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Abstract: Accurate wind power forecasting (WPF) is critical in optimizing grid operations and
efficiently managing wind energy resources. Challenges arise from the inherent volatility and
non-stationarity of wind data, particularly in short-to-medium-term WPF, which extends to longer
forecast horizons. To address these challenges, this study introduces a novel model that integrates
Improved Empirical Mode Decomposition (IEMD) with an enhanced Transformer called TransIEMD.
TransIEMD begins by decomposing the wind speed into Intrinsic Mode Functions (IMFs) using
IEMD, transforming the scalar wind speed into a vector form that enriches the input data to reveal
hidden temporal dynamics. Each IMF is then processed with channel attention, embedding, and
positional encoding to prepare inputs for an enhanced Transformer. The Direct Embedding Module
(DEM) provides an alternative viewpoint on the input data. The distinctive perspectives of IEMD
and DEM offer interaction through cross-attention within the encoder, significantly enhancing the
ability to capture dynamic wind patterns. By combining cross-attention and self-attention within
the encoder–decoder structure, TransIEMD demonstrates enhanced proficiency in detecting and
leveraging long-range dependencies and dynamic wind patterns, improving the forecasting precision.
Extensive evaluations on a publicly available dataset from the National Renewable Energy Laboratory
(NREL) demonstrate that TransIEMD significantly improves the forecasting accuracy across multiple
horizons of 4, 8, 16, and 24 h. Specifically, at the 24 h forecast horizon, TransIEMD achieves reductions
in the normalized mean absolute error and root mean square error of 4.24% and 4.37%, respectively,
compared to the traditional Transformer. These results confirm the efficacy of integrating IEMD with
attention mechanisms to enhance the accuracy of WPF.

Keywords: wind energy; wind power forecasting; Empirical Mode Decomposition; Intrinsic Mode
Functions; Recurrent Neural Network; transformer

1. Introduction

The contemporary world faces the dual challenges of fossil fuel depletion and climate
catastrophes caused by the greenhouse effect [1]. The large-scale development and ap-
plication of green and clean energy sources are crucial in addressing these challenges [2].
Among various new energy sources, wind power generation has emerged as an important
renewable energy source with its advantages of a low cost, environmental sustainability,
and significant scale benefits [3].

To achieve the climate goal of limiting global warming within 1.5 degrees Celsius,
it is crucial to triple the renewable energy capacity by 2030, where wind energy plays
a pivotal role [4]. The Global Wind Energy Council (GWEC) anticipates that new wind
energy installations will reach 130 GW in 2024, with a projected addition of 791 GW over
the next five years [4].

Governments worldwide are actively progressing toward this ambitious renewable
energy goal. In the European Union, wind energy emerged as the dominant form of
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renewable energy for the first time in 2018, generating 362.4 TWh and accounting for 24% of
all renewable energy installations [5]. Similarly, China is on course to exceed its renewable
energy target, with a record 290 GW installed in 2023 alone, aiming for renewables to
make up over 50% of the new electricity consumption by 2025 [4]. Furthermore, Peru’s
varied geography and extensive coastline make it an ideal location for wind power, offering
potential capacities of 20.5 GW onshore and 347 GW offshore [6].

Due to temperature, altitude, terrain, and air pressure influences, wind energy is
characterized by variability, randomness, and non-stationarity. Moreover, the operational
efficiency of wind turbines is closely related to changes in wind speed (WS) [7], posing
certain challenges to power grid scheduling with large-scale wind power integration [8].
Accurate wind power forecasting (WPF) can effectively improve the peak-adjusting capa-
bilities of the power grid, enhance its wind power acceptance, and improve the safety and
economic efficiency of the operation of the power system, which is vital for the integrated
use of wind power and the stability of the power system [9].

According to prediction timescales, WPF models can be grouped into ultra-short-term,
short-term, medium-term, and long-term models [10]. Specifically, short-term models are
designed to predict wind power generation from 30 min to up to six hours in advance. In
contrast, medium-term models extend their forecasting capabilities from six hours to a full
day ahead. This paper concentrates on developing and analyzing short-to-medium-term
WPF models, which are critical for applications in power dispatch, energy trading, and
overall power system management.

WPF methods can be broadly classified into four principal categories based on their
foundational modeling approaches [10]: physical, statistical, artificial intelligence (AI)-
based, and hybrid models. Within AI-based methodologies, a distinction is made between
those founded on traditional machine learning techniques and those employing advanced
deep learning (DL) [11] strategies. Leveraging mathematical frameworks akin to statistical
models, machine learning-based WPF approaches demonstrate performance that rivals
that of statistical methods. However, the remarkable progress in DL has established it as a
central pillar of WPF research, and it is the primary emphasis of this paper.

Recurrent Neural Networks (RNNs) [11], one of the major DL architectures, are
distinguished for their capability to process sequential data, making them particularly
suitable for WPF, which requires an understanding of temporal dynamics. The RNN and
its variants, such as Long Short-Term Memory (LSTM) [12] and Gated Recurrent Units
(GRU) [13], have significantly influenced WPF by offering an enhanced time series data
model. Sun et al. [14] employ Variational Mode Decomposition (VMD) [15] alongside Con-
volutional LSTM (ConvLSTM) to refine short-term WPF, achieving superior performance
over traditional models. Similarly, Liu et al. [16] innovate with a stacked RNN featuring
parametric sine activation functions (PSAF), leading to notable improvements in the fore-
casting accuracy. Zhou et al. [17] and Wu et al. [18] explore the synergy between VMD
and LSTM to enhance the forecasting capabilities. Zhou et al. [17] leverage Numerical
Weather Prediction (NWP) data for WPF refinement. Wu et al. [18] integrate Convolutional
Neural Networks (CNNs) [11] with LSTM, significantly reducing noise and extracting
meaningful wind speed and power features. Wu et al. [19] apply CNN-LSTM to make
predictions for wind farm clusters, highlighting the critical role of spatial correlations
among NWP data across wind farms in the forecasting accuracy. Liu et al. [20] propose
a hybrid model combining Complementary Ensemble Empirical Mode Decomposition
(CEEMDAN), Bidirectional LSTM, and Markov Chains, effectively navigating the uncer-
tainty and variability characteristic of wind power. Lastly, Hossain et al. [21] significantly
improve the accuracy of very-short-term WPF by integrating of CEEMDAN, LSTM, and
monarch butterfly optimization.

Through advanced data processing techniques, RNNs have also been utilized in WS
forecasting and correction to improve the accuracy, as demonstrated by Liu et al. [22]
and Lv et al. [23]. Additionally, their use extends to photovoltaic (PV) power genera-
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tion forecasting, with Huang et al. [24] leveraging LSTM networks for accurate energy
output predictions.

