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Abstract: Porous carbon materials (PCs) were prepared via hydrothermal carbonization from calcium
lignosulfonate (CL) based on enzymatic hydrolysis and alkali activation. The effects of enzymatic
hydrolysis and different KOH feeding ratios on the structure and electrochemical properties of
enzymatic hydrolysis CL (EHCL)-derived PCs were evaluated in detail. The results showed that the
EHCL-derived PCs showed a higher SSA than that of CL. When the mass ratio of KOH/EHCL was
3/2, the PCs exhibited a honeycomb-like microscopic morphology with a specific surface area of up
to 1771 m2/g and a 3D hierarchical porous structure composed of abundant micropores, mesopores,
and macropores. As an electrode in a supercapacitor, the highest specific capacitance was 147 F/g at
a current density of 0.25 A/g, and it maintained 78% of the initial value at a high current density of
10 A/g. The excellent electrochemical cycle and structural stability were confirmed on the condition
of a higher capacitance retention of 95.2% after 5000 times of galvanostatic charge/discharge. This
work provides a potential application of CL in high-performance supercapacitors.

Keywords: calcium lignosulfonate; enzymatic hydrolysis; alkali activation; hierarchical porosity;
supercapacitors

1. Introduction

As a basic demand for social progress and development, the energy demand in
transportation, electronics, smart devices, and other fields of the world has significantly
increased in recent years, and new energy technologies have gradually become the focus of
researchers [1,2]. Relatively clean energy conversion technologies such as new batteries
and supercapacitors are considered to be the key to solving the future energy crisis [3,4].
Among these, supercapacitors with higher power densities, high-efficiency energy storage
systems, and excellent durability have attracted relatively strong attention, and have been
widely used in electronic equipment in daily life, national defense, and military fields [5,6].
These green and sustainable energy storage devices can effectively avoid the excessive
consumption of fossil raw materials—especially high-efficiency, environmentally friendly,
and low-cost supercapacitors with excellent performance—because most carbon source
materials are currently related to fossil fuels such as ethanol, acetylene, and pyridine [7,8].
Biomass energy has a large storage capacity, low development cost, and low environmental
pollution in nature, and it is crucial to switch to bio-renewable carbon sources [9]. Gener-
ally, the performance of supercapacitors is mainly determined by their electrode materials,
and high-performance electrode materials can endow superelectric devices with a higher
energy density [10]. Carbon materials have been the research focus in the field of electrode
materials due to their high stability and preferred electrical conductivity. Importantly,
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their structural adjustability makes it possible to obtain porous carbon materials with a
high specific surface area (SSA) and an ideal pore structure [11–13]. Compared with other
new carbon-based electrode materials (nano-onions, nanotubes, nanospheres, aerogels,
graphene, etc.), porous carbon has the advantages of a wide source of precursors, des-
ignability of diversified morphology, relatively simple preparation process, and low cost,
resulting in the main direction for the future development of supercapacitor electrode
materials [14–16].

Compared with fossil fuels and their derivatives, the use of sustainable, inexpen-
sive, and environmentally friendly bio-based materials to prepare porous carbons is more
attractive [17,18]. Biomass materials as new energy are mainly composed of polysac-
charides, lignin, proteins, chitin, nanocellulose, and wood, which can be modified by
physical or chemical methods to prepare renewable carbon materials in the presence of
an activator [19–23]. As an amorphous polymer, lignin is a type of natural biomass fuel
with abundant reserves on earth, and its molecular structure endows it with a high carbon
content. At present, lignin and its derivatives are the primary by-products of the paper
industry, with an amazing output in the world every year. The main treatment method
is to directly burn it to recycle new energy, but this also causes serious environmental
pollution [24,25]. The molecular unit of lignin is based on hydroxyphenylpropane, which
is linked by carbon–carbon bonds or other chemical bonds [26]. This type of high-carbon
macromolecular structure makes lignin widely used in the field of flame-retardant poly-
mers [27,28]. Moreover, the chemical composition of lignin includes three propane-type
phenol units, and this macromolecule with a high carbon content is an ideal precursor for
preparing porous carbon materials. In recent years, low-cost lignin-derived carbon materi-
als have also been used in dye adsorption, titanium dioxide capture, and energy storage
technology to explore potential ways to solve environmental and climate problems [29–31].
Compared with pure lignin and lignosulfonates, the enzymatic hydrolysis of lignin has
no influence on its main chemical structure; the carbon skeleton can be doped with some
nitrogen and oxygen at the same time, which has been demonstrated to be an effective
approach to enhance the hydrophilicity and electrochemical performance of lignin-derived
carbon materials [32,33].

