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Abstract: The roller is an important part of the belt conveyor used in coal transportation. Due to
the harsh environment of coal mines, the rollers are in a state of high load and high friction for
a long time, which causes wear failure and has a serious impact on the reliability and safety of
the equipment. In order to prepare roller material with excellent bearing performance and friction
performance, CF/PUE composites were prepared by pouring method with polyurethane as the
matrix and carbon fiber as reinforcement. Due to the low surface activity of unmodified carbon
fibers and poor bonding performance with the matrix, MoS2 was generated on the surface of carbon
fiber by the in situ generation method in this paper. It was found that the mechanical properties
of MoS2/CF/PUE composites were better when the CF content was 0.3 wt%. The Shore hardness
reached 92.2 HA, which is 10% higher than pure polyurethane. The tensile strength was 38.44 MPa,
which is 53% higher than pure polyurethane. The elongation at break was 850%, which is 16% higher
than pure polyurethane. The maximum compressive stress was 2.32 MPa, which is 42% higher than
pure polyurethane. The friction coefficient was much lower than that of pure PUE composites, the
friction coefficient was 0.284, which is 59% lower than pure polyurethane.

Keywords: PUE; CF; MoS2; mechanical properties; friction performance

1. Introduction

The roller is the most critical component of the belt conveyor, which is located at the
bottom of the upper and lower conveyor belts and plays a role in supporting the conveyor
belts and reducing friction resistance [1]. The number of rollers under each conveyor belt
is relatively large, and the longer the conveyor belt is, the greater the demand for rollers.
Its cost accounts for about 35% of the total cost of the belt conveyor, and it can bear more
than 80% of the load, and the energy consumption accounts for 70% of the total energy
consumption [2,3]. At present, most of the rollers used in coal transportation are made of
metal materials. This kind of roller has a large mass and will consume a lot of energy in the
process of coal mining. Moreover, the roller is exposed to a humid environment for a long
time or is surrounded by a large amount of coal dust and corrosive gas, it becomes easily
rusted, locked, and severely worn, which adversely affects the reliability and safety of the
equipment, and also causes significant economic losses and energy waste. At present, there
are few rollers with high quality and long service life made in China, the design standards
for rollers are also too loose, and they are mostly positioned as cheap consumables. The
normal operation of equipment is often realized by increasing the weight of rollers or
replacing rollers many times, which not only consumes a lot of manpower and material
resources, but also loses a lot of effective production time, resulting in great losses [4].

Polyurethane (PUE) is a kind of block copolymer, which is a lightweight polymer
material with corrosion resistance, high wear resistance, a low friction coefficient, and
low cost [5–7]. At present, it is widely used in coal, metallurgy, construction, and other
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industries, and is an excellent roller material. However, polyurethane has poor toughness,
poor impact resistance, and is prone to aging, making it difficult for polyurethane to
meet corresponding requirements in some unique applications [8,9]. Carbon fiber (CF)
is a kind of fiber with a carbon content greater than 90%, which has the advantages of
being lightweight, having high strength, a large modulus, good thermal performance,
friction resistance, and fatigue resistance, so it is widely used in aircraft, automobiles,
the military, chemicals, and other fields [10–15]. The excellent friction performance of
CF itself causes the CF-reinforced PUE composite to have a low friction coefficient, [16]
and the graphite scrap during the friction process can realize the self-lubrication of the
material. Therefore, chopped CF or continuous CF-reinforced PUE is commonly used
at home and abroad [17]. However, CF has a smooth surface and strong polar groups.
When combined with PUE, it is difficult to form a solid interface between the two, which
affects the mechanical and frictional properties of the composite material. In addition,
CF is prone to breakage when bent. In order to increase the bonding force with the PUE
matrix, the surface of CF needs to be modified to increase the surface roughness and
surface activity of CF and improve the mechanical and frictional properties of composite
materials [18,19]. MoS2 is generally extracted by the mineral chalcocite, which is not affected
by dilute acid and oxygen, and its performance is relatively stable [20]. Molybdenum atoms
and sulfur atoms form a planar layer by covalent bond. Different layers are connected
by weak interaction. This structure causes MoS2 to have a very low friction coefficient,
about 0.04, which is often used for bearing lubrication and material modification, but
MoS2 has poor thermal conductivity [21,22]. In research on MoS2, researchers have paid
attention not only to the quality of MoS2, but also to the dispersion of MoS2 in the polymer
matrix. The dispersion of MoS2 in the polymer matrix plays a key role in the properties of
MoS2/polymer composites [23]. Therefore, it is necessary to add fillers with high strength,
fatigue resistance, and good thermal conductivity to the polyurethane matrix to improve
the performance of polyurethane composite materials.

