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Abstract: This review focuses on the emerging evidence for the association between non-exercise
fitness testing, estimated cardiorespiratory fitness (eCRF), and metabolic risk factors. Given the
challenges associated with directly measuring cardiorespiratory fitness (CRF) in large populations,
eCRF presents a practical alternative for predicting metabolic health risks. A literature search
identified seven relevant cohort studies from 2020 to 2024 that investigated the association of eCRF
with hypertension, hyperglycemia, dyslipidemia, and obesity. This review consistently demonstrates
an inverse relationship between higher eCRF and a lower incidence of metabolic risks, which is in
line with CRF cohort studies. It highlights the importance of low eCRF as a primordial indicator for
metabolic risks and underscores the potential for broader application. Future research directions
should include exploring eCRF’s predictive ability across diverse populations and health outcomes
and testing its real-world applicability in healthcare and public health settings.

Keywords: cardiorespiratory fitness; estimated CRF; metabolic risk factors; noncommunicable
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1. Introduction

According to the recent Global Burden of Disease Study, noncommunicable diseases
(NCDs) are the primary cause of death, accounting for 74% of all annual mortality [1]. Most
of these deaths happen prematurely, before the age of 70. Cardiovascular diseases are the
leading cause of mortality related to NCDs, resulting in the loss of 17.9 million lives annually.
They are followed by cancer, type 2 diabetes (DM), and kidney disease, predominantly
caused by DM [1]. Modifiable health behaviors, such as tobacco use, physical inactivity,
and poor diet, significantly contribute to an increase in modifiable metabolic risk factors,
including hypertension, hyperglycemia, dyslipidemia, and obesity [2]. The interplay of
these risk factors increases the risk of NCD morbidity and mortality. With rising global
NCD incidence rates, implementing nuanced approaches targeting metabolic risk factors
may help with NCD prevention.

1.1. Cardiorespiratory Fitness and Metabolic Health

Vast evidence indicates that low cardiorespiratory fitness is a better prognostic marker
of the incidence of morbidity and mortality than inactivity, sedentarism, smoking, over-
weight, high cholesterol, and high blood pressure [3–7]. Objectively measured cardiores-
piratory fitness (CRF) is more comprehensive than traditional risk factors, and according
to the American Heart Association, “CRF is directly related to the integrated function of
numerous systems, and it is thus considered a reflection of total body health” [6]. CRF
measures the ability of an individual’s cardiovascular and respiratory systems to supply
oxygen to muscles during aerobic activities, serving as an indicator of mitochondrial func-
tion and efficiency. It is directly affected by physical activity, smoking, sedentary behavior,
body weight, genetics, age, health status, and biological sex [4,8–10]. The gold standard to
objectively measure CRF is a laboratory-conducted cardiopulmonary exercise test (CPET)
measuring peak oxygen consumption expressed as a relative VO2 peak in mL O2/kg per
minute. A highly correlated (r = 0.96) alternative, maximal graded exercise testing (GXT),
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is often used in clinical settings for diagnostic purposes [11]. A GXT estimates the VO2
peak and is expressed as a peak metabolic equivalent (MET), where 1 MET is equivalent
to a resting value of 3.5 mL O2/kg per minute [4,6]. In a large meta-analysis of 102,980
healthy adults from baseline, Kodama et al. found that a low peak CRF of <8 METS is a risk
factor for all-cause mortality, coronary heart disease, and vascular disease [12]. They also
established age- and sex-specific low CRF thresholds per decade (e.g., <9 METS for men
and <7 METS for women at age 40, reducing to <8 and <6 METS at age 50, and further to <7
and <5 METS by age 60). In epidemiological investigations, researchers typically categorize
low CRF by age and sex into the lowest decile, quartile, or tertile. Notably, America and
Japan have established reference standards that specify age- and sex-specific categories for
low CRF [13,14].