Unlike the metal oxide click materials used in most pseudocapacitors, carbon-based
materials mostly feature double-layer capacitance, in which electrostatic charges are ac-
cumulated and released in the electric double-layer formed at the interface between the
electrode and the electrolyte [34–36]. This type of electric double-layer capacitor (EDLC) is
expected to overcome the poor cycle stability and poor conductivity of pseudocapacitors,
and has a high-cost performance [37]. Nevertheless, SSA and hydrophilicity are important
indicators of EDLC electrode materials, and hydrophilic porous structures with a high
SSA can increase the contact area of electrodes and electrolytes and provide enough reser-
voirs and smooth channels for electrolyte diffusion and ion transport [38,39]. Although
traditional porous carbon materials (PCs) have a high specific surface area, the pore size
distribution (0.5–1.1 nm) of their microporous structure is usually narrow, which leads
to a poor rate performance due to the nanoporous structure, severely limiting the ion
diffusion [40]. Materials such as carbon nanotubes (CNTs), graphene, and carbon fibers
(CFs) have been often used as a support for flexible electrode materials, and the surface
needs to be chemically modified to reconstruct a suitable porous structure [41–43]. In terms
of improving the double-layer capacitance rate performance, novel PCs with hierarchical
porosity have more advantages in the field of double-layer capacitors than those with a
uniform pore size distribution [44]. Specifically, macropores can provide reservoirs for
ion buffering, mesopores can shorten the distance that ions are transported to internal
channels, and micropores can provide more ion accumulation sites. The preparation of
PCs with hierarchical porosity by the template method is the common method reported in
the literature. The template materials involved include zeolite, silica, and metal–organic
frameworks [45–47]. However, the complex synthetic steps and expensive price of these
template materials make them unable to be mass-produced.
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It has been fully proved that chemical activation also provides a facile and effective
method to obtain porous structures with a high SSA. For example, under an inert gas
environment, carbon precursors can be mixed with KOH, K2CO3, etc., and then pyrolyzed
to produce a porous structure through multiple chemical and physical reactions at high
temperatures [48]. Among them, template-free KOH pore-forming technology is regarded
as relatively easy and inexpensive to produce a carbon material with hierarchical porosity, in
which the pore structure and electrochemical properties tend to be more dependent on the
precursor and KOH feed ratio [49]. In addition to the type of activator and activation process
parameters, the intrinsic structure difference of precursors also leads to the diversification
of the PCs’ microstructure during carbonization [50,51]. Generally speaking, precursors
with smaller molecular weights are beneficial to the formation of carbon materials with a
high porosity, improving the graphitization degree when under direct carbonization. The
decomposing enzyme contained in the bacterial strain can effectively reduce the molecular
weight of lignin. It has been reported that the biotransformation of lignin to lipids, adipic
acid, and polyhydroxyalkanoate can be easily realized in the presence of some bacteria [52].

Calcium lignosulfonate (CL), as the main by-product of the paper industry, is often
used as a multi-component polymer anionic surfactant. CL may also be preferred as a more
ideal precursor of porous carbon materials than lignin, which endows it with a potential
application in porous carbon electrode materials for supercapacitors [53]. A large number of
natural small molecular compounds and calcium ions in CL act as a template and activating
synergist, respectively, which promotes the development of the pore structure in PCs [54].
Laccase is a type of commonly used lignin-degrading enzyme, which is widely distributed
in plants, insects, fungi, and bacteria. Enzymatic hydrolysis lignin shares a similar chemical
composition to that of native lignin, and nitrogen and oxygen can be doped to the carbon
skeleton through biological fermentation during the enzymatic hydrolysis process, thus
enhancing the hydrophilicity of carbon materials and introducing pseudocapacitance [55].
For CL, in addition to the above advantages, the deep degradation of CL by laccase can
also improve the uniformity of calcium ion distribution in CL, obtaining a more ideal
pore structure.

Hence, in this work, hierarchical PCs were prepared from low-cost calcium ligno-
sulfonate (CL) by combining enzymatic hydrolysis and KOH activation. Firstly, CL was
enzymatically hydrolyzed with laccase to depolymerize the macromolecules and promote
carbonization. Secondly, the enzymatic hydrolysis CL (EHCL) obtained was carbonized
in the presence of KOH to generate 3D hierarchical PCs composed of abundant cross-
linked macropores with incalculable micropores and mesopores based on the template-free
method. The prepared PCs were subsequently used as EDLC electrodes in liquid elec-
trolytes, and the effect of enzymatic hydrolysis and the lignin/KOH feed ratio on the
microstructure and electrochemical performance was investigated in detail. This work
promotes the application of low-cost biomass resources in supercapacitors. The preparation
of 3D-structured hierarchical PCs is an ideal approach to broaden the application field of
lignin and its derivatives.