Transformers [25] have notably advanced long-term time series forecasting [26,27],
overcoming the challenges faced by RNNs in capturing long-range dependencies and en-
hancing the training efficiency. Utilizing self-attention mechanisms, Transformers efficiently
process input data in parallel, thus providing insights into the relationships within complex
data essential for accurate long-term forecasts. Transformers have demonstrated significant
utility in the realm of WPF and related areas. Research indicates that combining Tempo-
ral Fusion Transformers (TFT) [28] with VMD significantly improves the WPF accuracy
and effectively addresses the uncertainties inherent in wind patterns [29]. Furthermore,
the development of interpretable models that combine VMD and TFT has advanced WS
forecasting, offering deep insights into wind dynamics [30]. Introducing hybrid models,
such as H-Transformer, which integrates the traditional Autoregressive Integrated Moving
Average (ARIMA) with a Transformer, further highlights the transformative impact of
Transformers in accurately forecasting renewable energy production [31].

Beyond DL architectures, time series decomposition may significantly improve the
forecasting accuracy. Empirical Mode Decomposition (EMD) [20,32], Ensemble
EMD [22,33], and VMD [14,17,18] have been thoroughly integrated with RNNs and are
receiving extensive attention. Abedinia et al. [34] developed Improved EMD (IEMD), merg-
ing bagging neural networks and K-means clustering for WPF and achieving improved
accuracy over various forecast horizons. Decomposition techniques have also been shown
to enhance the forecasting accuracy in conjunction with Transformers [26]. Wu et al. [30]
combined VMD with TFT for a 10-step WS forecast. However, accurate short-to-medium-
term WPF, particularly for forecast horizons spanning up to 24 h—a challenge that typically
involves forecasting hundreds of steps—has yet to be extensively explored.

This paper investigates how to enhance the accuracy of short-to-medium-term WPF
given the inherent volatility and non-stationarity of wind energy. We introduce the Tran-
sIEMD model, which combines IEMD [34] with the Transformer architecture [25], to tackle
this issue. This model leverages IEMD to decompose WS into Intrinsic Mode Functions
(IMFs), enriching the input with temporal insights. Coupled with a Direct Embedding
Module (DEM) that employs a cross-attention mechanism, TransIEMD surpasses the limi-
tations of traditional Transformers [25] in capturing temporal features. Fusing IEMD with
channel attention stabilizes the input sequences and effectively extracts essential trends
and features in wind series data, significantly improving the forecasting accuracy.

The core contributions of our study are outlined as follows.

1. By integrating IEMD with channel attention, the TransIEMD model stabilizes the
input sequences and transforms WS into multivariate vectors rich in temporal context.
This approach enhances the ability to accurately capture and interpret the complex
dynamics and inter-variable relationships among meteorological variables, especially
wind patterns, leading to a notable improvement in the forecasting accuracy.

2. We enhance the encoder–decoder in Transformer by incorporating cross-attention and
self-attention mechanisms with DEM. This enhancement strengthens the proficiency
of the model in identifying and leveraging long-range dependencies and evolving
data patterns, substantially elevating the forecasting precision.

The forecasting performance of our TransIEMD model is thoroughly evaluated over
forecast horizons of 4, 8, 16, and 24 h, utilizing a publicly available dataset from the National
Renewable Energy Laboratory (NREL) [35] in the United States. Our comprehensive
evaluation demonstrates the exceptional predictive capabilities of the proposed model
across various forecast horizons.

The rest of this paper is structured as follows. Section 2 outlines essential background
theories on IEMD and the attention mechanism. Section 3 delves into the detailed descrip-
tion of the TransIEMD model. Section 4 presents the results of a series of experiments
conducted to validate the performance of the proposed TransIEMD model. Section 5 dis-
cusses comparisons with existing WPF models, extended applications, and future works
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on the TransIEMD model. Finally, Section 6 summarizes the findings and contributions of
this study.

2. Theoretical Framework
2.1. Self-Attention Mechanism

The attention mechanism was initially proposed to improve long sequence processing
in RNN [36]. It provides a mechanism for the decoder to determine and select the most
important tokens in a specific context. The study [25] abandoned the RNN structure and
used the self-attention mechanism for the same purpose, becoming a mainstream structure
in natural language processing, image and video analysis, and time series analysis [27].

The self-attention in Transformer operates on matrices of query QQQ, key KKK, and value
VVV tokens, which are extracted from the input series fff with linear transformations. Each
matrix represents a set of tokens, with individual rows corresponding to a separate query,
key, and value token. These transformations are defined as

QQQ = fffWWWQ , KKK = fffWWWK , VVV = fffWWWV , (1)

where matrices WWWQ , WWWK , and WWWV are parameters to be learned in self-attention. The
calculation of self-attention is expressed as

ZZZ = Attention(QQQ, KKK,VVV) = softmax
(

QQQKKKT
√

dk

)
VVV, (2)

where ZZZ is the resulting context matrix that conveys information about the input series.
This matrix expression allows self-attention to perform parallelized sequence learning,
avoiding the iterative processing employed by RNNs. Figure 1 visualizes this process,
where the weighting step corresponds to the softmax(·) operation in Equation (2).
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Figure 1. The computing process of self-attention.

2.2. Improved Empirical Mode Decomposition

EMD is an adaptive signal decomposition method using the Hilbert–Huang trans-
form [37], which can decompose a nonlinear and non-stationary time series into a finite
number of IMFs. The instantaneous frequency obtained from the Hilbert transform of the
decomposed IMFs has clear physical meaning, enabling a better representation of local
signal phase changes [37]. IMFs, being stationary and more predictable than the original
series, enhance the prediction accuracy of time series and are widely used in WPF [22].

The EMD of a time signal x(t) can be expressed as

x(t) =
M′

∑
m=1

fm(t) + r(t), (3)
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where fm(t) represents the M′ IMFs, with subscript m distinguishing different modes, and
r(t) is the residual after decomposition. The m-th order IMF is obtained by repeatedly
applying a sifting process to the decomposition residuals. For the j − 1-th residual of
the m-th order IMF decomposition, denoted as hm,j−1(t), the sifting process initiates by
locating the local maxima and minima of hm,j−1(t). It proceeds by fitting upper and lower
envelopes with cubic spline functions and calculates their means, represented as h̄m,j−1(t).
The decomposition iterates the following sifting process:

hm,j(t) = hm,j−1(t)− h̄m,j−1(t), (4)

until hm,j achieves Cauchy-like convergence in terms of the normalized squared error,
which is calculated as

SDj =
∑T

t=1 |h·,j−1(t)− h·,j(t)|2

∑T
t=1 h2

·,j(t)
. (5)

The m-th order IMF decomposition starts with the residual hm,0 = hm−1,0 − gm−1,
where the initial residual is the original signal to be decomposed, i.e., h0,0(t) = x(t).