Recent meta-analyses highlight the importance of objectively measuring CRF to inde-
pendently predict NCDs related to poor metabolic health in healthy adults from baseline.
The persistent finding is the independent inverse association between CRF and NCDs
amongst covariates. Low CRF is associated with a higher incidence of developing cardio-
vascular disease relative risk (95% CI) 1.56 (1.39–1.75), higher CRF has an inverse association
with lower DM incidence, hazard ratio (HR) (95% CI) is 0.62 (0.49–0.77), and chronic kid-
ney disease (CKD) incidence 0.58 (0.46–0.73) [12,15,16]. Longitudinal studies collectively
show a robust inverse relationship between low CRF and all-cause mortality relative risk
(95% CI) 1.70 (1.51 to 1.92), further emphasizing its significance for a healthier and longer
lifespan [12]. Despite strong evidence supporting its inclusion, economic and logistical
challenges limit the adoption of CRF for routine use in health care and public health.

Using CRF as a prognostic indicator supports a systems-based approach to the primor-
dial and primary prevention of metabolic health risks. An adapted version of a conceptual
framework presented by Perumal et al. and Zeiher et al. of the determinants of CRF helps
illustrate the interconnectedness of physical, social, behavioral, and biological determi-
nants influencing CRF, metabolic health, and NCDs (Figure 1) [17,18]. The framework is
based on social-ecological theory and underscores the need for individual, community,
and public health initiatives to improve CRF and reduce metabolic risk factors that lead to
NCDs [19,20].
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1.2. Limitations of Measured CRF in Healthcare and Public Health

CPET and GXT are the most precise methods for objectively measuring CRF to predict
health outcomes. However, their practical application faces challenges that hinder their
widespread use. These challenges include clinical guidelines, high costs, time requirements,
and the necessity for specialized staff and equipment. Such obstacles make routine CRF
assessment impractical in healthcare and community settings [21]. These limitations are also
apparent when conducting epidemiological investigations on metabolic health outcomes.
About eleven unique cohorts, such as the Aerobic Center Longitudinal Study (ACLS),
are available for longitudinal analyses, containing healthy adults and measuring CRF at
baseline [22].

In response to these limitations, there has been a growing emphasis on developing
non-exercise fitness testing equations to estimate CRF (eCRF). These equations use readily
available data, such as self-reported physical activity levels, weight, and age, often found in
electronic health records or collected through population health surveys. Recent reviews by
Ross et al. and Wang et al. of eCRF equations have shown that these models yield moderate
(R2 = 0.60) to high correlations (R2 = 0.80) with directly measured CRF among generally
healthy adults [6,21]. Artero et al. conducted a pioneering study in 2014 on the predictability
of eCRF concerning all-cause mortality and heart disease among Caucasian Americans,
finding that low eCRF predicts health outcomes as effectively as low CRF [23]. However,
most equations were developed using samples of Caucasian populations, potentially
limiting their applicability across different ethnicities. The 2019 overview by Wang et al.
identified that no eCRF studies had been conducted on metabolic health outcomes [21].
Since then, there has been a gradual rise in cohort studies utilizing eCRF to assess the
incidence of metabolic health risks.

Given the recent increase in studies since Wang et al.′s 2019 review, the aim of this
review is two-fold. First, synthesize the existing longitudinal research on the association
between eCRF and metabolic risk factors in adult populations. Second, identify and discuss
gaps in the current literature, highlighting areas for future research and practice.

2. Literature Search

This review was conducted in PubMed, Scopus, and Web of Science. The search
focused on cohort studies that utilized non-exercise fitness tests to estimate CRF and ex-
amined the longitudinal relationships between eCRF and metabolic risk factors, including
hypertension, hyperglycemia, dyslipidemia, and obesity. Keywords used in the search
encompassed combinations of “estimated cardiorespiratory fitness”, “non-exercise fitness
test”, “metabolic health risks”, and specific conditions such as “hypertension”, “hyper-
glycemia”, “dyslipidemia”, and “obesity”. Seven studies were identified for review and
published from 2020 until 2024. Table 1 provides a summary of the literature search.
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Table 1. A summary table of included cohort studies.

