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Abstract: This narrative review explores the utilization of machine learning (ML) and artificial
intelligence (AI) models to enhance perioperative cancer care. ML and AI models offer signifi-
cant potential to improve perioperative cancer care by predicting outcomes and supporting clinical
decision-making. Tailored for perioperative professionals including anesthesiologists, surgeons,
critical care physicians, nurse anesthetists, and perioperative nurses, this review provides a com-
prehensive framework for the integration of ML and AI models to enhance patient care delivery
throughout the perioperative continuum.
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1. Introduction

Artificial intelligence (AI) is emerging as a pivotal tool in healthcare decision-making,
with machine learning (ML) representing a significant subdomain that leverages advanced
statistical techniques to facilitate autonomous learning through algorithms [1–3]. ML,
rooted in computational science, analyzes data structures to discern patterns and extract
insights, drawing from foundational principles in multivariate statistics [4,5]. The histor-
ical dichotomy between classical AI, focused on symbolic domains, and nascent neural
network (NN) approaches led to contentious debates, particularly highlighted in Minsky
and Papert’s seminal work, “Perceptrons” [5–7]. Despite initial skepticism, the boundaries
between AI and ML have gradually blurred over time, indicating a convergence trend [7].

In the complex landscape of healthcare delivery, the perioperative continuum of surgi-
cal practice stands out as a multifaceted domain encompassing pre-, intra-, and postopera-
tive phases [4]. Integrating ML into surgical and perioperative care could yield substantial
benefits, particularly in identifying factors—both modifiable and non-modifiable—across
the continuum that significantly influence patient outcomes and healthcare costs. This
article focuses on ML applications pertinent to predictive analytics in the perioperative
continuum, emphasizing techniques such as exploratory data analysis (EDA), supervised
learning (SL), and neural network learning (NNL). Addressing the challenges inherent in
predicting perioperative outcomes using traditional methods, this review discusses the
potential of ML integration in optimizing patient care delivery throughout the perioperative
journey [2–4].
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2. Methods
Search Strategy and Source Selection

This narrative review focuses on the integration of machine learning (ML) and neural
network (NN) techniques in predictive analytics across the perioperative continuum.

Relevant Databases: PubMed, Embase, IEEEE Xplore, Medline, Scopus, and Web
of Science.

Search Terms: “machine learning”, “neural networks”, “artificial intelligence”, “pe-
rioperative care”, “predictive analytics”, “surgical outcomes”, “oncological”, “colorectal
cancer”, and “conceptual framework”.

Inclusion/Exclusion Criteria: We included studies published in English between 2014
and 2024, focusing on ML and NN applications in the oncological perioperative settings.
We excluded studies unrelated to perioperative oncological care, ML, NN, or AI, as well as
non-English publications.

3. Understanding the Data

Data science has become increasingly important within healthcare organizations. Data
science’s value added is its ability to provide insights into managing resources across
multiple departments (care units) while maximizing efficiency gains over time. These
efficiency gains are primarily made through predictive analytic models built upon large
volumes of structured information collected from various sources, including electronic
health records (EHRs) [8]. Exploratory data analysis (EDA) provides an invaluable tool
for these efforts by enabling analysts to find new ways to visualize complex datasets,
which would otherwise require extensive manual effort to analyze and interpret accurately.
As a result, EDA enables organizations to draw actionable conclusions much faster than
with traditional methods. EDA allows for improved trending and timely decision-making
processes across the perioperative practice [8–10].

EDA is a valuable tool for gaining insights into the structures of, patterns in, and trends
in datasets. EDA involves visualizing, summarizing, and exploring relationships between
variables to uncover patterns useful for decision-making and ML model building. By ap-
plying these methods, clinicians can identify potential trends or associations in their dataset
that may not be apparent from traditional approaches [10,11]. EDA helps researchers better
understand their datasets before they apply more formal analytical methods, such as ML
regression or classification techniques. EDA could become a crucial component of clinical
anesthesia and perioperative research as it provides valuable information that can be used
to inform decisions related to patient care.

By examining existing datasets using visualization tools such as interactive heat maps,
scatter plots, and boxplots, researchers can quickly identify potential areas where interven-
tions could positively impact patient outcomes without prior knowledge of the significance
of those interventions [2,4,8]. This type of analysis also allows clinicians to evaluate current
treatment protocols by comparing them against historical results from previous studies
conducted on similar populations so that they can make informed decisions regarding
future changes in practice guidelines based on empirical evidence rather than anecdotal
experience alone [2].

In addition to its use in clinical research settings, EDA has become increasingly popular
in data science and analytics for discovering new knowledge about complex systems or
processes by exploring large amounts of structured or unstructured digital information
available on various platforms like social media networks or web-based applications [1,8].
Also important is the ability of EDA to efficiently inform data cleansing (e.g., identifying
outliers and sparse datasets) and dimensionality reduction by identifying critical/essential
variables. EDA is a crucial step taken prior to mathematical model selection and training.
Through this approach, researchers can gain insight into clinician or patient behavior
patterns through sentiment analysis, uncover hidden correlations between different types
of medical treatments, and study how ML algorithms perform under certain conditions,
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among the many other applications across industries ranging from healthcare delivery
organizations to healthcare industry technologies [2–4].

4. ML Application in the Perioperative Continuum

ML enables improved predictive analytics throughout the perioperative continuum [12].
ML can incorporate a large number of independent variables from the various phases and
domains of care to evaluate dependent variables such as postoperative ileus, surgical site in-
fections, lengths of stay, readmission rates, and other postoperative outcomes [2,3,9,13–17].
While it is challenging to determine if variables are genuinely independent of historical
data collection, many are interdependent. ML’s value in predicting perioperative outcomes
is its ability to train and test large amounts of complex data accurately, efficiently, and
autonomously. The domain of artificial intelligence readily identifies patterns, trends, and
abnormalities in real time for clinical decision-making support [8,14,16–19].

4.1. Understanding Machine Learning

ML is broken into four subdomains: (1) supervised learning, (2) unsupervised learning,
(3) semi-supervised learning, and (4) reinforced learning (Table 1) [8].

Table 1. Subdomains of machine learning [1–8].