In practice, the results obtained from EMD may produce spurious components due to
insufficient sampling rates or improper spline interpolation. Therefore, the decomposed
modes are selectively retained in IEMD by discarding spurious components and preserving
only those that reflect the true IMFs of the signal. A component fm is filtered out if it
satisfies the following condition:

αm < α0 ∨KS
(

fm||N (t; 0, 1)
)
, (6)

where ∨ represents the logical OR, αm is the correlation coefficient of the component fm
with the original signal, α0 is the threshold for selecting the correlation coefficient, and
KS denotes the two-sample Kolmogorov–Smirnov (KS) test [38]. The threshold is set to
α0 = η maxm αm, where 0 < η < 1. Components with a correlation coefficient smaller than
α0 are ignored. The KS test is used to ascertain the correlation of each modal component
with Gaussian noise, thereby ignoring components close to noise. After filtering with (6)
proposed by IEMD, the number of IMFs is reduced from M′ to M.

3. Methodology

In this study, we tackle the task of predicting a sequence of wind power outputs
pppt = [pt+1, · · · , pt+H ]

T , covering a continuous forecast horizon of H time steps beyond time
t. The inputs to the WPF model are meteorological variables observed within a lookback
window of length L leading up to time t, which we denote as XXXt = [xxxt−L+1, · · · , xxxt]. The
operation of the WPF model can be succinctly formalized as

p̂ppt = WPF(XXXt; ΘΘΘ), (7)

where p̂ppt represents the forecast power output, and ΘΘΘ denotes learnable parameters.

3.1. TransIEMD Architecture Overview

Transformer [25] generalizes the conventional encoder–decoder structure [36] by in-
troducing self-attention. In a Transformer, the encoder converts an input sequence into
some contextual representations, which the decoder then uses to generate the output se-
quence. The encoder comprises a stack of identical blocks, each consisting a self-attention
layer and a multi-layer perceptron (MLP). Both layers are enhanced with residual con-
nections [39] and layer normalization for training stability and convergence. Like the
encoder, the decoder block includes an additional attention layer over the encoder output.
Due to self-attention, Transformers are effective in learning long-range dependencies in
sequence-to-sequence tasks, a critical aspect for time series forecasting that improves the
performance and model interpretability.
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To address the challenge of accurate short-to-medium-term WPF, particularly due to
the variability and non-stationarity of wind, this paper proposes the TransIEMD model.
This model combines IEMD [34] with the attention mechanism [25]. The architecture,
shown in Figure 2, comprises six components: the tokenizer, DEM, encoder, decoder, query
generation, and prediction Output.
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Figure 2. The architecture of TransIEMD for short-to-medium-term WPF.

Figure 2 depicts the data flow within TransIEMD. The input meteorological sequence
passes through both the tokenizer and DEM. The input sequence is tokenized via IEMD [34],
aligning it with positional encoding (PE) to form a structure amenable to attention mech-
anisms. Simultaneously, the DEM transforms the inputs to create query vectors for the
encoder. The encoder then applies cross-attention and self-attention in succession, utilizing
the tokenized key–value pairs and DEM queries to capture the temporal dependencies
within the meteorological data, especially the decomposed WS. This process enriches the
encoded contexts, which are subsequently decoded using additional position-encoded
queries to focus on the forecasting targets. The output module transforms the decoded
context features into the final forecast, specifying the WPF for upcoming time steps.

TransIEMD refines the standard Transformer with a blend of IEMD and a dual-
attention mechanism, comprising both cross-attention and self-attention. This structure
excels in extracting predictable patterns from meteorological data, significantly enhanc-
ing the feature extraction process. Additionally, DEM aids in crafting robust contextual
representations that resonate with the inherent characteristics of the input. By enabling
the encoder and decoder to process diverse query tokens via cross-attention, TransIEMD
provides a refined forecasting approach that is well suited for the fluctuating dynamics of
wind energy data.

3.2. Tokenization Based on IEMD

In TransIEMD, tokenization, a technique originally utilized in natural language pro-
cessing to break down text into digestible tokens, is ingeniously adapted for the trans-
formation of meteorological inputs into analyzable tokens. This adaptation is pivotal in
harnessing the attention mechanism and tailoring Transformer models to the intricacies of
WPF. Following the application of IEMD, wind data are decomposed into multiple IMFs,
fm(t), for m = 1, . . . , M. Each IMF, marked by enhanced predictability and stability, lays
the groundwork for the generation of tokens that improve the forecasting capabilities.

The model employs channel attention to recognize the disparate forecasting impacts
of each IMF and the additional meteorological variables that extend beyond wind feature
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decomposition. This strategy dynamically adjusts the significance of each component to
refine the forecasting acumen. The mechanism processes the decomposed features via
global max and average pooling operations, succeeded by an MLP with shared parameters
and sigmoid activation, yielding the channel attention vector fff cam as expressed in

fff cam = σ
(

MLP
(
AvgPool( fff )

)
+ MLP

(
MaxPool( fff )

))
, (8)

where σ denotes the sigmoid function; fff = [ f1(t), . . . , fM+D]
T ∈ RM+D encapsulates both

the M IMFs and the additional D meteorological features exclusive of the decomposed
wind signals. After channel attention modulation, fff cam is subject to embedding and PE,
culminating in FFF(1), which serves as the key–value pair for the encoder. The methodology
for the conversion of fff cam into key–value pairs mirrors that of the query generation module,
detailed in Section 3.4.

3.3. Encoder and Decoder Modules

The proposed TransIEMD architecture improves the original Transformer by enhanc-
ing the encoder and decoder modules for superior feature extraction and analysis. Central
to this model, these modules employ layers of cross-attention, self-attention, and feedfor-
ward networks to symmetrically encode and decode the input data, ensuring a balanced
processing mechanism.

As depicted in Figure 3, the cross-attention mechanism facilitates interaction between
two sequences. The key and value tokens are derived from sequence fff , which is the same
as the self-attention shown in Figure 1 and Equation (1). The query tokens are derived from
sequence ggg as follows:

QQQ = gggWWWQ . (9)

As illustrated in Figure 2, the encoder and decoder apply cross-attention but with
different sources for their query sequences. The encoder uses the ggg-series derived from the
DEM. DEM performs nonlinear transformations on the original input sequences, allowing
subsequent cross-attention to establish correlations across different data views by querying
the transformed sequences against the IEMD sequences. Equipped with convolution layers
with bias terms and a ReLU activation layer, DEM can efficiently extract local features and
learn dependencies within various time ranges, enhancing the understanding of dynamic
meteorological processes.
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Figure 3. Calculation process of cross-attention.