First Author, Year of
Publication

Mean Follow-Up
Years from Baseline

(±SD)
Cohort Location and

Sample Size Sex Mean Age
(±SD) eCRF Model Metabolic Risk Outcomes

Lee et al., 2021 [24] 15
Framingham

Offspring Study
(FOS)

America
2962 M and F 66.2 (8.6) Jackson

Incidence of SBP ≥ 140/DBP ≥ 90 mm Hg, Incidence
of DM fasting glucose level of 126 mg/dL or higher,
nonfasting glucose level of 200 mg/dL or higher, or

the use of hypoglycemic medications.

Patel et al., 2022 [25] 5
Aerobics Center

Longitudinal Study
(ACLS)

America
5513 M and F 42.8 (9.0) Jackson Incidence of resting SBP ≥ 130/DBP ≥ 80 mm Hg or

self-reported, physician-diagnosed hypertension.

Cabanas-Sánchez
et al., 2020 [26] 5.7 (4.4) Taiwan MJ Cohort

(TMJC)
Taiwan
200,039 M and F 38.5 (12.1) Jackson

Incidence of SBP ≥ 140/DBP ≥ 90 mm Hg, serum total
cholesterol ≥240 mg/dL, and fasting blood glucose
≥126 mg/dL. Atherogenic dyslipidemia was defined
as triglycerides ≥150 mg/dL and HDL-C < 40 mg/dL

in men and <50 mg/dL in women.

Zhao et al.,
2022

2024 [27,28]
6.01 (Median) Rural Chinese

Cohort Study (RCCS)

China
11,825
9848

M and F 51.0 (8.5) Jackson

Incidence of DM was defined as fasting plasma
glucose 7.0 mmol/L or current treatment with

anti-diabetes medication or a self-reported history of
DM, gestational diabetes mellitus, or diabetes due to
other causes. Incidence of SBP ≥ 140/DBP ≥ 90 mm

Hg or antihypertensive medication.

Sloan et al., 2023 [29] 4.87 (4.58)
Aerobics Center

Longitudinal Study
(ACLS)

America
8602 M and F 43.0 (8.9) Sloan

Incidence of prediabetes (impaired fasting glucose) or
DM as fasting plasma glucose concentrations of 100 to

125 and ≥126 mg/dL, respectively. Those who
self-reported DM or hypoglycemic medication during

a follow-up were also classified as having
abnormal glucose.

Liu et al., 2024 [30] 4 (Median)

China Health and
Retirement

Longitudinal Study
(CHARLS)

China
4862 M and F 58.6 (9.4) Jackson Change in resting SBP, DBP, fasting triglycerides,

high-density lipoprotein, total cholesterol

SBP = systolic blood pressure, DBP = diastolic blood pressure, DM = Type 2 diabetes, HDL-C = high-density lipoprotein.
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3. eCRF and the Incidence of Metabolic Risks
3.1. Hypertension

According to the WHO, elevated blood pressure is the primary metabolic risk factor
responsible for the highest number of deaths worldwide, accounting for 19% of global
mortality [31]. Since 2020, five epidemiological eCRF studies have examined the association
of eCRF with the incidence of hypertension [24–27,30]. Cabanas-Sanchez et al. conducted a
large cohort study to examine the long-term relationship (5.7 ± 4.4 years) between eCRF
and key metabolic risk factors for adult cardiovascular disease. The study encompassed
200,039 healthy adults (38.5 ± 12.1 years) (50% women) from the Taiwan MJ Cohort (TMJC).
The ACLS Jackson eCRF equations were used [9]. The sex-specific Jackson equations
include age, body mass index, waist circumference, physical activity index, resting heart
rate, and smoking as parameters to calculate eCRF (File S1). From baseline, per 1-MET
increase in eCRF was inversely associated with hypertension in middle-aged men and
women, respectively (hazard ratio, HR = 0.76, 95% CI, 0.75–0.78 and HR = 0.74, 95% CI,
0.72–0.76) [26]. A sub-analysis also found that minor improvements in eCRF overtime were
associated with slightly lower incident rates.