ML Subdomain Definition

Supervised learning (SL)

SL involves learning to predict future events by utilizing past events to perform dataset
analysis (training) through inferred functions to make predictions (testing) regarding
outcomes. The outcome (target) variable is known for predictions. ML algorithms enable
error prediction and self-correction. Types of SL include (i) classification and (ii) regression [8].
Examples include training prediction models for risk indices and clinical research.

Unsupervised learning (UL)

UL learning involves algorithms that analyze and cluster unlabeled data according to hidden
patterns or data groupings. Types of UL include (i) clustering, (ii) association rules, and (iii)
dimensionality reduction [5]. Examples: medical imaging in pathology and radiology and
clinical decision support.

Semi-supervised learning (SSL)
SSL learning combines supervised and unsupervised learning by utilizing a small sampling of
labeled data plus a large amount of unlabeled data. Examples: speech recognition and text
identification in the electronic health record [5].

Reinforced learning (RL) RL learning operates through sequential decision-making (trial and error) to maximize total
reward through random trialing. Example: bioprosthetic devices [5].

4.2. Supervised Machine Learning

Supervised machine learning (SL) is a powerful tool that improves accuracy and effi-
ciency in evaluating medical procedures on target (i.e., patient outcomes) variables [5]. SL
uses algorithms to analyze data from patient records, medical images, or other sources to
predict outcomes or treatments. SL models are trained on data where the outcomes (target
variable) are historically known to make future outcome predictions. This technology has
been applied to various aspects of anesthesiology and perioperative medicine, such as pre-
operative assessment and intraoperative monitoring systems [1,13,14]. One example of SL
being used in anesthesiology is using ML models for predicting post-surgical complications
such as pulmonary compromise, cardiac arrest, or stroke [13,16–19]. SL models can also
be used for hemodynamic optimization based on individual patients’ demographic and
physiological parameters, including blood pressure, stroke volume variation, and heart
rate variability, among others [13,16]. Furthermore, SL can also be utilized by surgeons
during laparoscopic and robotic procedures, providing real-time guidance through aug-
mented reality displays, which help them to visualize anatomy more accurately than with
traditional imaging techniques alone [4,14].

Overall, SL offers tremendous potential applications within anesthesiology and surgery
that could improve clinical outcomes and operational efficiencies. SL’s ability to process
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enormous amounts of data quickly and its highly accurate predictive capabilities allow
healthcare providers more insight into their patient’s health status, thus enabling better
decision-making processes throughout all stages of perioperative care [20,21]. However,
SL’s limitations or weakness occurs when historical target variables change over time due to
newer technical innovations. As ML adoption develops rapidly, it will become increasingly
integrated into daily practices across multiple perioperative specialty areas, improving
healthcare quality worldwide [16].

Before selecting a machine learning model, the data must be clean, standardized,
and representative of the variables used to make predictions. The data must be reviewed,
and a decision must be made on handling missing values, outliers, duplication, and
special characters. A range of techniques, from eliminating rows to replacement through
imputation, can be performed during the data cleaning process [8,12–16].

The next step is model selection, choosing the best machine learning model for a given
perioperative problem [14,20,21]. When making a model selection, factors include the type
of problem (i.e., classification or continuous variables), the size of the dataset, and the
desired model accuracy. Standard methods used in model selection incorporate a combi-
nation of cross-validation, feature selection, and hyperparameter tuning [14,21]. Also, the
initial step should begin with simple model selection and evaluate the model performance
metrics [21]. Model selection is a time-consuming process due to experimentation with
different models and selection methods.

Next, the data are split into training and testing sets. Sometimes, a validation set
is used in conjunction with the training set to enhance the ML model performance met-
rics [1,8,12,15]. The model is trained on the training data through an iterative process. The
training model performance is evaluated for accuracy, precision, recall, and F1 scores. Train-
ing model performance is enhanced with hyperparameter tuning. Once the training model
meets performance expectations, then the model moves into testing [8,12,15]. On occasion,
the machine learning model can overfit, which is a model bias that learns the training
data too well and cannot generalize to new data. The methods to counter overfitting are
regularization techniques, changing to a smaller model, and cross-validation techniques,
including a holdout set or early stopping techniques [8,12,15,18].

Once the training model meets satisfactory criteria, the model is either further opti-
mized through hyperparameter-tuned training or evaluated on a validation set to enhance
ML model performance metrics. Then, the model is evaluated for performance on the
new testing data [8,18–21]. The goal is to achieve a high testing model performance to
generalize any future unseen data adequately. Once the testing model performs well, the
model is deployed to production, allowing others to use the model to make predictions,
such as patient outcomes research. When ML models do not perform well, even after
tuning, alternative ML models are trained and tested on the data. Using a well-constructed
framework, new ML models are assessed for optimal generalizability and predictions and
tested on the data (Figure 1) [18–21].

The conceptual framework incorporates data science trajectory, clinical trajectory, and
research trajectory as the pillars for developing a perioperative cancer outcomes program.
The data science trajectory collates the data sources into a standardized format to apply
machine learning and neural network algorithms. The clinical trajectory utilizes data
science to evaluate clinical care using elements of artificial intelligence. The research
trajectory studies perioperative outcomes and develops clinical trials to further enhance
clinical care pathway standardization.

While this framework offers a promising path towards improved perioperative care
through prediction and decision support, limitations need to be acknowledged. The
generalizability of ML models trained on specific datasets is a concern, and ensuring
their effectiveness across diverse patient populations is crucial. Additionally, real-world
implementation requires addressing data security and privacy issues. Integrating ML tools
seamlessly into existing clinical workflows will necessitate collaboration between clinicians,
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data scientists, and healthcare IT professionals. Overcoming these challenges will pave the
way for the successful application of this framework in enhancing patient outcomes.
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lance, Epidemiology, and End Results Program; PACS: Picture Archiving and Communication System;
API: application programming interface; POI: postoperative ileus; AKI: acute kidney injury; RIOT:
Return to Intended Oncologic Treatment.