2. Materials and Methods
2.1. Materials

The calcium lignosulphonate (CL; industrial grade) was supplied by Gongyi Shengshi
Refractories Co., Ltd. (Gongyi, Henan, China). Potassium hydroxide (AR), sulfuric acid
(98 wt%), and hydrochloric acid (36–38 wt%) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Laccase (99 wt%) was bought from Tianjin Mingshi
Biotechnology Co., Ltd. (Tianjin, China). Poly(vinylidene fluoride) (PVDF; 9000 HD) was
supplied by Arkema Inc. (Serquigny, France). All raw materials and reagents were used
directly without any pretreatment.
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2.2. Preparation of Enzymatic Hydrolysis Calcium Lignin (EHCL)

In a 500 mL three-necked flask, 10 g of CL was mixed with 100 mL of HCl (pH = 4), and
then 1 mL of laccase was added. After full dissolution, the solution was continuously stirred
at 50 ◦C for 6 h under nitrogen protection. After the reaction, the product—enzymatic
hydrolysis calcium lignin (EHCL)—was filtrated and repeatedly washed with ultrapure
water, followed by drying to a constant weight at 80 ◦C.

2.3. Preparation of KOH-Activated PCs

In an alumina ark, 3 g of EHCL and 50 mL of 5 wt% H2SO4 were introduced. After thor-
ough mixing, the ark was placed in an oven at 180 ◦C for 24 h for pre-carbonization and then
naturally cooled to room temperature to afford hydrochar. After being washed and purified
by ultrapure water, 2.4 g of acid-treated EHCL hydrochar and KOH (KOH/EHCL = 1:2,
2:3, 1:1, and 3:2) were mixed and then evenly ground in a planetary ball mill. During the
grinding process, about 50 mL of ultrapure water was added to form a uniform slurry.
Subsequently, under nitrogen protection, the slurry was heated up to 300 ◦C and kept
for 2 h, and then further heated up to 800 ◦C at 5 ◦C/min. After carbonization at 800 ◦C
for 3 h, the residual samples were cooled, washed with HCl (4 mol/L) several times, and
thoroughly washed with ultrapure water to neutrality. The prepared PCs were completely
dried at 120 ◦C in an oven and named EHCL-Ka, EHCL-Kb, EHCL-Kc, and EHCL-Kd.
Meanwhile, CL was directly activated with KOH under a mass ratio of 3/2 (KOH/CL) to
prepare the comparative sample, which was named CL-K.

2.4. Preparation of Solid Electrolyte

The supercapacitor electrodes were prepared according to the method reported previ-
ously [32]. Typically, the EHCL-Ks (‘s’ indicates a, b, c, and d), poly(vinylidene fluoride)
(PVDF), and acetylene black (mass ratio of 8:1:1) were mixed with 10 mL of ethanol to form
a homogeneous slurry and then molded together with foamed nickel at 3 mPa. Finally,
the volatile product was thoroughly removed in a vacuum oven at 100 ◦C to obtain the
solid electrolyte.

2.5. Characterization

Fourier transform infrared (FTIR; Avatar 460, Thermo Nicolet, Madison, WI, USA) was
performed to confirm the chemical composition at a frequency range of 500–4000 cm−1 in
transmission mode. Raman spectra (Raman, DXR, Thermo Scientific, Waltham, MA, USA)
and X-ray diffraction (XRD; XRD-6000, Shimadzu, Kyoto, Japan) were used to confirm the
physical structures. The microstructure observation of carbon materials was performed
using scanning electron microscopy (SEM; JSM-6360LA, JEOL, Tokyo, Japan). The SSA
values of different carbon materials were determined by nitrogen adsorption–desorption
at 77 K on a TriStar II 3020 micropore analyzer (Micromeritics, Norcross, GA, USA) after
degassing at 150 ◦C for 12 h. The SSA and PSD values were calculated based on the
Brunauer–Emmett–Teller (BET) density functional theory (DFT) method. The average
molecular weights of CL and EHCL were determined by gel permeation chromatography
(GPC). A sodium nitrate aqueous solution of 0.1 mol/L and sodium polystyrene sulfonate
with a narrow distribution were used as the eluent and reference, respectively.