In contrast, the decoder employs placeholder sequences for its queries, using the
encoded features to generate predictive contexts for upcoming time intervals. This differ-
ence in the query sequences between the encoder and decoder is critical in capturing the
dynamic and complex patterns inherent in wind data, enabling precise forecasting.
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Residual connections and normalization layers are integrated within both mechanisms
and the feedforward network to fortify the learning efficacy. To systematically differenti-
ate between the attention layers within both modules, a superscript notation (l), where
l = 1, 2, 3, 4, labels their parameters, WWW(l)

Q , WWW(l)
K , and WWW(l)

V , and outputs, aligning with the
sequential direction of the data flow. According to Equation (2), the context ZZZ(l) is obtained
by the attention mechanism as a linear combination of the corresponding input values
VVV(l). The effectiveness of both the encoder and decoder is thus rooted in the IEMD-based
tokenization strategy.

3.4. Query Generation and Prediction Output Modules

In TransIEMD, addressing temporal relationships is crucial due to the potential loss of
time series continuity through tokenization. To preserve the temporal integrity, PE is added
to the data before they are processed by the encoder and decoder. This strategy injects
the time step information lost during tokenization, allowing the model to interpret the
temporal dynamics effectively. Specifically, in the encoder, PE is applied post-embedding
for key–value tokens.

For embedding, each input token is transformed into a d-dimensional vector, reshaping
the data from a sequence into a matrix format, which is crucial for parallel processing with
an attention mechanism. PE marks each time step uniquely with sine and cosine, providing
a distinct positional signature as detailed below:

PE(t, 2m) = sin
(

t
N2m/d

)
, PE(t, 2m+1) = cos

(
t

N2m/d

)
, (10)

where t denotes the time step in the input sequence, i is the dimension in the embedding,
and N = 10,000, enhancing the model’s sensitivity to the temporal ordering.

The objective function to optimize TransIEMD is formulated as ℓ1-norm minimization
to enhance the robustness against outliers [40], favoring more stable and reliable predictions.
The objective function is expressed as

J(ΘΘΘ) = ∑
t∈D
∥p̂ppt − pppt∥1 = ∑

t∈D

∥∥∥WPF(XXXt; ΘΘΘ)− pppt

∥∥∥
1
, (11)

indicating the aggregate deviation of the predicted from the actual wind power outputs
over the dataset D. Our comprehensive parameter set ΘΘΘ encompasses learnable weights
within the components of TransIEMD, all of which are optimized to enhance the accuracy
and reliability of WPF.

3.5. Pseudocode

To enhance the clarity and reproducibility of the TransIEMD model, the detailed
pseudocode for the main components and the overall model is presented in Algorithm 1.
The pseudocode begins with the TOKENIZER and ENCODER. The TOKENIZER processes the
input meteorological data, applying IEMD to the wind data, followed by channel attention,
embedding, and PE. The ENCODER then processes these tokens through cross-attention and
self-attention mechanisms, which are crucial in capturing temporal dependencies. Because
of its structural similarity to the encoder, the decoder can be implemented by mirroring the
ENCODER procedure, with minor modifications. The whole procedure of TRANSIEMD is
illustrated to ensure the streamlined computation of the model, efficiently incorporating
both output and query components. This pseudocode serves as a guide for the recreation
of the TransIEMD model.
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Algorithm 1 Pseudocode for the implementation of TransIEMD

procedure TOKENIZER(XXXt)
fff ← Concat(IEMD(XXXt), [ fM+1, · · · , fM+D]) ▷ Apply IEMD to wind data
fff cam ← ChannelAttention( fff ) ▷ Channel attention using (8)
return Embedding( fff cam) + PE(t, m) ▷ PE using (10)

end procedure
procedure ENCODER( fff , ggg)

QQQ← gggWWWQ , KKK ← fffWWWK , VVV ← fffWWWV ▷ Prepare cross-attention tokens using (9)
ZZZ(1) ← Attention(QQQ, KKK,VVV) ▷ Calculate cross-attention using (2)
QQQ← ZZZ(1)WWWQ , KKK ← ZZZ(1)WWWK , VVV ← ZZZ(1)WWWV ▷ Prepare self-attention tokens using (1)
ZZZ(2) ← Attention(QQQ, KKK,VVV) ▷ Calculate self-attention using (2)
ZZZ ← Normalization( fff +ZZZ(2)) ▷ Residual connection and normalization
return Normalization(ZZZ + MLP(ZZZ)) ▷ The MLP layer

end procedure
procedure TRANSIEMD(XXXt, ΘΘΘ) ▷ Overall procedure for Figure 2

fff ← TOKENIZER(XXXt), ggg← DEM(XXXt)
fff Encoder ← ENCODER( fff , ggg)
gggQuery ← Embedding(PlaceHolder) + PE(t, m) ▷ Query
ZZZ ← DECODER( fff Encoder, gggQuery) ▷ Similar to encoder
p̂ppt ← Normalization(FC(ZZZ)) ▷ Output
return p̂ppt

end procedure

4. Results

In this section, comprehensive experiments are conducted to validate the efficacy of
our proposed TransIEMD model against state-of-the-art approaches, including GRU [13], In-
former [41], and Transformer [25]. Informer, developed by Zhou et al. [41], enhances Trans-
former’s efficiency with ProbSparse self-attention, reducing the complexity to O(L log L)
for long-sequence tasks. This section presents a structured description, including dataset
specifics, model configurations, and evaluation metrics to ensure transparency and repli-
cability. Comparative analyses alongside error distribution assessments demonstrate the
superior forecasting accuracy of TransIEMD. An ablation study further elucidates the
benefits derived from integrating IEMD and DEM.

4.1. Dataset

To evaluate the efficacy of TransIEMD, this paper conducts comprehensive compara-
tive experiments on a publicly available wind power dataset [35] from the National Renew-
able Energy Laboratory (NREL), United States. The chosen dataset contains 736,416 obser-
vations recorded at wind farm ID 126684, covering 2007 to 2013. Data points were captured
at 5 min intervals, yielding 288 observations per day, with a maximum installed capacity
of 16 megawatts (Pmax = 16 MW). For each time instance, the data point includes five
meteorological variables, which are the WS measured in meters per second (m/s), the
wind direction (WD) in degrees (◦), the temperature in degrees Celsius (◦C), the humidity
in percent (%), and the pressure in hectopascals (hPa), along with the wind power in
megawatts (MW). Among the equations of the proposed model, (7) and (11) output values
in the same unit of measurement as the wind power, MW. However, other equations, such
as (8)–(10), are not constrained by units of measurement.