In line with the findings of Cabanas-Sanchez et al., Patel et al. specifically investigated
the association between eCRF and hypertension incidence within healthy middle-aged
adults (42.8 ± 9.0 years) from the Caucasian population (N = 5513, 20.1% women) from
the ACLS cohort [25]. The average follow-up time was five years from baseline. Using the
Jackson eCRF equation, the results support the inverse association observed by Cabanas-
Sanchez et al. Men in the highest eCRF tertile had an HR = 0.74 (95% CI, 0.68–0.81) compared
to those in the lowest tertile. Likewise, the risk reduction for high eCRF was greater for
women, HR = 0.64 (95% CI, 0.51–0.81). In addition, a dose-response relationship was found
in the cohort. Overall, every 1-MET eCRF increment corresponded to an HR = 0.90 (95% CI,
0.87–0.93) decrease in the incidence of hypertension in the overall cohort [25]. Furthermore,
when each parameter of the eCRF equation was also considered, higher-fit, non-smoking,
and active individuals had the lowest risk.

Zhao et al. conducted a prospective cohort study on hypertension incidence and dy-
namic changes over a six-year follow-up period [27]. The study involved 9848 (61% women)
late middle-aged adults (51.0 ± 8.5 years) without chronic disease at baseline from the
Rural Chinese Cohort Study (RCCS). The main results showed a reduction in hypertension
risk of 0.86 (95% CI: 0.84–0.90) per 1 MET increase, aligning with the incremental findings
of Cabanas-Sanchez et al. and Patel et al. Furthermore, those who improved their eCRF by
≥2% had a decrease in the incidence of 0.76 (95% CI: 0.59–0.97). Conversely, those with an
eCRF decrease of >2% had a higher risk, 1.52 (1.28–1.79).

Lee et al. investigated the association between eCRF in healthy older adults
(61.5 ± 9.2 years) and the incidence of cardiometabolic outcomes, including hypertension,
across a 15-year follow-up period. The Framingham Offspring (FOS) cohort of 2962 Cau-
casian participants (52.7% women) was used [24]. Unique to the study was the association
of midlife eCRF with hypertension incidence, which was analyzed using three different
methods. The first was a single examination of eCRF during the final follow-up period.
Second, eCRF trajectories were determined by examining the initial and final periods. Third,
risk was determined based on the mean eCRF between examination periods. Low eCRF
was defined as the lowest tertile reference or trajectory group. When comparing low eCRF
with high single examination eCRF, there was a lower risk of developing hypertension,
HR = 0.63 (95% CI, 0.46–0.85). Additionally, high eCRF trajectories and high mean eCRF
were associated with a lower risk of hypertension, HR = 0.54 (95% CI, 0.34–0.87) and
HR = 0.48 (95% CI, 0.34–0.68), respectively [24].

Rather than focusing on incidence, Liu et al. conducted a 4-year investigation utilizing
data from the China Health and Retirement Longitudinal Study (CHARLS) to examine
eCRF and its impact on changes in an array of metabolic risk factors, including blood pres-
sure. The population included 4862 (52.6% female) older Chinese adults aged 58.6 (9.4) [30].
Their results indicate that in the total population, those with higher baseline eCRF tend
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to have better arterial pressure, characterized by lower SBP and DBP per year. Those
with higher baseline eCRF had significantly (p < 0.0001) lower SBP (β, 95% CI; −0.39,
−0.52–−0.25) and lower DBP (β, 95% CI; −0.19, −0.28–−0.10) per year [30]. The annual
change in eCFR per year was similar for DBP but not SBP.

These five studies provide longitudinal evidence for the independent inverse rela-
tionship between eCRF, hypertension, and elevated blood pressure. Higher eCRF was
consistently associated with lower hypertension incidence across different populations,
age groups, and time frames. The TMJC used the lowest quintile to define low eCRF; the
ACLS and FOS cohorts used the lowest tertile; and the RCCS used the lowest quartile.
The findings also suggest a dose-response relationship; for every 1-MET increase in eCRF,
adults had a 10~25% decrease in risk. While none of the investigations were able to cross-
validate eCRF with CRF, the overall findings align with a recent systematic review and
meta-analysis on the association of measured CRF and the risk of hypertension, where
1-MET increments in CRF corresponded to an 8% decrease in hypertension in adults [32].