The electrochemical performance measurement was tested using three–electrode sys-
tems under ambient conditions on an electrochemical workstation (CHI660E, Shanghai
Chenhua Instruments, Shanghai, China), and the cyclic voltammetry (CV), galvanostatic
charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) curves were
recorded. The mass loading of the active material in the PC electrode was about 1.0 mg/cm2.
A total of 6 M KOH and platinum foil containing Hg/HgO were used as the reference and
counter electrode, respectively, and formed a three–electrode system with the PC electrode.
The CV curves were recorded at an operating voltage from −0.2 to −1 V, EIS was conducted
in the frequency range of 10 mHz to 100 kHz, and the GCD curves were recorded on a
LAND CT2001A tester. The gravimetric specific capacitance was obtained from the GCD
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tests via the following equation (Equation (1)), where C was the specific capacitance (F/g),
I was the discharge current (A) during the GCD test, ∆t was the discharge time, ∆V was
the potential change during the discharge, and m was the weight of the PC electrode.

C = (I × ∆t)/(∆V × m) (1)

The electrochemical performance of EHCL-Kd was also evaluated by a two−electrode
system using an assembled symmetrical supercapacitor. In a coin cell, two identical
working electrodes were separated by a filter paper separator (the active material load of
a single electrode is 3 mg). The electrochemical performances were also determined by
the CV and GCD results. The specific capacitances were calculated using the following
equation (Equation (2)), where m was the mass of the loading of EHCL-Kd on a single
working electrode.

C = 2(I × ∆t)/(∆V × m) (2)

The energy density E (Wh/kg) and power density P (W/kg) were calculated based on
the following equations (Equations (3) and (4)).

E = C × ∆V2/(2 × 4 × 3.6) (3)

P = 3600 × E/∆t (4)

3. Results

SEM characterization was carried out to investigate the morphology of the different
precursors and carbon materials. As seen in Figure 1a,b, the surface of CL presented an
uneven, porous (1–4 µm), and rough morphology, and the CL-derived hydrochar presented
many broken carbon balls (Figure 1c,d). After enzymatic hydrolysis, EHCL exhibited a
relatively smooth surface with an obviously decreased particle size (Figure 1e,f), and the
structure of the EHCL-derived hydrochar was significantly looser compared with that of CL
(Figure 1g,h). The hydrochar derived from CL and EHCL exhibited dramatically different
microstructures, which indicated that enzymatic hydrolysis had a significant effect on the
carbonization process. The EHCL-derived hydrochar was almost completely composed
of carbon blocks with a regular carbon skeleton, higher surface area, and smooth surface.
The microstructures of CL-K and EHCL-Kd were further compared (Figure 1i–l). CL-K
exhibited collapsed structures with irregular holes, and the inner surface of these holes was
distributed with individual small holes with irregular structures (Figure 1i,j). Compared
with the EHCL-derived carbon materials, the particles of EHCL-Kd were further loosened
and refined, and the single particle showed a distinct porous structure (Figure 1k). In the
high-resolution image (Figure 1l), EHCL-Kd presented a honeycomb-like microstructure
with a smooth pore wall, interconnected pores, and hierarchical porosity. Macropores with
diameters of 100–450 nm could be observed from the high-resolution SEM images, and
were interconnected by a large number of mesopores with diameters of 20–80 nm. The
SEM results directly demonstrated that enzymatic hydrolysis combined with an alkali
catalysis was the necessary step to convert CL into 3D hierarchical porous carbons through
the hydrothermal carbonization process.

The morphology and microstructure of EHCL-Kd were also analyzed by the TEM
method, and Figure 2 shows the TEM images of EHCL-Kd with different magnifications. In
Figure 2a, EHCL-Kd presents a two-dimensional gauze-like structure similar to graphene,
which promoted the formation of mesopores. In Figure 2b, at a higher magnification,
parallel graphene lattice stripes can be observed around the mesopores, which were formed
from the aromatic ring of CL at a high temperature. This two-dimensional structure rich
in nanopores could optimize the transport and storage of ions, and the graphite structure
could improve the electron transport ability of PCs.
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The above morphology analysis results indicated that the carbon skeleton of EHCL-Kd
contained abundant mesopores and micropores as well as interconnected macropores,
in which the micropores and mesopores were evenly distributed on the surface of the
macropores. This unique 3D structure with a high SSA enlarged the electrode/electrolyte
contact interface for EDLCs. Importantly, with the contribution of hierarchical porosity,
the high SSA could significantly improve the electrochemical performance. Micropores,
mesopores, and macropores play a role in promoting charge accumulation, accelerating ion
diffusion, and providing storage buffering space for ions.

