all Mott-Schottky plots for the obtained photocatalysts have
a negative slope [79].

The calculated Efb for BTs is −1.07 V and −1.03 V for BT/Co-P, which are close values
due to a small amount of Co loaded by the plasma method, according to the EDX results
and Urbach energy. In the case of BT/Co-E obtained through electrochemical deposition
of BTs with Cobalt, Efb is shifted to a more negative potential of −1.19 V, due to more
localized defect states associated with higher Urbach energy. As a result, the electrochemical
deposition method improves the photocatalytic abilities of the BT/Co-E surface, implying
a slower recombination rate, which is in accordance with the decrease in charge transfer
resistance determined by EIS [80].

The flat band potential values obtained from Mott-Schottky plots are commonly
regarded as the conduction band potential (CB) for semiconductors [78].

Correlating with the variations in Urbach energy (Figure 6b) is a change in the donor
concentration (ND) of BTs, BT/Co-E, and BT/Co-P from 1.32 × 1021 cm3 to 1.23 × 1022 cm3

and 2.77 × 1021 cm3. After electrochemical deposition with a greater quantity of Cobalt
(according to EDX results), the flat band potential of BT shifts to more negative values. This
suggests that the BT/Co-E film has better photocatalytic properties, because of improved
charge transfer efficiency in bulk and at the electrode/electrolyte interface [79].

Finally, the BT/Co-E catalyst obtained through electrochemical Co deposition on BTs
has the highest interfacial charge transfer efficiency and the slowest recombination rate,
as well as better n-type conductivity than the BT/Co-P catalyst obtained through plasma
magnetron sputtering. These properties are due to the presence of more localized defect
states caused by a higher amount of Cobalt star-shaped nanostructures electrochemically
deposited on BTs, which increases absorption at longer wavelengths and decreases the
bandgap while also improving wettability and increasing antibacterial effect.

Cyclic voltammetry (CV). The electrochemical behaviour of the electrodes, BTs, BT/Co-
E, and BT/Co-P is studied in redox couple Fe2+/Fe3+ solution by cyclic voltammetry, at
different scan rates of 20, 50, 80, 110, and 170 mV s−1, respectively. The anodic peaks have
the same tendency, and it is clear that BT/Co-E exhibits better conductivity properties due
to the higher current. The optimum anodic peak that corresponds to the oxidation process
was located using these curves, and the corresponding diagrams were developed in the
inset of Figure 7.

The cathodic peak of all samples is well defined and overlaps. The shift of the
cathodic peak is observed to be in the negative direction, whereas the anodic peak exhibits
a positive shift, with increasing scanning rates, indicates a desirable pseudocapacitive
behavior for the utilization of these electrodes in catalytic applications [81]. Moreover,
the capacitive behaviour of BT/Co-E electrode is more prominent, and current density
increases, indicating a more conductive character than the BT and BT/Co-P electrodes.

The electrolytes Fe2+/Fe3+ are crucial in maintaining the electro neutrality of
redox processes.
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An enhanced redox peak is evident at voltages over 0.4 V across all samples. A notable
enhancement in the electrochemical response of the BT/Co-E sample was noticed by a
comparison of the CV curves of the electrodes before to and after surface functionalization.
In the case of BT/Co-E, notable signals were seen in the cyclic voltammetry (CV) curves
(Figure 7b), exhibiting significantly elevated current values with reduced onset potentials in
comparison to both BTs and BT/Co-P. It is noteworthy to notice that BT/Co-E demonstrated
superior redox peaks, potentially attributable to the greater Co content detected from the
EDX data.

Straight lines are obtained when the peak value of the oxidation current is plotted
against the square root of the scan speed for all studied electrodes (Inset Figure 7), indicating
that the redox reaction is rapid and that ions diffusion in the obtained nanostructure controls
the rate-determining step of the redox reaction. Due to the Co star-shaped structures
electrochemically obtained on the BT nanostructure, according to SEM images (Figure 2b),
the diffusion and charge transfer process of ions may be facilitated, which may explain
why greater charge densities were reported for the BT/Co-E electrode.