In this paper, MoS2 was generated in situ on the surface of carbon fiber by in situ
generation method to prepare MoS2/CF composites (Figure 1). By adding modified CF to
improve the properties of PUE, we studied the effects of different contents of modified CF
on the mechanical and tribological properties.
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2. Experimental Materials and Methods
2.1. Experimental Materials and Equipment

The equipment materials used in the experiment are shown in Table 1.

Table 1. Equipment materials used in the experiment.

Experimental Materials and Equipment Producer

MDI prepolymer Shanghai Hecheng Polymer Technology Co., Ltd.
CHN city, country

1,4 butanediol (BDO) Guangdong Yuemei Chemical Co., Ltd. CHN
Carbon fiber Hangzhou Gaoke composite material Co., Ltd. CHN

Thiourea (CH4N2S) Aladdin reagent (Shanghai) Co., Ltd. CHN
Molybdic acid (H8MoN2O4) Aladdin reagent (Shanghai) Co., Ltd. CHN

Nitric acid Aladdin reagent (Shanghai) Co., Ltd. CHN
Absolute ethanol Xilong Chemical Co., Ltd. ShanTou, CHN

Electronic balance: ZA2054AS Shanghai Zanwei weighing instrument Co., Ltd. CHN
Ultrasonic cleaning machine: KQ2200E Kunshan Ultrasonic Instrument Co., Ltd. CHN

Blast drying oven: XGQ-200 Yuyao Xingchen Instrument Factory, CHN
Vacuum pump: XP135 Dingsheng Vacuum Equipment Co., Ltd. CHN
Vacuum tank: XP135 Dingsheng Vacuum Equipment Co., Ltd. CHN

Digital display electric mixer: JJ-1A 100W Fangke instrument (Changzhou) Co., Ltd. CHN
Friction and wear tester: UMT-3 Beijing Yicheng Hengda Technology Co., Ltd. CHN
Universal tensile tester: PT-307, Dongguan pusaite testing equipment Co., Ltd. CHN
High-speed camera: VW-9000, Keans (China) Co., Ltd.
Shore hardness tester: type A, Yangzhou process test Machinery Co., Ltd. CHN

D8ADVANCE X-ray diffractometer Bruker AG, Germany
G-301 scanning electron microscope Hitachi, Ltd. JP

2.2. Preparation of PUE and Its Composites
2.2.1. Preparation of PUE

As shown in Figure 2. Casting PUE was prepared by using an MDI prepolymer and
1,4-butanediol chain extender as raw materials. Firstly, the solid MDI prepolymer was
heated in the oven at 85 ◦C, and the mold was heated in the oven at 120 ◦C after spraying
the release agent. After the prepolymer melts, weigh an appropriate amount and pour
it into the beaker, vacuum the vacuum tank until no obvious bubbles are generated, and
then put it into the oven for heating for 30 min. According to the mass ratio of prepolymer:
chain extender = 10:1, weigh the chain extender 1,4-butanediol, pour it into a beaker with
prepolymer, rapidly stir for 1 min, and then vacuumize for 20 s. Quickly pour the liquid
PUE into the mold, put it into the oven at 120 ◦C, and cover the mold after gelling. After
curing in an oven at 120 ◦C for 1 h, take out the sample and put it into an oven at 85 ◦C for
22 h. The test was carried out after 7 days at room temperature.
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2.2.2. Preparation of MoS2/CF

After drying a certain amount (0.1, 0.3, 0.5, 0.7, 0.9%) of CF, put it into a nitric acid
solution for ultrasonic treatment for 60 min. After the treatment, rinse the reacted CF with
deionized water many times, and dry it at 100 ◦C for standby. Subsequently, a certain
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amount of thiourea (CSN2H4) and ammonium molybdate (NH4)6Mo7O24•4H2O) are then
added to 100 mL of deionized water, and dispersed by ultrasound for 30 min to accelerate
dissolution. Then, add an appropriate amount of CF treated with nitric acid into the mixed
solution, and disperse it by ultrasonic wave for 30 min to obtain a uniformly mixed CF
mixture. Finally, the mixed solution is poured into a reaction kettle with a capacity of
200 mL, and after sealing, it is placed in an oven at 230 ◦C for 24 h. After centrifugation,
cleaning and drying at 100 ◦C for 24 h, carbon fibers with molybdenum disulfide on the
surface are obtained [24].