The changes in the chemical groups of CL before and after enzymatic hydrolysis
were compared by FTIR, and the results are shown in Figure 3a. For CL, 3370 cm−1 was
the O−H stretching vibration; 2949 and 2837 cm−1 belonged to the antisymmetric and
symmetric stretching vibration of C-H in the methoxy group, respectively; and the benzene
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ring skeleton vibration gave two peaks at 1595 and 1515 cm−1. The area near 1421 cm−1

was related to the C-H bending vibration. The two sharp peaks at 1163 and 1044 cm−1

corresponded with the sulfonic acid group, and the C-S stretching vibration was found
at 641 cm−1. In the spectra of EHCL, the characteristic peak corresponding with O-H
near 3400 cm−1 still existed after enzymatic hydrolysis, and the characteristic peaks at
2937 and 2844 cm−1 corresponding with C-H became more obvious. Meanwhile, a new
peak of C=O appeared at 1699 cm−1, which was mainly from the laccase molecule. The
peak at 1600 cm−1 was assigned to the benzene ring skeleton connected with the polar
groups; 1508 cm−1 was the superposition peak of the benzene ring, C=C, and O-H. The
area in the range of 1320–1470 cm−1 was the overlapping peaks of a series of groups,
mainly including the O-H bending and the in-plane bending of C-H in C=CH. The peak at
1217 cm−1 corresponded with the asymmetric stretching of =C-O-C connecting the benzene
ring, and 831 cm−1 was caused by the out-of-plane vibration of C-H in the multi-substituted
benzene ring. Comparing the FTIR spectra of CL and EHCL, it was found that characteristic
peaks such as C-H, the benzene ring, and C-O related to organic components in EHCL
were more obvious. Therefore, it could be speculated that enzymatic hydrolysis led to
the degradation of chlorine and a reduction in the average particle size. It could be seen
from the GPC results of CL and EHCL that enzymatic hydrolysis reduced the average
molecular weight of CL by about 11%, and the polydispersity index decreased from 1.15 to
1.05 (Figure S1).
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The differences in the carbonization process of CL and EHCL were compared by TGA
(Figure 3b,c). In general, the activation degree of the lignin chemical bonds in CL was
relatively high, so the TGA curve had a wide range of weight loss at 100–900 ◦C, containing
three stages [56]. The first stage, lower than 200 ◦C, was mainly due to the removal of
moisture in the CL, which resulted from the cleavage of some hydroxyl-containing side
chains. The violent decomposition stage after 200 ◦C lasted until about 490 ◦C, which was
mainly due to the decomposition of a large number of heat-labile aliphatic chains. As these
side chains contained hydroxyl groups and carbonyl-containing groups, the decomposition
generated a large amount of H2O, CO2, CO, etc., resulting in a higher weight loss ratio.



Energies 2023, 16, 3824 8 of 17

Finally, the third stage, in the range of about 550–800 ◦C, appeared when most of the oxygen-
containing groups cracked and deoxygenated. In this main carbonization stage, the residual
substances and C-C and C-H in the benzene ring were further degraded to form charcoal
residue through the deprivation of hydrogen [57]. After enzymatic hydrolysis, the weight
loss ratio in the first stage of EHCL significantly increased, which was possible because
a large number of long branches were destroyed into shorter ones during the enzymatic
hydrolysis process with lower thermal stability. At the same time, the weight loss ratio of
the second stage was relatively lower than that of CL. In addition, the carbonization stage
of EHCL advanced; two weight loss peaks corresponding with the pyrolysis appeared on
the DTG curve of EHCL and a weak deep carbonization peak was found at about 800 ◦C.
All the changes in the TG and DTG curves demonstrated that the enzymatic modification
of CL could promote carbonation.

The crystal structures of the CL- and EHCL-derived hydrochars were compared with
an XRD analysis. Figure 3d shows the XRD patterns of the above two hydrochars. Both of
them showed broad amorphous carbon and sharp graphitized carbon diffraction peaks at
around 23◦ (002) and 44◦ (100) [58]. The peak at 23◦ of EHCL shifted to a lower diffraction
angle compared with that of CL, which proved that the interlayer spacing of the carbon
layer increased, possibly resulting from the doping of N elements during the enzymatic
hydrolysis process. The crystal structures of the two hydrochars were further proved by
Raman spectroscopy. As shown in Figure 3e, the Raman spectra of the two hydrochars both
showed D and G peaks at about 1345 and 1580 cm−1, corresponding with disordered and
graphitized carbon, respectively [59]. It was calculated that the value of ID/IG reduced
from 1.1 of CL to 0.96 of EHCL, indicating that enzymatic modification could increase
the graphitization degree of carbon materials due to the lower molecular weight and
distribution of EHCL [60].