Constructed with the WIND tool [35], the NREL dataset undergoes rigorous correction
and validation processes, including multi-station comparisons and meteorological data
integration, which ensures its accuracy and reliability. The dataset is an exemplary resource
for WPF research [35], because it has been validated against actual production patterns to
ensure its usability and is free from human-induced noise [35]. Please refer to ref. [35] for
more details.
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For this investigation, the dataset is divided into a training set D, a validation set V ,
and a test set T , adhering to a 7:1:2 partition ratio. This division facilitates thorough training,
fine-tuning, and evaluation phases for the TransIEMD model. Employing a sliding window
technique with a step size of one, the methodology ensures the maximal exploitation of the
training set, thereby augmenting the predictive performance of the model. The input of the
model is sequences of length L = 288, derived from a predetermined lookback window,
optimizing the model’s capacity to predict wind power generation accurately.

4.2. Model Configurations

The architecture of TransIEMD is thoroughly engineered to optimize the forecasting
performance, balancing complexity with precision. The output dimension of the tokenizer is
set at 512, which is a critical aspect in determining the model size. The output dimensions of
the DEM and query module align with this setting, ensuring seamless integration within the
model framework. The encoder and decoder are key parts of the Transformer architecture
and have the same structure in TransIEMD. Both use self-attention and cross-attention with
dimensionality of 512 and a two-layer MLP, with matrices configured to 512× 2048 and
2048× 512. This uniformity creates a consistent data processing environment in the model
and enables sophisticated feature transformations. The prediction output module employs
a fully connected (FC) layer capable of transforming 512-dimensional feature vectors into a
one-dimensional output, essential for delivering precise forecasting results.

In pursuit of an equitable comparison, the hidden layer feature dimensions of all
baseline models, including Transformer [25], Informer [41], and GRU [13], are uniformly set
to 512 in the experiments. Such settings aim to eliminate potential biases in the performance
evaluation arising from model parameter variances, thereby ensuring a fair and direct
comparison across all models.

In training TransIEMD, the optimizer employs the Adam method with momentum to
ensure training stability. The training process includes 30 epochs, with a batch size of 256,
carefully calibrated to balance the computational demands with effective model optimization.

The adaptability and efficacy of TransIEMD are rigorously evaluated through four
forecasting tasks with horizons H of 48, 96, 192, and 288, corresponding to 4, 8, 16, and
24 h, respectively. This varied approach assesses the flexibility of TransIEMD across differ-
ent time frames. In the meantime, TransIEMD can generate predictions for multiple time
points concurrently, significantly enhancing its practical utility in real-world applications.

4.3. Evaluation Metrics

To rigorously evaluate the performance of the WPF models, we employ several key
metrics on the test set T , namely the mean absolute error (MAE) and root mean square
error (RMSE), alongside the relative RMSE (rRMSE) and the coefficient of determination
(R2). These metrics are crucial in quantifying the differences between the forecast values
and actual observations, offering a comprehensive assessment of the prediction accuracy.

The MAE is defined to capture the average magnitude of absolute errors:

MAE =
1
|T | ∑

t∈T
| p̂t − pt|. (12)

where |T | is the total number of data samples within the test set, with p̂t and pt denoting
the predicted and actual power values at time t, respectively. The RMSE measures the
average magnitude of the squared errors and is expressed as

RMSE =

√
1
|T | ∑

t∈T
( p̂t − pt)2, (13)
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which penalizes larger errors more than the MAE. The unit for both the MAE and RMSE is
MW, which is consistent with the unit used to measure the wind power. For comparability
across different scales, the rRMSE adjusts the RMSE relative to the average observed value:

rRMSE = RMSE/ p̄, (14)

where p̄ represents the average true wind power across the test set. The coefficient of
determination, R2, evaluates the proportion of variance in the actual data that is predictable
from the model:

R2 = 1− ∑t∈T ( p̂t − pt)2

∑t∈T (pt − p̄)2 . (15)

Lastly, we adopt normalized relative errors, denoted by the Greek letter ρ, to assess
the percentage of error reduction achieved by TransIEMD compared to the Transformer:

ρMETRIC =
METRICTransformer −METRICTransIEMD

Pmax
× 100%, (16)

where METRIC can be the MAE or RMSE, and Pmax represents the maximum installed
capacity. This comparative method quantitatively converts the performance differential
between the models into a percentage of installed capacity, offering a clear and direct
measure for the evaluation of performance enhancements.

By adopting these metrics, our analysis ensures a comprehensive and equitable evalu-
ation of the forecasting models under consideration, effectively highlighting their perfor-
mance nuances in wind power prediction tasks.

4.4. Comparison with Existing Models

To accurately evaluate the performance of the proposed TransIEMD model in short-
term WPF, three representative deep learning models were chosen as baselines for compari-
son. These baseline models included (1) the classical RNN network model GRU [13] for
time series forecasting; (2) the Transformer [25], a foundational sequence processing model
based on the self-attention mechanism; and (3) Informer [41], optimized for long-sequence
forecasting. These models were selected due to their widely recognized effectiveness in
the field of time series analysis. Due to their poorer multi-step forecasting performance,
the comparison did not include traditional machine learning methods like random forest
and support vector machine regression. The selection of baseline models ensures that the
experimental results comprehensively reflect the performance of TransIEMD.

4.4.1. Comparative Analysis of WPF Models

Table 1 provides a detailed comparison of the forecasting performance between the
proposed TransIEMD model and the three baseline models across all four tested forecast
horizons (4, 8, 16, and 24 h). The evaluation metrics include the MAE, RMSE, rRMSE, and
R2, which collectively offer a nuanced insight into the accuracy, efficiency, and predictive
power of each model in short-term WPF.

TransIEMD exhibits superior forecasting accuracy across all horizons, as highlighted by
its lower MAE and RMSE values. This superiority is especially marked for longer forecasts
of up to 24 h, indicating the robustness of TransIEMD in capturing the inherent variability
of the input NWP. The performance gap widens with the forecast horizon, underlining
the ability of TransIEMD to handle long temporal dependencies and non-stationarities in
data effectively.

The rRMSE metric further emphasizes the consistency and reliability of TransIEMD
in forecasting. The rRMSE values of TransIEMD are markedly lower than those of the
competing models, indicating a smaller error magnitude relative to the mean observed
values and superior model performance across varying lengths of forecast horizons.
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Table 1. Forecasting performance comparison across models. In this table, bold values highlight the
top performance and italics indicate the second-best across each forecast horizon and metric.