2.2.3. Preparation of MoS2/CF/PUE Composites

We chose and used an MDI prepolymer, 1,4-butanediol chain extender, and modified
CF as raw materials to prepare MoS2/CF/PUE composites. Firstly, heat the solid MDI
prepolymer at 85 ◦C in the oven and dry the modified CF powder in the oven. Heat the
mold at 120 ◦C in the oven after spraying it with a release agent. Weigh a certain amount of
modified CF and melted prepolymer into a beaker, and stir until they are evenly mixed.
Vacuumize the vacuum tank until there is no obvious bubble, and put the mixture into the
oven again for 30 min. According to the mass ratio of prepolymer: chain extender = 10:1,
weigh the chain extender 1,4-butanediol, pour it into a beaker with prepolymer, rapidly
stir for 1 min, and then vacuumize for 20 s. Quickly pour the liquid-modified CF/PUE
composite into the mold, put it into the oven at 120 ◦C, and put it into the mold after gelling.
After curing in an oven at 120 ◦C for 1 h, the samples are taken out and placed in an oven
at 85 ◦C for 22 h. Testing is performed after 7 days at room temperature.

2.3. Hardness Test

PUE elastomer is a rubber material, and the Shore hardness A is tested according
to the national standard GB/T 531.2-2009. The hardness test of the prepared composite
material is carried out, the three points with a large distance are taken for measurement,
and the average value is obtained to obtain the hardness value.

2.4. Tensile Property Test

The PUE is cast into a dumbbell-shaped standard tensile specimen, as shown in
Figure 3. Use the universal tensile testing machine to carry out the tensile test according
to GB/T528-2009, 5 samples in each group, take the average value. The stretching rate
is 200 mm/min.
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2.5. Compression Performance Test

PUE is a kind of material with good elasticity. During the compression test, the PUE
elastomer will undergo large elastic deformation but the structure is hard to damage. A
WDW-5 microcomputer-controlled electronic universal testing machine was used in the
experiment. According to the measurement standard of vulcanized rubber or thermoplas-
tic rubber (ISO 7743:2007), the sample was compressed and deformed by 10%, and the
compression stress under this deformation was taken as the compression strength of PUE.
The sample and its dimensions are shown in Figure 4, where a = 11.5 mm and h = 6.3 mm.
The compression rate is 2 mm/min, each sample is tested five times, and the average value
is taken as the compression performance index of the material.



Materials 2023, 16, 5773 5 of 13

Materials 2023, 16, x FOR PEER REVIEW 5 of 13 
 

 

compression stress under this deformation was taken as the compression strength of PUE. 
The sample and its dimensions are shown in Figure 4, where a = 11.5 mm and h = 6.3 mm. 
The compression rate is 2 mm/min, each sample is tested five times, and the average value 
is taken as the compression performance index of the material. 

 
Figure 4. Compression sample of polyurethane composite: (a) sample; (b) compression sample size. 

2.6. Tribological Performance Test 
In this experiment, a UMT-3 friction and wear testing machine was used to study the 

friction and wear of PUE composite materials; we used sliding friction. The specific pa-
rameters of the experiment were set, as the fixed load was 100 N, the sliding speed was 5 
mm/s, the reciprocating frequency was 1 Hz, and the experiment time was 120 min. The 
upper sample was a steel ball with a diameter of 6 mm, and the lower sample was a cuboid 
PUE composite material sample of 48 × 22 × 5 mm. The matching pair of the upper and 
lower samples is shown in Figure 5. 

 
Figure 5. Matching of friction steel ball and sample. 

2.7. Wear Morphology Analysis 
Before the friction and wear test, the surface of the sample was smoothed, washed 

with anhydrous ethanol, and then placed in a 60 °C blast-drying oven to dry. The macro-
scopic wear morphology of the samples was observed and analyzed using a VW-9000 
high-speed camera system. Select the wear location with obvious features, use the coarse 
focus screw knob and fine focus screw knob to respectively focus by adjusting the magni-
fication, adjust the aperture to the appropriate brightness after the object is displayed on 
the computer side, then take pictures, and name and save in the appropriate location. Take 
multiple photos of multiple feature positions, and repeat the above operations for each 
proportioning sample in turn. 