A fundamental similarity across the investigations was that the ACLS Jackson equa-
tions were used to determine eCRF. Notably, one of the limitations of the Lee et al. [24].
investigation was that the self-reported physical activity data necessary for the Jackson
eCRF calculations were unavailable for some of the examination years. Although the
equation was initially validated in a large Caucasian population with mortality as the
outcome, the overall findings suggest that low eCRF in generally healthy adults at baseline
may serve as a predictor of the onset of hypertension later in life.

3.2. Hyperglycemia

The global diabetes prevalence rose from 108 million in 1980 to 537 million in 2021.
Projections indicate that this figure will increase to 643 million by 2030 and 783 million
by 2045. DM has a substantial impact on global mortality and morbidity, resulting in
approximately 6.7 million deaths in 2021, and it increases the likelihood of severe com-
plications such as blindness, kidney failure, heart attacks, stroke, and amputation [33].
The International Diabetes Federation highlights the importance of prevention and early
detection in addressing the worldwide spread of DM [34]. Blood tests such as impaired
glucose tolerance and fasting glycemia can identify prediabetes and aid in the primary
prevention of DM [35]. Recent meta-analyses show that early identification of those with
combined low CRF and normal blood glucose may show early signs of insulin resistance
and provide prevention opportunities [15,22,36]. From the findings of the meta-analyses,
researchers estimated that a 1-MET improvement in CRF leads to clinically significant
(5–10%) decreases in the risk of developing DM, impacting public health [15,22,36].

Five cohort studies have explored the relationship between eCRF and hyperglycemia,
focusing mainly on the development of DM. As previously described, Lee et al. and
Cabanas-Sanchez et al. investigated eCRF and cardiometabolic risks. Lee et al. derived
HRs for the onset of DM using three distinct analyses within the FOS cohort. Their findings
indicated a significant inverse relationship between eCRF and DM risk; the highest tertile
of eCRF was linked to a reduced risk of developing DM (HR = 0.38, 95% CI, 0.23–0.62),
with similar protective effects observed across high eCRF trajectories (HR = 0.27, 95% CI,
0.15–0.48) and mean eCRF (HR = 0.31, 95% CI, 0.18–0.54) [24]. Cabanas-Sanchez et al. also
found evidence that eCRF can predict the incidence of DM in the TMJC. Two separate
analyses investigated the incidence of DM from baseline eCRF, and the other analysis
investigated the impact of changes in eCRF over time. Overall, for every 1-MET increase in
eCRF, there were corresponding reductions in risk in early middle-aged men and women,
respectively. From baseline, men had an HR = 0.67 (95% CI, 0.66–0.69), and women had an
HR = 0.64 (95% CI, 0.61–0.66) [26]. When considering changes in eCFR over time, men’s
HR = 0.75 (95% CI, 0.69–0.81) and women’s HR = 0.64 (0.57–0.72).

While the TMJC primarily comprised early middle-aged adults of Chinese ethnicity
with a higher socioeconomic status, Zhao et al. conducted a comparable study involving
11,825 late middle-aged adults from the RCCS of Chinese ethnicity. The average of a six-year
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follow-up from baseline was used to determine the association of eCRF with the incidence
of DM in men and women. Men in the highest eCRF quartile had an HR = 0.37 (0.22–0.62)
compared to the lowest. For every 1-MET increase, there was an HR = 0.69 (0.62–0.78) [28].
Women in the highest eCRF quartile had an HR of 0.56 (0.36–0.88) compared to the lowest.
For every 1-MET increase, there was an HR = 0.71 (0.62–0.88). For the total adult population,
for every 1-MET increase, there was an HR = 0.89 (0.84–0.95). The four-year CHARLS results
supported these inverse associations in the oldest Chinese populations studied. Using the
Jackson eCRF as the exposure variable, findings indicate that in the total population, older
adults with higher baseline eCRF tend to have significantly (p < 0.0001) lower (β, 95% CI;
−0.037, −0.05–−0.03) fasting blood glucose per year [30]. This association was consistent
with changes in eCRF over time and in men and women, respectively.