Metric Method 4 h 8 h 16 h 24 h

MAE (MW)

GRU 1.295 1.676 2.162 2.431
Informer 1.307 1.663 2.076 2.301

Transformer 1.214 1.535 1.967 2.286
TransIEMD 0.978 1.211 1.431 1.608

ρMAE 1.47% 2.02% 3.35% 4.24%

RMSE (MW)

GRU 1.529 1.986 2.551 2.860
Informer 1.538 1.969 2.456 2.735

Transformer 1.441 1.845 2.361 2.723
TransIEMD 1.182 1.483 1.807 2.024

ρRMSE 1.62% 2.26% 3.46% 4.37%

rRMSE

GRU 0.893 1.250 1.368 1.326
Informer 0.967 1.124 1.225 1.130

Transformer 0.817 0.941 1.029 1.199
TransIEMD 0.614 0.681 0.679 0.699

R2

GRU 0.806 0.721 0.572 0.470
Informer 0.806 0.713 0.603 0.506

Transformer 0.828 0.746 0.614 0.504
TransIEMD 0.888 0.837 0.776 0.725

Moreover, the R2 values are highest for TransIEMD across all forecast horizons. This
suggests that TransIEMD excels in explaining the variability in wind power data, high-
lighting its effectiveness in capturing the underlying patterns and dynamics critical for
operational planning in the wind energy sector.

In essence, the TransIEMD model not only offers a notable improvement in forecasting
accuracy but also showcases a significant reduction in errors and an enhanced ability to
elucidate the dynamics of wind power generation. This makes TransIEMD a valuable tool
in enhancing the efficiency and reliability of WPF, which is essential for grid management
and operational decision-making in the renewable energy industry.

4.4.2. Visual Comparison

The visual representation of the WPF results in Figure 4 spans seven days of test
set data. Each subplot illustrates how the different models perform over four forecast
horizons. The ground truth (GT) values of wind power are indicated by grey lines, and the
various colors distinguish the forecasts from each model. Dark grey vertical lines mark the
transitions between the different forecast horizons.

A close examination of Figure 4 reveals that the forecasts of TransIEMD closely match
the GT throughout all forecast horizons, efficiently capturing both the highs and lows of the
wind power output. This contrasts with the competing models, which often produce overly
smooth forecasts, especially at critical peaks and troughs, resulting in inaccurate predictions.
The distinct performance advantage of TransIEMD is consistent across all forecast horizons.
It can be attributed to its utilization of cross-attention and self-attention mechanisms, which
facilitate the in-depth synthesis of the original signal with the decomposed IMFs. This
integration allows TransIEMD to harness essential temporal features in the data, leading to
significantly improved accuracy in the complex domain of WPF.

The strength of TransIEMD is even more pronounced when dealing with longer
forecast horizons. At the 24 h mark, the predictions of TransIEMD exhibit impressive
alignment with the GT data, highlighting its capacity for reliable extended-range fore-
casting. This is essential for strategic energy grid management and planning in the wind
energy industry.
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Figure 4. Comparative analysis of WPF performance: seven-day visualization across multiple forecast
horizons. (a) Forecast results for the 4 h horizon. (b) Forecast results for the 8 h horizon. (c) Forecast
results for the 16 h horizon. (d) Forecast results for the 24 h horizon.

The graphical analysis in Figure 4 highlights the precision and reliability of Tran-
sIEMD, showcasing its potential to serve as a robust tool for industry applications. Its
capability to deliver accurate longer multiple-step forecasts can greatly enhance wind en-
ergy’s integration into power systems, signifying a notable advancement over the models
being compared.

4.4.3. Computational Complexity Analysis

The model sizes, training, and inference speeds are crucial factors that influence the
cost-effectiveness of applying a WPF model. These computational demands are compared
in Table 2, which provides insights into the operational efficiencies of the models. The
results were obtained using a high-performance computing setup equipped with dual
2.50 GHz Xeon E5-2678 CPUs (Intel, USA) and 4 NVIDIA RTX 3090 GPUs (Gigabyte
Technology, New Taipei City, Taiwan), with each model utilizing only one GPU during
both the training and testing stages.

Table 2. Comparative overview of model complexity and training efficiency.

Model Parameter Size
(Mega Bytes, MB)

Training Speed
(seconds/epoch)

Inference Speed
(seconds/epoch)

GRU 22.08 264.85 102.9
Informer 16.98 646.72 75.6

Transformer 16.98 892.57 98.6
TransIEMD 21.72 1022.81 114.6
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According to Table 2, TransIEMD exhibits a marginally larger parameter size and
slightly slower training and inference speeds than Transformer and Informer. The IEMD
computation stage in TransIEMD introduces an additional, though negligible, 8.00 s to the
total training time. Despite these minor increases, the substantial accuracy improvements
provided by TransIEMD justify the slight rise in computational resource usage. These data
confirm the feasibility of TransIEMD in terms of computational complexity, making it a
cost-effective solution, particularly in scenarios where accuracy is important.

4.5. Error Analysis

The performance of the forecasting models is examined through two types of error
distribution: the overall RMSE distribution and the time-step-specific MAE distribution.

4.5.1. Overall RMSE Distributions

Figure 5 presents the RMSE values in boxplot form, visually assessing the central
tendency and variability for forecast horizons of 4, 8, 16, and 24 h.
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Figure 5. Boxplots depict the RMSE distributions on four forecast horizons. The green line and blue
dashed lines show the median and mean RMSE for each model, respectively. (a) Boxplot of forecast
RMSE for the 4 h horizon. (b) Boxplot of forecast RMSE for the 8 h horizon. (c) Boxplot of forecast
RMSE for the 16 h horizon. (d) Boxplot of forecast RMSE for the 24 h horizon.

According to Figure 5, TransIEMD demonstrates the lowest median (solid green
lines) and mean (blue dashed lines) RMSE across all horizons, indicating its consistent
prediction accuracy and robustness across different conditions. The RMSE boxplots of
TransIEMD show a narrower interquartile range (heights of the boxes) and shorter whiskers,
implying higher consistency. This suggests that TransIEMD provides a more reliable
forecast, especially as the horizon lengthens (16 and 24 h), where the forecasting challenge
is inherently greater. These error distributions emphasize the advantages of incorporating
IEMD into the Transformer model for WPF.

4.5.2. Time-Step-Specific MAE Distribution

Figure 6 shows the distribution of the MAE at each forecast time step in three forecast
horizons. The solid lines in the figure represent the median MAE of each model at different
time steps in the 8, 16, and 24 h forecasting tasks. At the same time, the colored shaded
areas reflect the distribution of the MAE from the 25th to the 75th percentile, validating the
consistency and reliability range of errors. For clarity and readability, the MAE distributions
of GRU [13] and Transformer [25] are not shown in Figure 6 as they are not significantly
different from those of the Informer model. In Figure 6, the progression of the MAE
interquartile ranges for each forecast time step elucidates the increasing difficulty of WPF
as the forecasting horizon expands.