3.1.5. Proposed Energy Band Levels

Figure S1 depicts the schematic energy-level diagram for the investigated catalysts
based on the MS Efb results and UV-VIS Eg data. The measured CB and Eg were used to
calculate the valence band (VB) energies.

The BT/Co-P catalyst has the same VB value (1.97 eV) as BTs, indicating that plasma
method does not significantly change the catalytic properties of BTs, as previously shown by
surface and electrochemical data. BT/Co-E, on the other hand, has the narrowest bandgap
energy of all the catalysts studied and VB is reduced by 0.62 eV, indicating that Co has been
loaded through electrodeposition in an adequate amount and that the structure, optical,
and electrochemical characteristics have been enhanced.

This makes the BT/Co-E catalyst the best candidate among all investigated catalysts
for use in DOX photodegradation.
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3.1.6. Electrochemical Stability

In order to establish the electrochemical stability of the Co electrochemically deposited
on BT electrodes, 100 CVs cycles were recorded between −0.6 V to 1.2 V vs. Ag/AgCl at
100 mV s−1, in 0.5 M Fe+3/Fe+2 aqueous solution [82]. The results are illustrated in Figure 8.
The associated current values remained practically constant as the number of CV cycles
increased (inset of Figure 8), showing the strong binding of the electrochemically formed
Cobalt coating on the BT substrate and good electrochemical stability.
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Figure 8. 100 Cycle Voltammetry’s for BT/Co-E electrode in Fe+3/Fe+2 aqueous solution.

The better the Cobalt adheres to the BT substrate, the higher the electrochemical
stability of the electrode, and Figure 8 shows stable and good capacitive behaviour for the
BT/Co-E electrode, with all 100 CV cycles practically overlapping.

3.1.7. X-ray Photoelectron Spectroscopy (XPS)

Understanding the chemical structure of modified titania is crucial in comprehending
the performance of TiO2 nanotubes and catalysts derived from them. X-ray photoelectron
spectroscopy (XPS) is an appropriate technique for examining the chemical structure of
these materials. The purpose of this study is to analyze the chemical composition of BT and
BT/Co-E samples and to compare the surface environment of the TiO2 nanotubes before
and after the reaction. XPS analysis was conducted on the BT and BT/Co-E samples to
assess any alterations in their surface environment. Upon analysis, it was found that Cobalt
was present on the surface of the BT/Co-E sample, as confirmed through EDX analysis,
while titanium was notably absent. These findings imply that the star-shaped structure
made of Cobalt, which was deposited on the surface of the TiO2 nanotubes, has effectively
covered the entire surface of the blue nanotubes.

Figure 9 displays XPS spectra of high-resolution scans conducted in the Ti2p and O1s
range for blue TiO2 nanotubes and Cobalt-deposited blue TiO2 nanotube catalysts. The
distinctive peaks at 458.57 and 464.25 eV in the Ti2p spectrum of BTs confirmed titanium’s
oxidation state to be +4, with a spin-orbit splitting of ∆E = Ti2p3/2 − 2p1/2 of 5.68 eV.
Similarly, the O1s spectra of BTs showed the distinctive peaks of Ti-O connections at
529.82 eV. The BT/Co-E catalyst exhibits binding energy values of 531.20 eV and 542.06 eV
for O1s, which can be attributed to the formation of Ti-O-Co bonds [83]. These results
suggest that the chemical composition of the BT/Co-E catalyst is distinct from that of the
BT sample, underscoring the importance of understanding its unique structure in relation
to its catalytic performance.
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3.2. Applicability of the BT/Co-E Catalyst

Influence of pH on the photocatalytic degradation of DOX. Figure 10 displays the variations
in UV-Vis spectra of a DOX solution throughout a standard photodegradation experiment
carried out at different pH values, 2.5, 6.5, and 9.5. In presence of BT/Co-E catalyst, the
DOX solution shows a spectrum with two maxima observed at 271 nm and 375 nm [61].
Depending on the chosen pH, the DOX solution shows different colors. At an acidic pH no
coloration of the solution is observed, at a pH of 6.5 the solution becomes slightly yellow
and at a pH of 9.5 the solution becomes slightly pink, as it was observed also in other
studies from the literature [61].