In addressing the critical aspect of data collection for training machine learning (ML)
models within the perioperative context, it is imperative to outline robust methodologies
and ethical considerations. Data acquisition typically involves the aggregation of diverse
sources, including electronic health records (EHRs), medical imaging, and patient moni-
toring systems, to construct comprehensive datasets representative of perioperative care.
Ethical considerations loom prominently, as the utilization of patient data necessitates strin-
gent adherence to privacy regulations, such as HIPAA in the United States, to safeguard
patient confidentiality and autonomy. Furthermore, informed consent and transparent
communication regarding data usage are paramount to uphold patient trust and miti-
gate concerns regarding data privacy breaches. Additionally, efforts to mitigate bias and
ensure data integrity through rigorous preprocessing techniques, anonymization and dei-
dentification strategies are indispensable. Collaborative partnerships between healthcare
institutions and data science experts are essential to navigate the complex landscape of
data acquisition while upholding ethical standards, ensuring the responsible and equitable
use of patient data for advancing perioperative care through ML applications.

4.3. Forms of Supervised Machine Learning

The following models are introduced in order of relative complexity. While all machine
learning models are robust mathematical models, model selection or complexity must
match the complexity of the dataset. Selecting a simple ML model for complex data results
in poor performance, such as accuracy, and in contrast, selecting an ML model that is too
complex results in overfitting the dataset.
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5. Classification Models: Logistic Regression, Classification (Decision) Tree

Invented by British statistician (Sir) David Cox, logistic regression is a classification
model (i.e., binary or categorical variables) for calculating the probability of an event occur-
ring, such as high opioid dosing or prolonged surgical time predicting the probability of
a patient incurring a postoperative ileus (POI) [19,22]. Thus, the dependent variable (out-
come) is a discrete value. Mathematically, logistic regression utilizes a sigmoidal function
(S-curve). Comparatively, linear regression estimates the dependent (outcomes) variable
when changes emerge with the independent (continuous) variable itself. Historically, linear
regression was the first regression technique developed by Legendre and Gauss in the early
19th century [22]. Similar to linear regression, logistic regression also operates under the
assumption of linear relationships between predictor variables. This characteristic places it
within the broader category of Generalized Linear Models (GLMs) [22]. Linear regression
estimates the dependent variable when changes emerge, with the independent variable
accurately reflecting the classical single-predictor case. Linear regression overlooks the
broader applicability in modeling relationships between multiple predictors and a depen-
dent variable. Polynomial regression, a specific example of multivariable linear regression,
highlights the flexibility of the technique, as it simply requires adding higher-order terms
of the original predictor to the model, eliminating the need for specialized software [5,22].
Understanding the generalizability of linear regression beyond single-predictor scenarios
is crucial for effectively applying this powerful tool to analyze complex data with multiple
influencing factors.

One of the limitations of a linear regression model is that a straight line is forced to
match data points for an outcome, where the straight line may not pass through most data
points [8,14]. Although linear regression may not pass through most data points, it may
still generalize better than polynomial regression, which may overfit the dataset. Logit and
probit functions generate S-shaped curves, readily identifying the largest data points on an
XY-axis (X: independent variable; Y: dependent variable) (Figure 2) [20].
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A mathematical calculation called min log loss or cross-entropy minimization is
performed to identify the correct S-curve, enabling the best fit on the data points. The power
of logit and probit functions is their multi-dimensionality. Logistic regression benefits
include classification models that provide probabilities, cross over to multiple classes
(i.e., multinomial regression), and rapidly train and classify unknown (new) data. However,
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disadvantages include constructing linear boundaries and assuming that independent
variables are independent, and coefficient interpretation remains challenging [8,14,20].

Through logistic regression, classification predictions can be made. A confusion matrix
is used to evaluate the classification model after training and validation for accuracy, recall,
precision, and F1 scores. A confusion matrix is a quantification of the False Positives and
False Negatives, which is well known across the medical field. A confusion matrix is a
2 × 2 matrix summarized by the following (Figure 3) [21].
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True Positive (TP): Every number predicted true is, in fact, true (positive);
True Negative (TN): Every number predicted negative is, in fact, false (negative);
False Positive (FP or Type I Error): Every number predicted true is, in fact, false (negative);
False Negative (FN or Type II Error): Every number predicted negative is, in fact,

true (positive).

6. Confusion Matrix

A confusion matrix is a method for evaluating a ML or NN model through performance
measures (Table 2) [21].

Table 2. Performance measures for confusion matrix [8,21,22].

Performance Measure Performance Measure Calculation

Accuracy = TP + TN/(TP TN + FP + FN) = 1 − (error rate)

Precision = TP/TP + FP

Recall (Sensitivity) = TP/TP + FN (True Positive Rate)

F1 Score = (2 × Precision × Recall)/(Precision + Recall)

Specificity (True Negative Rate) = TN/TN + FP

Classification Error Rate = Type I Error + Type 2 Error
TP = True Positive; TN = True Negative; FP = False Positive; FN = False Negative.

Further extrapolation of clinical classification problems can be achieved by utilizing
receiver operator characteristic curves (ROC) and thresholds to determine the output
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probability (Figure 4) [22]. ROC curves plot False Positive rates against True Positive rates,
where the area under the curve measures how well the model performs. The AUC measures
how well the model performs (Table 3) [22].
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Table 3. Area under the ROC curve values [8,21,23].

≤0.5 Failed

0.5 to 0.7 Poor

0.7 to 0.8 Fair

0.8 to 0.9 Good

0.9 to 1.0 Excellent

Classification (Decision) Trees

Decision trees are a category of non-parametric models used for classification and
regression [8]. Decision trees serve as a predictive modeling tool that facilitates the tracing
of various choices (i.e., drug A or B) or solutions to a specific result (i.e., POI). They are
applicable to both linear and non-linear datasets, predominantly favoring non-linear ones.
Comprising various nodes, the decision tree commences with a root node and concludes
at leaf nodes, which represent the culmination of a decision chain or the ultimate result.
Beyond the leaf nodes, the decision tree does not extend any further branches. In the
context of machine learning, the data attributes are represented by internal nodes, while
the result is depicted by the leaf node [8].