The structural differences between the CL- and EHCL-derived hydrochars were fur-
ther compared by nitrogen adsorption–desorption isotherm experiments, and the results
are shown in Figure 3f. It could be seen that both carbon materials showed typical type
II adsorption isotherms with a lower N2 adsorption quantity, according to the IUPAC
classification. In the low-pressure region of p/p0 < 0.01, the sharp increment in the slope
of the curves suggested that there were a certain number of micropores in both carbon
materials. A hysteresis loop was observed in the region of p/p0 of 0.4~0.6 without lim-
iting adsorption in the high-pressure region, indicating the formation of mesopores and
macropores. Remarkably, the larger hysteresis loop of EHCL indicated that the carbon
skeleton structure was looser, and more mesopores and macropores were associated with
the EHCL-derived carbon material. The EHCL-derived carbon material exhibited a higher
SSA than that of CL (Table 1), and the BET SSA increased from 194 to 307 m2/g. In addition,
it was found that enzymatic hydrolysis could simultaneously increase the micropores and
mesopores as well as the average pore size.

Table 1. Porosity characteristics of different carbon materials.

Sample SBET (m2/g) Vtotal (cm3/g) Vmicro (m3/g) Vmeso (m3/g) Vmicro/Vtotal (%) D (nm)

CL 194 0.11 0.08 0.01 73 2.97
EHCL 307 0.18 0.13 0.03 72 3.94

EHCL-Ka 779 0.51 0.25 0.02 49 3.73
EHCL-Kb 1576 0.62 0.38 0.05 61 2.88
EHCL-Kc 1605 0.81 0.56 0.08 69 3.10
EHCL-Kd 1771 1.17 0.74 0.12 73 3.22

CL-K 1217 0.53 0.33 0.06 62 2.18

Under the same carbonization conditions, the effect of enzymatic hydrolysis on car-
bonization products was compared (Figure 4). The XRD and Raman spectra showed the
amorphous structure of the two samples (Figure 4a,b). It can be seen from Figure 3c that
EHCL-Kd exhibited a smaller average particle size than CL-K, which was consistent with



Energies 2023, 16, 3824 9 of 17

the SEM results. The difference between the structure of EHCL-Kd and CL-K was revealed
by adsorption–desorption isotherms (Figure 4d). The isotherm curve of CL-K exhibited a
type IV hysteresis loop without an apparent saturated adsorption plateau, corresponding
with the irregular pore structure. The XRD and Raman results were also in accordance with
the SEM images. Moreover, CL-K owned a lower quantity of absorbed product, suggesting
that the SSA was lower than that of EHCL-Kd (Table 1). Conversely, EHCL-Kd transformed
into a type I isotherm with a higher adsorption capacity, which was due to the more regular
honeycomb-like pore structure with hierarchical porosity (Figure 1k,l).
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The effect of the KOH/EHCL feed ratio on the structure of EHCL-derived PCs was also
researched. Figure 5a shows the XRD patterns of the PCs in the wide-angle region under
different KOH/EHCL feed ratios, and all spectra showed amorphous and graphitized
carbon diffraction peaks at 22◦ (002) and 44◦ (100), as expected. However, the diffraction
peak intensity at 44◦ was markedly decreased when compared with that of the EHCL-
derived carbon materials, which may have been due to the increase in disorder resulting
from the formation of micropores by KOH activation. Increasing the KOH/EHCL feed ratio
gradually enhanced the peak intensity at 44◦, which increased the graphitization degree.
The structure of the EHCL-derived PCs was further confirmed by Raman spectroscopy
(Figure 5b). D and G peaks appeared at 1330 and 1560 cm−1 in all spectra, corresponding
with disordered carbon and SP2-hybridized graphitized carbon, respectively. Meanwhile,
with the increase in KOH dosage, the ID/IG decreased from 0.98 to 0.91, confirming
that the graphitization degree gradually increased. The collapse and rearrangement of
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a framework during pyrolysis is beneficial to improve the graphitization degree and the
electrical conductivity of PCs.
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Figure 5c shows the particle size distribution of different PCs. When increasing the
KOH dosage, the particle size distribution of carbon materials significantly decreased with
a gradual increase in the pore volume, which was beneficial to improve the contact area
between the electrode and electrolyte, promoting the diffusion of ions in the internal pores
of the electrode. The diversity in the structure of PCs under different KOH dosages was
further revealed by nitrogen adsorption technology.