It is significant to note that even after many hours of exposure, the absorbance at
any wavelength never stabilizes, indicating that complete photo-degradation was not
accomplished. Under the conditions of our experiment, the findings indicate that the
photodegradation of DOX is quite distant from reaching equilibrium. Furthermore, these
findings reveal that photodegradation and the mechanism are very pH dependent. Better
results when exposing the catalyst to light are observed at a pH of 6.5, so compared to the
other degradations at the other pHs, the absorption reduces significantly.

Photo-electro-catalytic application. Going forward with our studies, it may be deduced
that the best outcomes are obtained at a pH of 6.5. As a result, for further testing, a 6 mol/L
DOX solution with a pH of 6.5 will be utilized. Both photodegradation and photoelec-
trodegradation tests were conducted to create a dual system in which DOX degradation
from water occurs. An efficient and cost-effective system is characterized by the synergic
combination between light and a photocatalyst to generate reactive oxygen species.
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Figure 10. Evolution of UV-Vis spectra in the DOX solution during varied reaction times in pH-
controlled photodegradation experiments.

The efficiency of photodegradation and photoelectrodegradation will be compared
here. The DOX solution was photoelectrocatalytically degraded at three distinct potentials,
0.35 V, 0.50 V, and 0.80 V, to demonstrate the impact of input potential on DOX degradation
efficiency. According to recent research in the literature [84], the oxidation potential of
TCs is founded at almost 0.80 V, although as shown in the data below (Figure 11b), the
degradation of DOX has a poor response to this potential. The oxidation potential value of
DOX was drastically reduced to 0.35 V due to BT/Co-E with enhanced catalytic features,
so this is why three additional imposed potentials were chosen.
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After only 60 min, the photo-electro-catalytic system reaches 70% degradation effi-
ciency, as can be seen in Figure 11b. An efficiency of 50% degradation is attained after
60 min in the photocatalytic system (Figure 11a). Given that the photocatalysis investiga-
tions were conducted over a period of 180 min, it was found that the degradation reached
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80% efficiency, but only after irradiating for a triple time compared to the time allocated to
the photoelectrodegradation.

It was clearly observed that the system does not work as well only when exposed
to UV-Vis light, so the system will be coupled up to a potentiostat once the 60 min of
photodegradation process is done. This potentiostat will apply a potential of 0.35 V,
effectively quickly eliminating the compounds that have resulted from the photocatalytic
degradation and which were not previously degraded. This could be because when exposed
to light, the electron-hole pairs generated by the photons were quickly separated. This
separation resulted in a significant number of electrons being produced, which facilitated
the transfer of electrons through the electrode. As a result, the photocurrent, which is the
current generated by light, showed a rapid improvement upon the onset of light exposure.
Eventually, the photocurrent reached a stable state after continuous exposure to light.

The degradation kinetics, was calculated for the photocatalytic degradation using
the Langmuir–Hinshelwood pseudo first-order kinetic model [85], which is shown in the
equation below, was used to study the speed of the process.

Ln
(

C
C0

)
= k × t (4)

where C0 and C are the initial concentration (mol/L) and final concentration (mol/L) of
DOX and t (min) and k (min−1) are the solution concentration and the rate constant.

Figure S2 shows that for DOX degradation in the presence of BT/Co-E catalyst and UV-
Vis light, the relationship between Ln

(
C
C0

)
time (min) represents a logarithmic exponential

growth. The R2 values for the association coefficients were greater than 0.900, and the
first-order kinetic model did a good job of fitting the experimental data. Looking closely at
the degradation diagram, two distinct degradation tendencies can be seen [86]. Based on
the slope of the plots, the first-order rate constants (k) were found to be 15 × 10−3 min−1

for the first degradation tendency (0–30 min) and 0.5 × 10−2 min−1 (30–180 min) for the
second degradation tendency [87].

Proposed Mechanism of DOX Degradation in the Presence of BT/Co-E

Based on the results of the characterisation and photocatalytic activity and based on
the other literature reports [54,88], the likely mechanism of BT/Co-E for DOX degradation
is shown in Figure 12. It is possible that the following factors contribute to TiO2’s enhanced
photocatalytic performance.