Classification (Decision) Trees measure impurity or purity for a given variable group-
ing. The independent variables emerge from a root node, further splitting down the tree
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based on the purity of the groups [8,24,25]. A range of algorithms exist for constructing
decision trees based on computational metrics. The metrics determine the similarity of a
region or node before splitting to the next branch, which measures the impurity of a region.
The larger the regional impurity, the more significant the dissimilarity of the data at that
node or region. Some measures of impurity include Gini impurity, entropy, and variance.
Some algorithms include Classification and Regression Tree (CART), entropy (C4.5), and
Chi-squared Automatic Interaction Detector (CHAID). CART is a popular decision tree
algorithm that uses Gini impurity to measure impurity [25]. Gini impurity assesses the
frequency of misclassifying an element picked at random from a dataset, assuming it is
labeled in a manner consistent with the label distribution of the dataset. CART assigns the
decision tree split based on the maximum decrease in Gini impurity called Gini Gain [21,25].

One area for improvement with decision trees is overfitting [25]. However, decision
tree and random forest models tend to overfit far less than other ML models. Overfitting
occurs when the decision grows fully, fitting perfectly on the training set, but predictions
on the test set have reduced accuracy or led to poor generalizability [26]. Overfitting
is minimized through pre-pruning or post-pruning techniques. In pre-pruning, a Grid
Search cross-validation method utilizes hyperparameter tuning in identifying the optimal
hyperparameter values for the ML model. Pre-pruning minimizes decision tree overgrowth
through bounding hyperparameters. Post-pruning begins with a full decision tree and then
prunes the tree into sequentially smaller trees. The most common post-pruning algorithm
is cost complexity pruning. The aim is to identify the “relative error decrease per node” for
that given complexity parameter. Cross-validation error is then utilized to determine the
best-pruned decision tree [25,26].

While individual decision trees, like the well-established C4.5 algorithm by Ross Quin-
lan, do not constitute ensemble methods in themselves, they can be effectively employed
within ensemble approaches like Leo Breiman’s Classification and Regression Trees (CART)
technique. This distinction highlights the importance of differentiating between individ-
ual learning algorithms and the broader frameworks that combine them for enhanced
performance [27–29].

7. Bootstrapping in Machine Learning [16,18]

In statistical analysis, the term “bootstrap” refers to a resampling technique where
data points are drawn, with replacement, from the original dataset to create new samples of
the same size [29]. Each parameter value is assigned a new random value from a probability
distribution drawn from its sample space [8]. This process is iterated numerous times,
generating a collection of “bootstrap replicates” that approximate the variability within the
original data. Bootstrap aggregation refers to bootstrapping (i.e., resampling) the original
dataset with replacement [29]. Software typically implements bootstrapping using random-
number generators to ensure the unbiased selection of data points. This randomized
approach allows researchers to estimate the sampling distribution of various statistics,
such as the mean or standard deviation, and construct confidence intervals around them
(Table 4) [29]. Overall, bootstrapping provides a valuable tool for exploring the uncertainty
and variability inherent in statistical data, informing robust conclusions, and enhancing the
reliability of analyses.

Table 4. Benefits to Bootstrapping [29].

Non-Parametric Nature Applicable to a Wide Range of Data Types without Requiring
Specific Assumptions about Their Distribution.

Flexibility Can be used to estimate various statistics and assess their variability.

Computational
Efficiency

Relatively fast to implement, especially when compared to other
resampling techniques.
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7.1. Ensemble Techniques: Bagging, Random Forest, and Boosting

Ensemble techniques are a robust ML methodology that combines multiple models
to generate more reliable predictions for an outcome variable (Y). This technique, called
committee methods, is based on diversity in computational models, providing better
predictability [25,30–32]. The ensemble method reduces variance from any given model,
and each model incorporated into the ensemble is independent. Parallel or sequential
building can be used when implementing this technique, depending on an individual’s
needs (Figure 5).
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Ensemble techniques have become increasingly popular for ML applications because
they improve accuracy and reduce variance [21,25]. Ensemble techniques, such as random
forest, decision tree classifiers, bagging, and boosting, are supervised learning approaches
that can be applied to the understanding of perioperative variables impacting patient out-
comes [21]. These methods have become increasingly crucial in perioperative medicine due
to the complexity of surgical interventions, anesthetic care, and patient co-morbidities [26].
By leveraging ensemble techniques for predictive analytics, perioperative clinicians can
better anticipate potential complications or implement changes intraoperatively or postop-
eratively to optimize patient outcomes [26,31,32].

Bagging is often used as a form of bootstrap aggregation. Bagging generates diverse
models using sampling data with replacement, which is the driver for developing diverse
models [29]. The bagging technique builds models in parallel, ranging up to n models in
the algorithm [2,8,29].

Decision tree analysis is a valuable ensemble method of analyzing data, but it can
take time to interpret its results. A drawback of decision trees is that they tend to overfit,
which means that they will perform less well on new data. However, if a collection of
many decision trees exists, a technique called random forest can make predictions more
stable without overfitting [31–35]. Random forests utilize bootstrap aggregating (bagging)
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to combine multiple decision trees, resulting in higher accuracy by reducing bias from
overfitting datasets with a single model (Figure 6) [21,25,33–36].
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Decision tree classifier algorithms use binary splits through recursive partitioning
in datasets. Meanwhile, bagging creates diverse subsets of training samples from larger
datasets, reducing variance errors associated with individual models [34,37–40]. Boosting
algorithms, on the other hand, combine weak learners into strong ones through iterative
processes until the desired model performance is achieved. Compared to traditional
modeling approaches like logistic regression or linear discriminant analysis (LDA), boosting
algorithms offer improved generalization capabilities [1,2,8,21,25].

The machine learning technique of boosting builds models sequentially, starting with
a smaller number of models and increasing the number of models in each iteration [41–45].
The most common boosting methods include adaptive boosting (AdaBoosting), gradient
boosting (GBM), and extreme gradient boosting (XG Boost) [40,46,47]. Each successive
model is built using the weighted average of previously successful models to reduce error
rates on dependent variables while increasing weights on more successful models with
lower error rates [48–50].

7.2. Supervised Learning Limitations

ML, specifically SL, is a robust mechanism for augmenting correlational determinants
of perioperative outcomes. SL and ML have a range of limitations, such as an understanding
of SL techniques and interpretation [8,14]. Additionally, criterion-related limitations result
from discrepancies between the clinician and the data analyst [14,15]. Another challenge is
acquiring a complete set of labeled data that are clean, accurate, and representative of all
known outcomes.