The TransIEMD model, delineated by the red median line and associated shaded
area, demonstrates a gradual increase in the median MAE with the advancing time step,
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indicative of the inherent challenge in long-range forecasting. Despite this, TransIEMD
maintains a consistently lower and more compact percentile range than Informer [41]. This
reflects the superior accuracy of TransIEMD and its consistent performance over time.
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Figure 6. The percentile ranges of the MAE at each forecasting time step for forecast horizons of 8, 16,
and 24 h. Each line represents the median MAE across the forecasting horizon for each model, and
the shaded area indicates the 25th to 75th percentile range of the MAE for Informer and TransIEMD
for clarity. (a) Forecast results for the 8 h horizon. (b) Forecast results for the 16 h horizon. (c) Forecast
results for the 24 h horizon.

As the forecast time increases, the broadening percentile ranges for Informer [41] signal
a rise in error spread and highlight the increasing complexity encountered. TransIEMD
has relatively steady percentile ranges, even at later time steps. This underscores its ability
to sustain its prediction reliability over extended forecast horizons, a decisive factor for
operational efficiency in wind power management.

4.6. Ablation Analysis of IEMD and DEM

With the pivotal role of WS and WD in short-term WPF, this study focuses exclusively
on these meteorological variables, employing IEMD decomposition to elucidate their
complex dynamics. The ablation study, detailed in Table 3, assesses the incremental
impact of these decomposed features, individually and in combination with DEM, on
the performance of the TransIEMD model. Without DEM, TransIEMD falls back to the
basic Transformer [25], implementing a query with conventional self-attention. The IEMD
processing of WS provides a robust foundation, as indicated by the consistent reduction in
the MAE and RMSE across all forecast horizons. For the IEMD-decomposed WS, we have
MWS = 9 IMFs and D = 4 additional meteorological variables. When incorporating both
the decomposed WS and WD with MWD = 8 IMFs, the count of the other meteorological
variables reduces to D = 3, as illustrated in Figure 7.
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Table 3. Ablation study results for IEMD-decomposed wind speed and direction. In this table, bold
values highlight the top performance and italics indicate the second-best across each forecast horizon
and metric. Checkmarks, ✓, indicate whether the IEMD-decomposed WS and/or WD is used in the
model and whether the DEM is adopted.

Metric
Feature Forecast Horizon

WS WD DEM 4 h 8 h 16 h 24 h

MAE (MW)

1.214 1.535 1.967 2.286
✓ 1.113 1.265 1.452 1.680
✓ ✓ 0.978 1.211 1.431 1.608
✓ ✓ 1.075 1.280 1.503 1.766
✓ ✓ ✓ 0.994 1.182 1.460 1.664

RMSE (MW)

1.441 1.845 2.361 2.723
✓ 1.318 1.544 1.828 2.111
✓ ✓ 1.182 1.483 1.807 2.024
✓ ✓ 1.284 1.560 1.875 2.166
✓ ✓ ✓ 1.201 1.461 1.841 2.084

rRMSE

0.817 0.941 1.029 1.199
✓ 0.735 0.714 0.726 0.734
✓ ✓ 0.614 0.681 0.679 0.699
✓ ✓ 0.779 0.778 0.755 0.791
✓ ✓ ✓ 0.625 0.661 0.732 0.703

R2

0.828 0.746 0.614 0.504
✓ 0.865 0.825 0.775 0.707
✓ ✓ 0.888 0.837 0.776 0.725
✓ ✓ 0.869 0.823 0.766 0.695
✓ ✓ ✓ 0.884 0.840 0.769 0.707

Incorporating DEM with the IEMD-processed WS further refines the forecasting ca-
pabilities. Realizing optimal improvements, this configuration consistently outperforms
others across all metrics and forecast horizons. This result suggests that the querying
mechanism implemented with cross-attention can better capture the evolving meteoro-
logical complexity compared to standard self-attention. When both the WS and WD are
decomposed, including DEM also significantly elevates the performance of TransIEMD.
The ability of DEM to leverage the temporal patterns in the data is further evidenced by
the enhanced forecasting precision and increased R2 values. The improvements facili-
tated by DEM can be attributed to the efficacy in querying the decomposed IMFs with the
original input features brought by DEM, effectively capturing the dynamic complexity of
meteorological data.

The integration of the decomposed WD with the WS offers mixed results, whether
using DEM or not. While the forecast accuracy slightly diminishes for shorter horizons, it
is beneficial for longer forecast horizons, implying the increased relevance of the WD over
extended durations. The potential decline in performance upon integrating the decomposed
WD can be attributed to discontinuities in the WD signal, as shown in Figure 7b, which
induces high-frequency fluctuations that complicate the extraction of coherent patterns
during the IEMD decomposition process.

This ablation study substantiates the potential of the proposed approach in advancing
WPF, validating the integration of feature decomposition and embedding techniques as crit-
ical to enhancing the model accuracy and reliability for short-to-medium-term forecasting.
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Figure 7. IMFs of wind speed and direction obtained through IEMD. (a) IMFs derived from IEMD of
wind speed data. (b) IMFs derived from IEMD of wind direction data.

IEMD of Wind Features

Figure 7 demonstrates the decomposition of wind speed and direction signals into a
series of IMFs via IEMD, addressing their inherent complexity and stochastic nature. IEMD
strategically segregates these signals into components reflecting distinct frequency bands
and behavioral trends. The initial IMFs capture the immediate, high-frequency oscillations,
predominantly representing noise and short-lived perturbations in wind behavior. Succes-
sive IMFs reveal progressively lower-frequency oscillations, delineating more substantial
and coherent trends vital for accurate prediction in WPF.

IEMD converts the WS and WD from scalar measurements to multivariate vectors with
extended temporal contexts. Upon entry into the TransIEMD encoder, these vectors enhance
the contextual encoding, significantly improving the forecast efficacy. Consequently, DEM
is leveraged to clarify the inter-variable correlations and the complex temporal contexts
conveyed by the IEMD-derived vectors. Focusing on the deterministic traits revealed by
the IMFs, TransIEMD improves the forecast precision.

One reason for the decreased performance when utilizing the IMFs of both the WS and
WD is the discontinuities (such as at the time step of 10,000) in the WD signal. As shown
in Figure 7b, abrupt changes introduce extra high-frequency components, making IEMD
difficult to process. Despite the comprehensive depiction of wind dynamics through IEMD,
these discontinuities introduce complexities that hinder the learning process, particularly
impacting its capacity to handle directional shifts effectively.