Figure 5d shows the isotherm nitrogen adsorption–desorption curves of different
PCs, and the relevant pore data are listed in Table 1. Compared with the EHCL-derived
carbon materials, the KOH activation significantly increased the N2 adsorption capacity,
and the curve gradually transformed from type II to type IV, and finally to type I, with
evident plateaus with the increase in the KOH/EHCL feed ratio. It suggested that KOH
could increase the content of pores, especially the micropore content in carbon materials.
As the amount of KOH increased, some micropores were squeezed and deformed, and
collapsed by the nearby macropores or mesopores due to the uneven pore size distribution,
causing the curve to transform into a type IV characteristic. When the amount of KOH
was further increased, the adsorption capacity of the curve in the low-pressure region
(p/p0 < 0.01) significantly increased, proving that the proportion of microporous structures
in the PCs was further increased. The relatively uniform distribution could stabilize the
micropore so that it was not prone to collapse, which corresponded with the characteristics
of type I. It can also be seen from Table 1 that the BET SSA and pore volume increased from
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779 m2/g and 0.51 cm3/g to 1771 m2/g and 1.17 cm3/g, respectively, with the increase in
the KOH/EHCL ratio. EHCL-Kd showed the highest contents of the total pore, micropore,
and mesopore volume than the others, in which the increased mesopore number facilitated
the diffusion of ions through the pores [61].

The electrochemical performances of EHCL-based PC electrodes were investigated by
a three–electrode configuration, and CV, GCD, and EIS tests were performed in a 6 M KOH
aqueous solution. The CV curves of carbon material electrodes at different KOH/EHCL
feed ratios are shown in Figure 6a; all the curves showed a similar rectangular shape,
with broadening oxidation-reduction peaks appearing in the range of −0.9 to −0.3 v. The
above results implied that the EHCL-derived PC electrodes were dominated by EDLC
behavior, whilst the corresponding pseudocapacitive behavior was caused by some oxygen-
containing functional groups [62]. Among all samples, the CV curve of EHCL-Kd showed
the largest area, indicating the best capacitance performance. This was mainly attributed
to EHCL-Kd exhibiting the largest SSA, with a unique hierarchical pore size distribution,
higher mesopore volume, and an appropriate graphitization degree. Figure 6b shows the
GCD curves of different PC electrodes; all curves were approximately isosceles triangles,
which further proved the dominating EDLC behavior. Unlike the charging process, the
discharge lines of all samples were not perfectly linear and the curvature corresponded
with a broadening peak in the CV curve. As expected, EHCL-Kd exhibited the longest
charge–discharge time at a current density of 1 A/g, which was consistent with the CV test
results. Based on Equation (1), the specific capacitance changes of different PC electrodes
under different current densities were calculated, according to the corresponding GCD
results (Figure 6c). EHCL-Kd exhibited the largest specific capacitance of 147 F/g at
0.25 A/g and maintained 78% of the initial value at 10 A/g, which indicated its excellent
rate performance. Electrolyte ions were first stored in the macropores in EHCL-Kd, and
then quickly entered the electrode through the mesopores and smooth pore walls [63].

The capacitive behavior of different PC electrodes during charge storage was further
tested by EIS (Figure 6d). In the low-frequency region (magnified figure), the EHCL-Kd
electrode distinctly exhibited an almost perpendicular line to the real axis, indicating
a relatively low mass transfer hindrance. The higher mesoporous ratio became a low-
resistance pathway for electrolyte ion diffusion, and the excellent EDLC properties of the
electric layer enabled the fast transport of ions in the electrolyte to the inner pores. A
smaller semicircle radius of EHCL-Kd in the high-frequency region indicated its lower
interfacial charge transfer resistance. The factors affecting ohmic resistance are not only
the resistance of the electrolyte, current collector, active material, coin cell, and separator,
but also the contact resistance between the current collector and active material, which
could be evaluated by the first intercept value on the real axis. It was known from the
EIS curves that the ohmic values of the EHCL-based supercapacitors were 0.83, 0.72, 0.62,
and 0.51 Ω, respectively. In addition, the equivalent series resistance of different carbon
electrodes could be calculated as 3.5, 2.8, 2.5, and 1.4 Ω, respectively, according to the
shorter Warburg-type line (45◦ slope) in the high-frequency region, indicating a faster ion
diffusion rate in the EHCL-Kd electrode due to the larger SSA and hierarchical porous
structure [64].