8. Neural Networks

Neural networks (NN) are interconnected neurons that receive input from various
sources such as patient records, laboratory tests, imaging studies, vital signs, and other
factors related to pre-, intra-, or postoperative care [51–53]. The NN then analyzes this
information using mathematical models, which allow them to identify trends or correlations
among different variables so that they can be used for predictive modeling purposes, such
as predicting surgical complications or determining optimal treatment plans based on past
clinical cases with similar characteristics [53,54]. By leveraging AI technologies like NN,
anesthesia providers can gain valuable insights into how their patients will respond during
and following surgery before a response even occurs (predictive analytics). Real-time
predictive analytics has the potential to drastically improve the quality of care provided by
surgeons and anesthesia providers today [55–57]. However, NNs are a growing and diverse
set of algorithms that are beyond the scope of discussion in this paper. The use of NNs
within anesthesia is still relatively new but offers immense potential for improving patient
safety during operations and reducing costs associated with unnecessary interventions.
Traditional research methodologies have resulted in changes in medical practice despite
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statistically insignificant and clinically unmeaningful results and vice versa [55]. As AI
evolves, these applications will continue to play larger roles in helping clinicians to manage
clinical practice more efficiently [47,53,55].

9. Discussion
9.1. Application to the Perioperative Setting (Key Finding)

Supervised machine learning has become increasingly important in surgery, anesthe-
sia, and perioperative care. Ensemble techniques, such as random forests and boosting,
combine multiple models for improved prediction accuracy [41–48]. Neural network
techniques are also being applied in anesthesiology and perioperative medicine to predict
outcomes [51,53,56,57]. ML technology can help to allocate resources more efficiently across
the perioperative continuum [58]. Due to the volume and complexity of data, successfully
incorporating ML or NNs requires a structural framework. Three trajectories, data science,
clinical, and research, comprise the core framework for developing an outcomes program
(Figure 1).

The clinical trajectory is the data resource input spanning across several data reposito-
ries. The abridgment of the data science trajectory is crucial and instrumental to any form
of data analytics and outcomes reporting. Data sources feed a range of data that require
standardization into data pipelines before selecting and analyzing any clinical features of
interest. After selecting clinical features, predictions, and target outcome variables, model
development begins training, validating, and testing across a range of ML models, as
described above. Once model development ensues, the research trajectory intersects with
the data science trajectory to mature the ML models, develop clinical trials, and implement
outcome reporting. The benefit of ML and NN models is the ability to automate the pro-
cesses in real time through an application programming interface (API). As a result, clinical
features of importance can be reviewed in real time for relative impact on a given outcome
variable through dashboard applications.

The PCOG researchers developed a triad trajectory framework to explore perioper-
ative oncological outcomes (See Figure 1). The data science trajectory focuses on data
validation, cleaning, standardizing, and curation. For example, the data science trajectory
emerges from well-developed oncologic data centers housing semi-structured and struc-
tured datasets focusing on oncological research, epidemiology, treatment, and patient care.
These databases contain large volumes of data that can be easily managed and analyzed
with ML and NN algorithms to explore a range of outcome predictions (See Table 5 for
data science trajectory resources).

The clinical trajectory in the PCOG conceptual framework is partitioned into five
sub-domains, including preoperative, intraoperative, postoperative, post-discharge, and
surveillance. Each sub-domain is a reservoir of variables for predicting oncological out-
comes. In the preoperative sub-domain, Kowadlo et al. demonstrated the potential of ML
algorithms, exemplified by the Patient Optimizer (POP), in accurately predicting postop-
erative outcomes, including complications like kidney failure and the length of hospital
stay [59]. These ML tools provide clinicians with a valuable means to precisely assess
preoperative risks, enabling effective patient preparation and potentially reducing peri-
operative complications and mortality rates. Further refinement and validation of these
algorithms through larger prospective studies are essential to enhance their predictive
accuracy and broaden their applicability to encompass additional specific complications,
readmission rates, and mortality risks [59]. Another study by Ashraf Ganjouei et al.
addresses the challenge of predicting clinically relevant postoperative pancreatic fistula
(CR-POPF) after pancreaticoduodenectomy (PD), an important complication impacting
surgical outcomes [60]. By leveraging ML algorithms, specifically XGBoost, and utilizing
preoperative data, the study developed a user-friendly risk calculator for CR-POPF pre-
diction [60]. The XGBoost model demonstrated superior performance with an AUC of
0.72 and identified key predictors including non-adenocarcinoma histology, the absence
of neoadjuvant chemotherapy, smaller pancreatic duct size, higher BMI, and elevated
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preoperative serum creatinine. Overall, this approach offers promise for enhancing clinical
decision-making and patient counseling in the preoperative setting for PD [60]. Lung
cancer is a leading cause of death globally, highlighting the urgent need for the precise
early detection of nodules in radiology. A study by Syed Musthafa, Sankar, Benil, and
Rao addresses this need by proposing a novel hybrid ML approach for early lung nodule
prognosis [61]. Leveraging advanced techniques such as snake swarm optimization in
combination with a bat model (ISSO-B) and chaotic atom search optimization (CASO),
along with a hybrid learning-based deep neural network classifier (L-DNN), the approach
aims to improve detection accuracy [61]. Evaluation with public datasets demonstrates
promising performance in terms of accuracy, sensitivity, specificity, and area under the
curve (AUC), suggesting its potential as an effective tool in lung cancer diagnosis [61].