5. Discussion
5.1. Comparison with Existing WPF Models

A comparative analysis with other established WPF models is beneficial in contex-
tualizing the performance of TransIEMD within the landscape of WPF. However, direct
comparisons are complicated due to disparities in the datasets and forecast horizons. For a
balanced comparison across different models, we use the normalized MAE (nMAE) and
normalized RMSE (nRMSE), which are adjusted relative to the maximum installed capacity
Pmax. According to Table 4, TransIEMD shows competitive performance in terms of the
nMAE and nRMSE for the 4 and 8 h forecast horizons, where the existing models are
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evaluated for only up to 1 h. Moreover, TransIEMD outperforms the stacked RNN PSAF
model [16] in terms of R2.

Table 4. Performance comparison between TransIEMD and existing WPF models. Both metrics,
nMAE and nRMSE, are calculated based on data from the referenced studies.

Model Dataset Forecast Horizon (Hours) nMAE nRMSE R2

VMD-ConvLSTM-LSTM [14] A wind farm in China
0.25 2.20% 2.47% /
0.5 4.20% 4.87% /
1 3.73% 4.93% /

Stacked RNN-PSAF [16] NREL 1 3.01% 5.98% 0.7847

TransIEMD NREL 4 6.11% 7.39% 0.888
8 7.57% 9.27% 0.837

TransIEMD substantially enhances WPF by extending the forecast horizon up to 24 h,
considerably longer than the existing models. Additionally, the model employs a non-
autoregressive approach that outputs all forecast steps simultaneously, effectively reducing
error propagation. TransIEMD integrates IEMD with cross-attention mechanisms. This
allows the model to effectively capture the inherent volatility and non-stationarity of wind
energy data, surpassing existing approaches. These features mark substantial theoretical
and practical advancements in the field of WPF.

5.2. Extensions

The proposed TranIEMD model, designed for horizontal-axis wind turbines (HAWT),
shows potential for adaptation to vertical-axis wind turbines (VAWT) [42] due to its data-
driven nature. The successful retraining of TransIEMD for VAWTs would require abundant
data, including temporally aligned NWP and power outputs specific to VAWTs. Adapting
TransIEMD to VAWTs will bring some challenges, such as addressing their capability to
capture wind from all directions and the complexities involved in simulating such wind
fields [42]. Consequently, conducting comprehensive studies to fine-tune the model is
crucial in ensuring reliable WPF on VAWTs.

TransIEMD enhances the accuracy of WPF, thereby reducing the uncertainties associ-
ated with wind’s variability and potentially aiding in the assessment of the wind resource
potential. This model offers an improvement over the conventional wind power curves
used for energy estimation, as detailed in [43], by incorporating more comprehensive mete-
orological observations for more precise results. However, despite these advancements, the
current design and technical constraints of TransIEMD do not facilitate the direct integra-
tion of environmental impact assessments. Specifically, it does not evaluate the suitability
of locations for wind farm development in terms of environmental impact.

5.3. Advantages and Limitations of TransIEMD

The TransIEMD model presents several advantages that enhance its utility in WPF.
First, it integrates IEMD with the Transformer architecture, significantly improving the
accuracy for short-to-medium-term predictions by skillfully capturing dynamic wind
patterns. Second, TransIEMD scales effectively with large data volumes, making it suitable
for industrial applications. Additionally, its versatility allows it to be adapted for various
forecasting tasks beyond wind power.

However, deploying TransIEMD has its challenges. The computational demands are
substantial, often requiring high-performance computing resources like GPUs, which may
not be feasible for all applications. Moreover, the setup and tuning of TransIEMD demand
technical expertise, potentially hindering its adoption by practitioners without extensive
data science knowledge. Lastly, the performance of TransIEMD heavily relies on the quality
and granularity of the training and input data, limiting its effectiveness in scenarios where
high-quality data are scarce.
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5.4. Future Works

To further improve the prediction accuracy of WPF, our future work will explore
two main strategies. According to machine learning theory, only structural errors can
be minimized and not those arising from noise. Thus, implementing an error correction
approach could effectively improve the accuracy. We aim to identify distinct error patterns
and develop specialized error correction models for each identified pattern, potentially
employing ensemble models to enhance these efforts. Secondly, we intend to investigate
state space models to more accurately capture the dynamic behaviors of wind. This
approach differs from the methods used in previous studies, such as the one outlined
in [44], and promises a more nuanced understanding of the wind dynamics.

6. Conclusions

This study introduces and validates TransIEMD, a novel model for short-to-medium-
term WPF. TransIEMD integrates IEMD with a cross-attention mechanism to address the
challenges associated with grid integration and dispatching wind energy. An evaluation
on the publicly accessible NREL dataset reveals that TransIEMD surpasses baseline models
in terms of forecasting accuracy across forecast horizons of 4, 8, 16, and 24 h. These results
affirm the effectiveness of TransIEMD in solving the key challenges of short-to-medium-
term WPF, directly responding to the central research question of this study.

This research has yielded several important insights.

• The usage of IEMD for the decomposition of the WS notably improves the signal
predictability, supported by the ablation analysis detailed in Section 4.6. The IEMD-
based tokenizer is pivotal in boosting the accuracy and reliability of the model.

• DEM allows the model to capture the intrinsic dynamic patterns within the data,
contributing to enhanced performance, as evidenced in Table 3. The distinct views pro-
vided by the tokenizer and DEM enable sophisticated interactions in cross-attention,
improving the WPF accuracy.

• TransIEMD demonstrates superior and consistent forecasting performance across
various tasks compared to other models. This advantage is demonstrated in the error
distribution analysis in Section 4.5, where TransIEMD exhibits both lower median
errors and narrower error distributions than its competitors.

In conclusion, TransIEMD presents a significant advancement in the accuracy of
short-to-medium-term WPF, offering a refined methodological approach with substantial
implications for future wind energy management strategies.
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Abbreviations
The following abbreviations are used in this manuscript:

ARIMA Autoregressive Integrated Moving Average
EMD Empirical Mode Decomposition
GRU Gated Recurrent Unit
GT Ground Truth
HAWT Horizontal-Axis Wind Turbine
hPa Hectopascals
IEMD Improved Empirical Mode Decomposition
KS Kolmogorov–Smirnov
MAE Mean Absolute Error
MB Megabytes
MLP Multi-Layer Perceptron
MW Megawatts
PSAF Parametric Sine Activation Function
PV Photovoltaic
RMSE Root Mean Square Error
RNN Recurrent Neural Network
rRMSE Relative RMSE
VAWT Vertical-Axis Wind Turbine
VMD Variational Mode Decomposition
WPF Wind Power Forecasting
WD Wind Direction
WS Wind Speed
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