Even though the conduction band (CB) level of TiO2 is more negative than the H+/H2
reduction, the fast exchange rate of CB electrons and valence band (VB) holes is what gives
the TiO2 its photoelectrochemical activity. Cobalt ions could be added to the TiO2 nanotubes
to make it work a lot better, which would lead to organic molecules photodegradation. A
Ti-O-Co hybridization energy level is produced when exposed to visible light, resulting
in narrowing the bandgap. This reduction enhances the ability to excite electrons [89]. As
the catalytic process unfolds, a small quantity of dissolved O2 from wastewater reacts with
the electrons generated by light, electrons excited from the Co-E CB that were caught and
transported to TiO2, resulting in the production of a limited number of O2

−· radicals. This
process will improve the electron hole separation efficiency [22].

Furthermore, a limited quantity of holes generated by light, situated in the VB, engage
with water to produce OH and OH−·. In addition, the holes present in the modified
photocatalyst valence band (VB) will be activated upon exposure to light, leading to the
conversion of water into hydroxyl-type compounds/hydroxyl radicals that will produce
photocatalytic degradation.
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4. Conclusions

The main findings of this study consist of performing new stable photo-electro-catalyst
with antibacterial properties, based on reduced TiO2 nanotubes (blue nanotubes) and Cobalt
ions deposited on the surface through electrochemical pulsed deposition and plasma
magnetron sputtering, respectively.

The results showed that the star-shaped Cobalt-Blue-TiO2 film obtained by an electro-
chemical pulsed technique (BT/Co-E) gives the best results to nanoporous Cobalt-Blue-TiO2
film obtained by plasma magnetron sputtering (BT/Co-P). This is due to its higher interfa-
cial charge transfer efficiency and lower recombination rate.

Band gap reduction in the BT/Co-E film can also be attributed to the electrochemical
deposition of a higher amount of Co (observed in EDX spectra), which increases the number
of localized defect states in the TiO2 band gap. Because of this, Urbach energy increased
from 1.171 to 3.836 eV while the band gap energy decreased from 3.04 to 2.88 eV making
BT/Co-E material an effective catalyst for a variety of applications, including photocatalysis,
photo-electrocatalysis, water splitting, solar cells, the development of smart windows,
batteries, etc. Furthermore, the pseudocapacitive behaviour and very good electrochemical
stability of the BT/Co-E electrode, as established by electrochemical studies, suggests that
this electrode is suitable for use in technological applications requiring catalytic qualities.

The obtained catalysts were also studied from an antimicrobial point of view. The
results showed that the presence of Cobalt in both obtained films improves the antibacterial
activity against Salmonella and Pseudomonas aeruginosa. The BT/Co-E composite film had the
greatest antibacterial impact, owing to a higher amount of Co deposited on the blue TiO2
nanostructures by the pulsed electrochemical method, which also improved the wettability
behaviour of the catalyst, indicating that this catalyst will eradicate antibiotic-resistant
bacteria from wastewater.

All tests performed in this study, such as electrochemical, optical, and antibacterial,
showed enhanced results for BT/Co-E catalyst in comparison with BT/Co-P. Thus, this
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sample was employed to photodegradation and photoelectrodegradation processes of the
doxycycline antibiotic. In both cases, the effects of the degradation were satisfactory. Our
findings shows that with the photocatalytic system, 50% DOX was degraded after 60 min,
and 80% DOX was degraded after 180 min. After 60 min of using the photoelectrocatalytic
irradiation device, 70% yield was reached. The study explores the synergistic combination
of light and applied potential makes the suggested system extremely straightforward,
efficient, cost effective, and suitable for many other applications. Since the proposed system
is dual, it operates independently; however, in the future, we aim to investigate the efficacy
of a combined system in which bacteria are present in the water alongside the organic
pollutant and light irradiation produces both the degradation of the organic compound
and bacterial inhibition. This could be a limitation. Another potential flaw with this
investigation is that it may not take into account the compounds formed during after the
photocatalysis process.
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