  

Figure 4. Compression sample of polyurethane composite: (a) sample; (b) compression sample size.

2.6. Tribological Performance Test

In this experiment, a UMT-3 friction and wear testing machine was used to study
the friction and wear of PUE composite materials; we used sliding friction. The specific
parameters of the experiment were set, as the fixed load was 100 N, the sliding speed was
5 mm/s, the reciprocating frequency was 1 Hz, and the experiment time was 120 min. The
upper sample was a steel ball with a diameter of 6 mm, and the lower sample was a cuboid
PUE composite material sample of 48 × 22 × 5 mm. The matching pair of the upper and
lower samples is shown in Figure 5.
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2.7. Wear Morphology Analysis

Before the friction and wear test, the surface of the sample was smoothed, washed with
anhydrous ethanol, and then placed in a 60 ◦C blast-drying oven to dry. The macroscopic
wear morphology of the samples was observed and analyzed using a VW-9000 high-speed
camera system. Select the wear location with obvious features, use the coarse focus screw
knob and fine focus screw knob to respectively focus by adjusting the magnification, adjust
the aperture to the appropriate brightness after the object is displayed on the computer side,
then take pictures, and name and save in the appropriate location. Take multiple photos of
multiple feature positions, and repeat the above operations for each proportioning sample
in turn.

2.8. X-ray Diffraction Analysis (XRD)

An X-ray diffractometer (XRD) can accurately identify the phase composition in the
sample. In order to prove whether MoS2 is formed in CF, XRD was used to analyze the phase
of CF before and after MoS2 modification. We used a D8ADVANCE X-ray diffractometer
from Bruker, Germany, to test the CF and CF/MoS2 composites. Test conditions: copper
target Kα radiation, filament voltage of 50 kV, current of 30 mA, continuous scanning and
scanning speed set to 0.2 sec/step, and scanning range set to 5◦~80◦.
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2.9. Scanning Electron Microscope Analysis (SEM)

Scanning electron microscopy (SEM) was used to observe the morphology of CF and
the tensile and frictional morphologies of PUE composites. The tensile fracture sample
of the PUE composite material was cut at about 1 mm of the tensile fracture surface,
and the microscopic morphology of the tensile fracture surface was observed and the
fracture of the tensile sample was analyzed. The fracture mechanism and friction and wear
mechanisms of the CF and PUE composites before and after modification were analyzed.
In this experiment, the G-301 scanning electron microscope produced by Hitachi, Japan,
was used for testing.

3. Results and Discussion
3.1. Microstructure Characterization of PUE/CF/MoS2 Composites

Figure 6 is the X-ray diffraction pattern of CF and MoS2-modified CF. The XRD
pattern can show the diffraction peak position and the intensity of crystal or semi-crystal
materials, from which information such as crystal plane spacing and lattice parameters
can be deduced. It can be seen from the curve in the figure that the two strong diffraction
peaks 2θ of CF are 25.2◦and 43.7◦, and the characteristic peaks 2θ of MoS2 are 14.1◦, 33.9◦,
39.5◦, and 59.1◦. CF/MoS2 showed sharp diffraction peaks at 2θ of 33.9◦, 39.5◦, and 59.1◦,
which are characteristic peaks of MoS2. Therefore, it can be determined that MoS2 has been
successfully grown onto the surface of the modified CF.
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Figure 6. X-ray diffraction diagram of CF and molybdenum-modified CF.

Figure 7 is the SEM image of the modified CF and MoS2/CF/PUE composites. It
can be clearly seen from Figure 7a that MoS2 is generated in situ on CF, in Figure 7b,
it can be observed that there are obvious dents and bumps on the PUE matrix. These
bumps are well combined with the PUE matrix, which can reduce wear damage to a certain
extent. At the same time, it can be observed that the CF particles are combined with the
PUE matrix without shedding, because the contact area between the modified CF and the
matrix increases, which increases the bonding between the two, thereby increasing the wear
resistance of the composite material. It can be observed that there are many CF abrasive
grains between the dents, which is because the CF molecular layers are covalently bonded
to each other, so it is not easy for interlayer sliding to occur, but when the CF is ground
up, it will form a graphite flake layer structure similar to MoS2, which plays a lubricating
role between the friction interface and can effectively reduce the friction coefficient of
PUE composites.
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3.2. Performance of MoS2/CF/PUE Composites