Though the ACLS Jackson eCRF type equations are advantageous, integrating them
with electronic health records might encounter challenges related to accessibility, primarily
because the entry of self-reported physical activity levels is not universally standard in
healthcare settings [37]. To overcome this potential barrier, Sloan et al. developed nuanced
eCRF equations designed primarily for electronic health records without using physical
activity status as an equation parameter [38]. The sex-specific equations were initially
validated from the original ACLS cohort (N = 42,676) and compared to the measured CRF
for accuracy (File S2). The ACLS Sloan equations incorporate universal parameters that can
be derived from electronic health records, including resting heart rate, height, weight, blood
pressure, and smoking status. To test the predictability of eCRF with a health outcome,
Sloan et al. investigated the incidence of abnormal blood glucose (prediabetes/DM) in
8602 healthy adults from baseline (17.8% women) with a mean age of 43.03 (±8.94) using
the ACLS cohort with an average of 5 years of follow-up [29]. Separate analyses were
conducted for eCRF and CRF to determine the respective incidence of abnormal blood
glucose. A significant inverse relationship was found for both fitness measures. Specifically,
for every 1-MET increment, HRs for eCRF and CRF were determined to be 0.96, eCRF
(95% CI: 0.93–0.99), and CRF (95% CI: 0.94–0.98), respectively.

Overall, these studies suggest that higher eCRF is independently and inversely associ-
ated with the development of hyperglycemia. Evidence from various cohorts, including
the ACLS, FOS, TMJC, RCCS, and CHARLS, consistently supports this relationship across
different populations and age segments. TMJC and RCCS, both six-year cohort studies
focusing on Chinese adults that employed the ACLS Jackson eCRF, demonstrated simi-
lar findings. This protective effect was observed regardless of variations in age, health
behaviors, socioeconomic status, and environmental conditions. The types of covariates
were generally similar across cohorts. Some of the cohorts did not account for prediabetes
at baseline, which is a confounder for the increased risk of DM. Though only the Sloan
et al. study cross-validated eCRF with CRF, the overall findings from the eCRF studies
are generally aligned with CRF meta-analyses [15,22,36]. Notably, from the collective CRF
meta-analyses, women accounted for only ~16% of the general population. This underrep-
resentation of women is inherent in CRF cohort studies due to the lack of CPET and GXT
testing data [29,39].

3.3. Dyslipidemia

Dyslipidemia includes elevated cholesterol, low-density lipid cholesterol, triglycerides,
or reduced high-density lipid cholesterol [26]. Heredity and unhealthy lifestyle health
behaviors increase the chance of developing dyslipidemia, which increases the risk for
cardiovascular disease. Hypercholesterolemia (elevated low-density lipids), a leading
form of dyslipidemia, has escalated as a risk factor for death globally, moving from the
15th position in 1990 to the 8th by 2019, indicating a growing burden of cardiovascular
disease risk [40]. Atherogenic dyslipidemia, marked by high triglyceride and low high-
density lipid-cholesterol levels, is especially common in individuals with DM, or metabolic
syndrome, exacerbating cardiovascular risks [26].
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A dearth of research has been conducted on the association between eCRF and dys-
lipidemia incidence. From the CHARLS cohort, Liu et al. investigated the annual changes
in dyslipidemia with eCRF [30]. Their results indicate that older Chinese adults with
higher baseline eCRF tend to have better lipid profiles over time. Those with higher base-
line eCRF had a significant (p < 0.0001) decrease in triglycerides per year of (β, 95% CI;
−0.032 mmol·L, −0.04 to −0.03). This effect was observed in males and females. Significant
(p < 0.0001) positive changes per year in high-density lipoprotein also occurred (β, 95% CI;
0.005 mmol·L, 0.002 to 0.007). Increases were more significant in males than females.