In the intraoperative subdomain, Nwaiwu et al. showcased the efficacy of ML algo-
rithms, such as decision trees, random forests, and neural networks, in predicting postoper-
ative complications among patients undergoing colectomy for colonic neoplasia [62]. In
particular, NN models exhibited high accuracy in anticipating outcomes like anastomotic
leak, prolonged length of stay, and inpatient mortality, indicating their potential as valuable
tools for perioperative risk stratification. While further validation and optimization are
warranted, these ML approaches hold promise in improving postoperative outcomes and
aiding clinical decision-making [62]. Szrama et al. demonstrated the efficacy of ML, utiliz-
ing the Hypotension Prediction Index (HPI) algorithm alongside arterial waveform analysis,
in mitigating perioperative hypotension events among patients undergoing major abdomi-
nal surgery [63]. Compared to arterial pressure-based cardiac output (APCO) technology,
the HPI algorithm notably reduced the incidence and duration of hypotensive episodes,
highlighting its potential to enhance patient safety by pre-emptively alerting clinicians
of impending hypotension [63]. These findings underscore the importance of integrating
ML-based hemodynamic monitoring systems into perioperative care to mitigate the risks
associated with intraoperative hypotension and optimize patient outcomes during major
surgical procedures [63]. The utilization of ML algorithms holds significant promise in
accurately predicting perioperative outcomes, thereby enhancing patient care, optimizing
clinical decision-making, and, ultimately, improving surgical outcomes. A study by Xu,
Ju, Tong, Zhou, and Yang, investigated the applicability of ML techniques in predicting
postoperative recurrence risk in stage IV colorectal cancer patients [64]. Four fundamental
ML algorithms—logistic regression, decision tree, GradientBoosting, and lightGBM—were
employed for prediction purposes. The study included 999 patients with stage IV colorectal
cancer, randomly divided into training and testing groups at an 8:2 ratio [64]. Their results
indicated that the GradientBoosting model exhibited the highest AUC value (0.881) in
the training group, while logistic regression showed the lowest (0.734) [64]. In the testing
group, the GradientBoosting and GBM models outperformed others, with AUC values of
0.734 and 0.761, respectively, and the GradientBoosting model identified chemotherapy,
age, LogCEA, CEA, and anesthesia time as the most influential risk factors for tumor
recurrence [64]. Overall, the study demonstrates the efficacy of ML algorithms in predicting
recurrence risk in stage IV colorectal cancer post-surgery, with the GradientBoosting and
GBM models yielding superior performance [64].

In the postoperative and surveillance subdomains, Jeon et al. employed ML techniques,
including LR, support vector machine (SVM), RF, and XGBoost, to predict rectal cancer
recurrence following curative resection, with SVM yielding the highest area under the curve
(AUC) of 0.831 [65]. Significant predictors of recurrence, such as pathologic Tumor stage
(pT), concurrent chemoradiotherapy, and pathologic Node stage (pN), underscored the
potential of ML models in stratifying patients for enhanced postoperative surveillance [65].
This study emphasizes the utility of advanced analytics in tailoring follow-up care and
improving outcomes for rectal cancer patients, particularly those with elevated pT stages
requiring intensified monitoring. In patients undergoing surgical resection for colorectal,
liver, and pancreatic cancers, postoperative complications pose significant challenges de-
spite low mortality rates [65]. Merath et al. utilized NSQIP data from 2014 to 2016, and
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decision tree models were employed to forecast overall and specific complications [66]. The
derived algorithm, based on 15,657 patients, exhibited robust predictive performance for
various complications, surpassing traditional risk assessment tools such as the ASA and
ACS Surgical Risk Calculator [66]. Notably, the algorithm demonstrated high accuracy in
predicting specific complications, including stroke, wound dehiscence, and cardiac arrest,
underscoring its potential as an effective risk-stratification tool in surgical settings [66].
Postoperative length of stay following cancer surgery serves as a vital metric for resource
allocation and offers insights into surgical outcomes and patient recovery. Leveraging
ML techniques on EHRs, a retrospective study by Jo et al. aimed to develop a prediction
model for prolonged length of hospital stay after cancer surgery [67]. EHR data from
42,751 patients undergoing primary surgery for 17 cancer types were analyzed, encom-
passing diverse variables ranging from surgical and cancer-specific factors to underlying
diseases and social aspects [67]. Employing the XG boosting classifier, multilayer percep-
tron, and LR models, the study identified predictors for prolonged postoperative stay, with
notable performance observed for kidney and bladder cancers [67]. The incorporation
of operative time into preoperative models enhanced predictive accuracy, suggesting the
potential of machine learning-based approaches to optimize resource utilization in cancer
surgery. Current predictive models for readmission risk often lack specificity to surgical
patients and rely heavily on administrative data, potentially limiting their accuracy in
colorectal surgery contexts. To address this gap, Howell, Lumpkin, and Chaumont aimed
to develop a surgery-specific predictive model for 30-day readmission risk in colorectal
surgery patients, incorporating administrative, clinical, laboratory, and socioeconomic
status (SES) data [68]. Using a retrospective split-sample cohort of 1549 patients discharged
from an academic tertiary hospital between 2017 and 2019, a multivariable LR model was
constructed, demonstrating superior performance (C = 0.70, 95% CI 0.61–0.73) compared to
internationally used readmission risk prediction indices [68]. This tailored approach, lever-
aging comprehensive data sources, offers enhanced predictive capability and may facilitate
targeted interventions to mitigate readmission risk in colorectal surgery patients [68].

Transitioning into ML applications in oncologic perioperative care, recent advance-
ments have underscored the significance of leveraging data science trajectories and clinical
domains to enhance perioperative oncological outcomes. The integration of ML techniques
within the PCOG framework offers a transformative approach to predict and manage
oncological complications across various phases of perioperative care. Notably, the preop-
erative phase has seen substantial progress, with studies demonstrating the effectiveness
of ML algorithms, such as the Patient Optimizer (POP), in accurately forecasting postop-
erative outcomes. These tools not only enable clinicians to assess preoperative risks with
precision but also hold promise in mitigating perioperative complications and mortality
rates. Furthermore, studies like those by Merath et al. and Jo et al. highlight the potential
of ML in predicting specific complications and optimizing resource allocation in cancer
surgery, indicating a paradigm shift towards personalized and data-driven perioperative
care strategies [66,67].

In considering the implementation of ML models in clinical practice, it is crucial
to evaluate the associated cost-effectiveness and resource implications. While ML holds
promise for optimizing perioperative care and improving patient outcomes, its adoption
necessitates the careful consideration of financial factors. Implementation costs may in-
clude expenses related to acquiring and maintaining hardware and software infrastructure,
training personnel, and integrating ML systems into existing clinical workflows. Addition-
ally, ongoing costs may arise from data management, algorithm refinement, and technical
support. However, despite these initial investments, ML applications have the potential to
yield long-term cost savings by enhancing diagnostic accuracy, streamlining care delivery
processes, and reducing adverse outcomes. Moreover, ML-driven decision support tools
may facilitate resource allocation and optimization, leading to more the efficient utiliza-
tion of healthcare resources. Collaborative research efforts and cost-effectiveness analyses
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are essential to elucidate the economic impact of integrating ML into perioperative care,
informing strategic decision-making and resource allocation in healthcare settings.