The effect of the 3D structure of EHCL-Kd on the electrochemical performance was
further confirmed (Figure 7). The CV curves of EHCL-Kd maintained a rectangular-
like shape at different scan rates from 10 to 200 mV/s, which indicated the main EDLC
characteristics and preferred rate capability. The GCD curves of EHCL-Kd exhibited in
Figure 7b showed high linearity and symmetry at different current densities, demonstrating
its excellent electrochemical reversibility and coulombic efficiency. As shown in Figure 7c,
the cyclic stability of EHCL-Kd was also evaluated by consecutive GCD for 15,000 cycles
at 10 A/g. After 15,000 cycles, the specific capacitance maintained 95.3% of the initial
value, indicating that the charge–discharge process was highly reversible. The GCD curve
remained close to its initial shape after 15,000 cycles, which also indicated high cycle
durability. In Figure 7d, when using EHCL-Kd as the electrode in an aqueous electrolyte
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for the symmetric supercapacitor, the highest energy density was 3.3 Wh/kg at a power
density of 25 W/kg, and maintained 2.0 Wh/kg at 2 kW/kg.
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Based on symmetrical two−electrode supercapacitors, the electrochemical properties
of the EHCL-Kd electrode were also evaluated (Figure 8). In the scanning rate range of
10–200 mVs, the CV curve of the device based on EHCL-Kd had a symmetrical rectangular
shape. At the same time, due to its good capacitance behavior and rate performance, the
current response rate of the device was faster when the voltage was reversed (Figure 8a).
As shown in Figure 8b, when the current density gradually increased from 0.5 A/g to
10 A/g, the GCD curve of the device presented approximate isosceles triangles, which
further reflected its excellent capacitance performance. Figure 8c shows the cyclic stability
of the device. As expected, after 10,000 cycles, the GC curve had no obvious change and its
specific capacitance retention rate remained above 98%, which further proved the cyclic
stability of the device.

The corresponding electrochemical performances of CL-K were carried out to compare
them with those of EHCL-Kd (Figure S2). The irregular hole structure and lower SSA of
CL-K led to a poor electrochemical performance. These results strongly suggested that
enzymatic hydrolysis combined with the alkaline activation method was an essential step
to convert CL into 3D hierarchical PCs for high-performance supercapacitor electrodes. Fur-
thermore, the above electrochemical properties were compared with those of the reported
biochar electrodes in a three–electrode system, and are summarized in Table 2 [65–69]. It
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was found that, in terms of specific capacitance, rate performance, and cycle stability, our
work was superior to that of other reported bio-based carbon material electrodes.
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Table 2. Comparison of capacitive performance of EHCL in a three–electrode system.

Biomass
Precursor

Current
Density (A/g)

Capacitance
(F/g) Rate Capability Capacitance Retention Ref.

Sugarcane bagasse 0.5 142 63.4% (10 A/g) 93.9 (5000 cycles at 10 A/g) [65]
Lignin 0.5 129 84% (5 A/g) 99% (10,000 cycles at 5 A/g) [66]

Redcedar wood 0.5 115 96% (2.5 A/g) >90% (5000 cycles at 10 A/g) [67]
Millet straw 0.2 144 68% (2 A/g) >95% (10,000 cycles at 10 A/g [68]

Wood 0.05 101 42% (10 A/g) 85% (10,000 cycles at 10 A/g) [69]
EHCL 0.25 147 78% (10 A/g) 95.3% (15,000 cycles at 10 A/g) This work

4. Conclusions

Several 3D hierarchical PCs were prepared by a low-cost and template-free method
using CL as the precursor. Enzymatic hydrolysis depolymerized the macromolecular CL,
promoting carbon formation and increasing the SSA and graphitization degree of the carbon
materials. Alkali activation enabled the carbonized products to exhibit a unique honeycomb-
like 3D hierarchical nanoporous structure whilst significantly increasing the SSA, micropore,
and mesopore content. The obtained EHCL-Kd (mass ratio of KOH/EHCL = 3/2) pos-
sessed the highest SSA (1771 m2/g), hierarchical porous structure, and good electrochemical
performance. Based on the above structural advantages, the EHCL-Kd electrode exhibited
a high capacitance (147 F/g at 0.25 A/g), significant rate capability (capacitance retention
of 78% at 10 A/g), and good long-term cycling stability, with a capacitance retention of
95.3% after 15,000 cycles in a 6 M KOH aqueous electrolyte. This study demonstrated that
the combination of enzymatic hydrolysis and alkali activation may be a promising route to
apply renewable lignin derivatives in high-performance supercapacitors.
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