The hardness of CF/PUE composite and MoS2/CF/PUE composites are shown in
Figure 8, and it can be seen from the figure that the hardness of the modified PUE compos-
ites shows a trend of increasing and then decreasing with the increase in carbon content,
and the maximum hardness value is 95.3 HA when the CF content is 0.5 wt%, which is
12% higher than that of pure PUE. Compared with Figure 8b, the hardness of the 0.5 wt%
CF/PUE composite modified with MoS2 decreased by 4% compared with the unmodified
0.5 wt% CF/PUE composite, which is not a significant change. According to the histogram,
the overall change in hardness of CF/PUE composites modified by MoS2 is less obvious
than that of unmodified CF/PUE composites, which is due to the low hardness of MoS2
itself and the small amount of experimental dosage, resulting in an insignificant change
in hardness.
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In Figure 9a, the CF/PUE composites with 0.3 wt% CF content have good tensile
properties. In Figure 9b, the tensile strength curve of the CF/PUE composites reached
maximum at a CF content of 0.3 wt%, which is 43.81 MPa; the elongation at the break of
the CF/PUE composites gradually decreased with the increase in CF content. As shown
in Figure 10, the modified MoS2/CF/PUE composite has better tensile strength when the
content of modified CF is 0.3 wt% and 0.5 wt%. The tensile strength of the composites
increased first and then decreased with the increase in CF content, and the elongation
at break also increased first and then decreased. From Figure 10b, the tensile strength is
the best at the CF content of 0.3 wt% and 0.5 wt%, which are 38.44 MPa and 38.19 MPa,
respectively, which are 53% and 52% higher than that of pure PUE elastomer, respectively.
It can have good tensile properties in a wide range. From Figure 10b, when the CF content
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is 0.3 wt%, the elongation at break is the largest, which is 850%, which is 16.16% higher
than that of pure PUE, and 25% higher than that of unmodified PUE.
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This is mainly because MoS2 is a lamellar substance that easily slides between layers
and cannot effectively load external tensile stresses, and the addition of MoS2 also causes
the problem of discontinuity in the PUE matrix, thus slightly reducing the tensile strength
of the composite after MoS2 modifies CF, but improving the toughness of the composite
due to the lamellar structure of MoS2, as shown by the increase in elongation at the break.

Figure 11 shows the compression performance of the CF/PUE composite. It can be seen
that CF/PUE composite with a CF content of 0.3 wt% and 0.5 wt% has better compression
performance. Compared with the compression properties of the MoS2/CF/PUE composites
in Figure 12, it can be seen from Figure 12b that the compressive strength of the modified
MoS2/CF/PUE composites increases and then decreases with the increase in CF content,
and the maximum compressive stresses are 2.32 MPa and 2.58 MPa for the CF content of
0.3 wt% and 0.5 wt%, respectively, which are 42% and 58% higher than those of the pure
PUE elastomer. The compressive strength of CF PUE composites with 0.3 wt% and 0.5 wt%
CF content decreased by 23% and 0%, respectively, compared to that of unmodified CF
composites with 0.3 wt% and 0.5 wt% CF content.
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The results showed that the compressive strength of the modified composites still
maintained higher values at 0.3 wt% and 0.5 wt% of CF content, with a slight decrease
at 0.3 wt% of CF content, which was also related to the lamellar structure of MoS2, the
addition of MoS2 led to discontinuity in the PUE matrix, and was also affected by the
inhomogeneity of the modified composition. The overall results are consistent with the
tensile performance results.

The friction coefficient of MoS2/CF/PUE composites is shown in Figure 13. As can be
seen from the graph, the modified composite friction coefficient shows a trend of decreasing
and then increasing, and the minimum value is achieved when the CF content is 0.3 wt%,
and the friction coefficient of the composite is 0.284 at this time, which is 59% lower than
that of pure PUE, which is 0.688. In addition, MoS2/CF/PUE composites with a CF content
of 0.5 wt% also have a low coefficient of friction.