Table 5. Data science trajectory resources.

Program Country Website Link Additional Resources

Surveillance, Epidemiology,
and End Results (SEER)
Program

United States
SEER Program:
https://seer.cancer.gov/,
accessed on 10 May 2024

Explore the following resources to
potentially find relevant data science
trajectory resources: American
Association for Cancer Research (AACR)
Careers (https://www.aacr.org/,
accessed on 10 May 2024) and National
Cancer Institute (NCI) Career
Development (https://www.cancer.gov/
grants-training/training, accessed on 10
May 2024)

National Cancer Database
(NCDB) United States

NCDB: https://www.facs.org/
quality-programs/cancer/ncdb,
accessed on 10 May 2024

Same as above

Stanford Cancer Institute
Research Database (SCIRDB) United States

SCIRDB:
https://med.stanford.edu/ric/
data-coordination/scirdb.html,
accessed on 10 May 2024

Same as above

Cancer Data Registry of Idaho
(CDRI) United States

CDRI:
https://www.idcancer.org/,
accessed on 10 May 2024

Same as above

National Cancer Institute of
Canada (NCIC) Canada NCIC: https://www.cancer.ca/,

accessed on 10 May 2024

Explore the Canadian Cancer Research
Society (CCRS) Training and Education:
https:
//www.reproductivefreedomca.org/,
accessed on 10 May 2024

Cancer Research UK (CRUK) United
Kingdom

CRUK: https:
//www.cancerresearchuk.org/,
accessed on 10 May 2024

Explore CRUK’s Career Development
programs: https://www.
cancerresearchuk.org/about-us/careers,
accessed on 10 May 2024

Danish Cancer Registry (DCR) Denmark

DCR: https:
//ncrr.au.dk/danish-registers/
the-danish-cancer-register,
accessed on 10 May 2024

Consider searching for resources offered
by universities in Denmark with data
science programs

Netherlands Cancer Registry
(NCR) Netherlands NCR: https://www.iknl.nl/,

accessed on 10 May 2024

Explore the Netherlands Organization for
Scientific Research’s (NWO) career
development opportunities:
https://www.nwo.nl/, accessed on 10
May 2024

Cancer Registry of Norway
(CRN) Norway

CRN:
https://www.kreftregisteret.no/,
accessed on 10 May 2024

Investigate resources at the University of
Oslo or other Norwegian universities
with data science programs

Australian Cancer Database
(ACD) Australia

ACD: https:
//www.aihw.gov.au/about-our-
data/our-data-collections/
australian-cancer-database,
accessed on 10 May 2024

Explore resources provided by the
Australian Institute of Health and
Welfare (AIHW):
https://www.aihw.gov.au/reports/
workforce/health-workforce, accessed on
10 May 2024

Japan Cancer Surveillance
Research Group (JCSRG) Japan

JCSRG:
https://www.ncc.go.jp/en/cis/
divisions/stat/index.html,
accessed on 10 May 2024

Consider searching for data science
programs at Japanese universities and
research institutions

https://seer.cancer.gov/
https://www.aacr.org/
https://www.cancer.gov/grants-training/training
https://www.cancer.gov/grants-training/training
https://www.facs.org/quality-programs/cancer/ncdb
https://www.facs.org/quality-programs/cancer/ncdb
https://med.stanford.edu/ric/data-coordination/scirdb.html
https://med.stanford.edu/ric/data-coordination/scirdb.html
https://www.idcancer.org/
https://www.cancer.ca/
https://www.reproductivefreedomca.org/
https://www.reproductivefreedomca.org/
https://www.cancerresearchuk.org/
https://www.cancerresearchuk.org/
https://www.cancerresearchuk.org/about-us/careers
https://www.cancerresearchuk.org/about-us/careers
https://ncrr.au.dk/danish-registers/the-danish-cancer-register
https://ncrr.au.dk/danish-registers/the-danish-cancer-register
https://ncrr.au.dk/danish-registers/the-danish-cancer-register
https://www.iknl.nl/
https://www.nwo.nl/
https://www.kreftregisteret.no/
https://www.aihw.gov.au/about-our-data/our-data-collections/australian-cancer-database
https://www.aihw.gov.au/about-our-data/our-data-collections/australian-cancer-database
https://www.aihw.gov.au/about-our-data/our-data-collections/australian-cancer-database
https://www.aihw.gov.au/about-our-data/our-data-collections/australian-cancer-database
https://www.aihw.gov.au/reports/workforce/health-workforce
https://www.aihw.gov.au/reports/workforce/health-workforce
https://www.ncc.go.jp/en/cis/divisions/stat/index.html
https://www.ncc.go.jp/en/cis/divisions/stat/index.html
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9.2. Limitations

Expanding on the limitations of ML models within perioperative care is essential to
gain a comprehensive understanding of their applicability. Despite their potential benefits,
ML models are subject to several limitations, including algorithmic biases, model inter-
pretability challenges, and the risk of overfitting to training data. Algorithmic biases may
arise from imbalanced datasets or inherent biases present in healthcare practices, potentially
leading to disparities in predictive accuracy across patient populations. Moreover, the
black-box nature of some ML algorithms complicates the interpretation of model decisions,
hindering clinicians’ ability to trust and understand their outputs. Furthermore, overfitting
can occur when models capture noise or idiosyncrasies in training data, compromising
their generalizability to new, unseen data. To address these limitations and ensure general-
izability, rigorous validation procedures, such as cross-validation and external validation
on diverse datasets, are essential. Additionally, ongoing model monitoring, recalibration,
and transparency in reporting model performance metrics are critical for maintaining the
reliability and generalizability of ML applications in perioperative care. Collaborative
efforts between clinicians, data scientists, and healthcare stakeholders are pivotal in navi-
gating these challenges and optimizing the utility of ML models to enhance perioperative
outcomes effectively.

As the integration of ML models in healthcare continues to advance, it is imperative to
address the ethical considerations and potential biases inherent in their implementation. ML
algorithms rely heavily on historical data, which may perpetuate biases present in health-
care practices, such as disparities in diagnosis and treatment across demographic groups.
Additionally, the opaque nature of some ML models poses challenges to understanding
how decisions are made, raising concerns regarding transparency and accountability in
clinical decision-making. To mitigate these risks, ongoing research and development efforts
are essential to enhance algorithmic fairness, interpretability, and transparency. Moreover,
interdisciplinary collaborations between clinicians, data scientists, ethicists, and policymak-
ers are critical to establish ethical guidelines and regulatory frameworks governing the
responsible use of ML in healthcare. Furthermore, continuous monitoring and evaluation
of ML models in real-world clinical settings are necessary to identify and address emerging
ethical concerns and biases effectively. By fostering a culture of transparency, accountability,
and collaboration, healthcare stakeholders can harness the transformative potential of ML
while upholding ethical principles and promoting equitable access to high-quality care for
all patients.

The generalizability of ML models presents a significant challenge in translating
their promise into real-world clinical practice. Models trained on specific datasets may
not perform well when applied to diverse patient populations or in different healthcare
contexts. These datasets may not accurately reflect the diversity of patients encountered
in clinical practice. Furthermore, inherent biases in data collection practices can lead to
imbalanced datasets, where certain patient demographics or disease presentations are
under-represented. This can result in models that perform well on the specific data that
they were trained on but perform poorly when applied to more heterogeneous patient pop-
ulations. To ensure generalizability and reliable performance across various perioperative
scenarios, rigorous validation studies are necessary. These studies should be conducted in
real-world settings with diverse patient populations and ideally involve multicenter collab-
oration. By evaluating model performance in these more generalizable settings, researchers
can identify potential biases and limitations, ultimately leading to the development of more
robust and generalizable ML models for improved clinical decision-making in oncologic
perioperative care.

9.3. Future Research

Despite these challenges, the potential benefits of integrating ML into oncologic
perioperative care are substantial. ML models hold promise for enabling personalized
risk assessment for patients undergoing oncological surgery. By analyzing patient-specific
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data, such as demographics, comorbidities, and tumor characteristics, these algorithms can
stratify patients based on their individual risk profiles. This information can then be used
to tailor perioperative management strategies, potentially improving patient outcomes.
ML-based predictive models can play a crucial role in the early detection and intervention
of complications. By identifying high-risk patients for postoperative issues like surgical
site infections, these algorithms can enable proactive management strategies to prevent
complications and improve outcomes.

The integration of ML can also optimize resource allocation in perioperative settings.
Decision support tools powered by machine learning can predict patient outcomes and
resource utilization patterns. This allows healthcare providers to allocate resources more
efficiently, ensuring optimal utilization of operating rooms, hospital beds, and personnel,
ultimately enhancing the efficiency of healthcare delivery.

Clinical decision-making can also be significantly enhanced by ML algorithms. These
tools can assist clinicians by synthesizing vast amounts of patient data and providing real-
time predictive analytics. From preoperative risk assessment to intraoperative monitoring
and postoperative care, ML-based decision support systems have the potential to augment
clinical judgment, leading to improved patient outcomes and safety.

Finally, ML integration may pave the way for advancements in surgical techniques
and perioperative protocols. By analyzing data on surgical outcomes and identifying
factors associated with success, ML algorithms can inform the development of innovative
surgical approaches and refine existing practices. This has the potential to improve surgical
precision and ultimately enhance patient outcomes in oncologic perioperative care. While
challenges exist, the potential benefits of machine learning in perioperative oncology are
promising. By addressing the issues of algorithmic bias, model interpretability, data quality,
and generalizability, as well as focusing on harnessing the potential for personalized risk
assessment, early intervention, resource optimization, enhanced clinical decision-making,
and surgical innovation, ML has the potential to revolutionize oncologic perioperative care
and improve patient outcomes.

10. Conclusions

Big data offers immense possibilities for the surgeon and anesthesiology professionals
to garner meaningful information across the perioperative continuum in predicting peri-
operative outcomes [1,3,9,13,15,19,40,60]. Through supervised ML techniques, a range of
independent variables can be efficiently evaluated for predicting a given outcome.

In addition, ensemble techniques have been applied with real-time personalized deci-
sion support systems for surgery and anesthesia management. Oncology is one area where
NNs have been utilized extensively. NNs and ML models can supplement more timely
cancer diagnosis and staging with increased accuracy compared to traditional approaches.
For example, artificial neural network (ANN) models using bioinformatic methodologies
are more sensitive and reliable in detecting optimal markers for colorectal cancer screening
compared to traditional approaches. ANN models can detect liver cancer with 96.7%
sensitivity and 87.88% specificity [58]. MIT researchers developed Sybil, an AI model for
predicting lung cancer from CT (Computed Tomography) screening. The NN model accu-
rately predicted lung cancer at one year with an ROC-AUC of 0.92 [58,69,70]. Colorectal
cancer (CRC) histology classification accuracies can be enhanced through convolutional
neural networks (CNNs) [69–71]. In anesthesia, drug delivery devices for propofol infu-
sions incorporate deep learning algorithms to maintain the appropriate depth of general
anesthesia [70–72]. Similarly, these technologies can be employed within anesthesia prac-
tice settings so that clinical teams can receive timely alerts regarding changes observed
in patient physiologic parameters throughout a procedure, which may predict or avoid
potential complications before they occur.

Applying supervised machine learning technology to healthcare delivery has potential
benefits in improving patient outcomes and delivering enhanced value-based healthcare
services. For example, its implementation could lead to the earlier detection and identi-
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fication of conditions related not only to anesthesia or surgical interventions but also to
other areas such as chronic pain management, thus allowing physicians more significant
opportunities for early intervention and prevention rather than waiting until symptoms
worsen further down the line and require more costly treatments.

In conclusion, supervised machine learning has great promise for enhancing the
quality of care across all aspects of perioperative medicine, leading to better health outcomes
among patients undergoing surgical procedures and anesthesia care.
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