Figure 14 shows the SEM image of the friction of the CF/PUE composite. From
Figure 14a, we can see pure PUE elastomer abrasion marks. From Figure 14b, we can see,
after adding a small amount of CF, a large number of grooves between the wear scars.
In Figure 14c, fine wear debris and a small amount of detached CF can be observed. At
this point, the surface is much flatter and the wear is much lower in comparison. This
shows that the addition of CF effectively enhances the resistance of CF/PUE composite
to steel ball cutting, makes the wear surface of the composite cleaner, and also greatly
reduces the friction coefficient of the composite. In the initial period of frictional wear,
the CF/PUE composite material is plastically deformed by frictional heat, and under the
action of applying constant pressure, the PUE matrix produces stress concentration and
microcracks, and large wear debris are produced under the cutting action of the steel ring,
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forming adhesive wear at the friction interface. After the friction and wear test was carried
out for a period of time, CF particles entered the wear interface. On the one hand, they
filled the surface of the sample, and on the other hand, they interacted with the wear debris
to form an incomplete transfer film to protect the CF/PUE composite against the cutting of
steel balls. However, at this time, the bonding force between the CF and the PUE matrix
is weak, and the whole root will fall off under the shear action of the steel ball, forming a
falling-off pit. When the friction wear test enters the stabilization phase, the CF interacts
with the wear debris to form a complete transfer film at the friction interface. Large-scale
peeling pits and aggregated CF can be observed in Figure 14d. This is due to the high
overall content of CF, resulting in discontinuity of the PUE matrix and the agglomeration
of CF, and falling-off during the friction and wear test. Because the CF surface is relatively
smooth and there is some slurry, the CF and the PUE matrix are weakly combined, or
defects are formed near the CF, and finally, the CF is separated from the PUE matrix to
form a spalling pit.
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Figure 15 shows the wear morphology of the modified CF/PUE composite material
after 120 min of friction wear by dry friction with an applied load of 100 N, taken under
high magnification. It can be seen that the overall wear debris of the modified composite
material is finer and the wear condition is lighter. In Figure 15c,d, a large number of fine
wear debris is distributed on the surface of the modified CF/PUE composite material,
and the modified CF is uniformly dispersed in it, which effectively prevents the adhesive
wear from affecting the material. At this time, the degree of friction is not deep, and
the corresponding friction coefficient is not high, which is in good agreement with the
experimental data.
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Analysis shows that MoS2 is a solid lubricating material with a lamellar structure and
has good self-lubricating properties. MoS2 easily reacts with air during the friction process,
forming an oxide film at the friction interface to protect the PUE composite against the
cutting action of steel balls, with the progress of the friction and wear test, a part of MoS2
was released to the friction interface to act as a lubricating medium, which transforms
the friction motion between the steel ball and the PUE composite into the form of sliding
between the MoS2 layers, effectively reducing the friction coefficient of the PUE composite.
When its content is high, it destroys the continuity between the molecular chains inside
the PUE and forms large-size wear debris, resulting in a higher coefficient of friction and a
slightly lower coefficient of friction compared to pure PUE.

3.3. Wear Mechanism of MoS2/CF/PUE Composites

At the beginning of friction and wear (Figure 16), CF/PUE composites undergo plastic
deformation due to friction heat. Under the action of constant pressure, the PUE matrix
produces stress concentration and microcracks. Large pieces of wear debris are produced
under the cutting action of the steel ball, forming adhesive wear at the friction interface.
After a period of friction and wear test, CF particles enter the wear interface. On the one
hand, the sample surface is filled, on the other hand, MoS2 is a solid lubricating material
with a layered structure and excellent self-lubricating performance. MoS2 is prone to react
with air during the friction process, forming an oxide film at the friction interface to protect
the polyurethane composite material from the cutting action of the steel ball. As the friction
and wear test progresses, a portion of MoS2 is released between the friction interface to
serve as a lubricating medium, transforming the frictional motion between the steel ball and
the polyurethane composite material into a sliding form between MoS2 layers, effectively
reducing the friction coefficient of polyurethane composite materials.
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4. Conclusions

MoS2 flakes were formed on the surface of CF by hydrothermal in situ generation
modification. It was proved that MoS2 was successfully formed on the surface of CF by
XRD and SEM. The CF reinforced PUE with a content of 0.3 wt% modified with MoS2 can
obtain a composite material with better mechanical properties and a friction coefficient
much lower than that of pure PUE. When the CF content is 0.3 wt%, the tensile strength
increases by 53%, respectively, and the compressive strength increases by 42%, respectively,
compared with pure PUE, and the mechanical properties are better in a wider range. In the
form of sliding friction, the friction coefficient of the PUE/CF/MoS2 composite is reduced
by 59% compared with pure PUE at 0.3 wt% of CF content. As a result, ternary composites
with better friction properties can be produced by the in situ generation of MoS2 on CF.
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