The findings from the TMJC provided outcomes for hypercholesterolemia and athero-
genic dyslipidemia [26]. Separate analyses investigated the incidence of each outcome
from baseline eCRF, and the other analyses investigated the impact of changes in eCRF per
1-MET increase over time. From baseline, men had a reduced HR = 0.95 (95% CI, 0.93–0.96),
and women had an HR = 0.98 (95% CI, 0.96–1.01) for hypercholesterolemia. When consid-
ering changes over time, the findings were similar. For atherogenic dyslipidemia, from
baseline, men had an HR = 0.82 (95% CI, 0.80–0.83), and women had an HR = 0.80 (95% CI,
0.78–0.83). When considering per 1-MET changes in eCFR over time, the findings were
again similar to those of the baseline analyses.

Collectively, these two investigations in middle-aged and older adults of Chinese
ethnicity provide evidence that higher eCFR predicts dyslipidemia. Again, the ACLS
Jackson equation was successfully used. The comparability of investigations regarding
measured CRF and dyslipidemia is limited. In an ACLS cohort of healthy men (11,418)
at baseline, higher CRF was inversely associated with low-density lipid cholesterol and
positively associated with HDL. When age was factored in, trajectories revealed that higher
CRF in young to middle-aged men delayed abnormal low-density lipid cholesterol by
15 years [41]. Breneman et al. also conducted a study using the ACLS cohort of 9651 patients
(15% female). They found that a higher baseline CRF and maintaining fitness (~9 years)
were associated with a lower likelihood of atherogenic dyslipidemia [42].

3.4. Obesity

The World Health Organization released a 2022 report that obesity rates have doubled
since 1990 to 12.2% in men and 15.7% in women, and globally, 1 billion people have
obesity [43]. Globally, obesity is responsible for ~5 million deaths annually and is defined
as having a BMI ≥ 30 [43]. From a metabolic risk standpoint, a more critical measure
of obesity and NCD risk is central fatness, typically measured by waist circumference,
with differing cut points set according to biological sex and ethnicity [44]. The health
consequences of obesity include an increased incidence of NCDs and premature mortality.
Notably, Areto et al. found that eCRF and CRF were superior predictors of all-cause
mortality, CVD mortality, and CVD morbidity compared to BMI, or waist circumference, in
the ACLS cohort [23]. Concomitantly, a recent CHARLS cohort investigation showed clear
dose-response relationships with progressively higher eCRF, predicting a lower incidence
of CVD, heart disease, and stroke [45].

No studies to date have investigated the longitudinal relationship of eCRF with the
onset of obesity, and very few CRF studies have investigated this relationship. Ortega et al.
conducted two retrospective cohort analyses and found that low CRF is associated with a
significantly increased risk of abdominal obesity and a BMI ≥ 30 after two years in Spanish
adults [46,47]. The limited literature may be partly due to the limited number of cohorts
that have measured CRF to conduct this longitudinal analysis. Therefore, eCRF studies
using large electronic health records or population data sets may provide a method for
further investigation.

4. Discussion

Studies on non-exercise fitness testing, eCRF, and metabolic health risks are beginning
to emerge in the peer-reviewed literature. To date, seven cohort investigations have been
published, providing evidence for the incidence of hypertension, hyperglycemia, and
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dyslipidemia. No studies have been conducted on eCRF and the incidence of obesity.
This review provides emerging evidence for using eCRF as a prognostic indicator for
metabolic health risk. Significant inverse and dose-response associations were repeatedly
demonstrated between higher eCRF and a lower risk of high blood pressure, blood sugar,
and abnormal lipids. These findings are aligned with previous studies using measured CRF.
Most CRF cohort studies have been limited to primarily male Caucasian populations [12,15].
However, the increased use of eCRF in population health data sets has begun to expand
the evidence on age groups, females, ethnicities, and socioeconomic status.

The limitations identified across some of the eCRF cohort studies in this review
include concerns about low sample size, measurement accuracy, confounders, covariates,
and generalizability of findings. In 2019, Wang et al. provided a scoping review of more
than twenty eCRF equations [21]. At the time, five health eCRF outcome studies focused
on mortality as the primary outcome. Since then, the literature has expanded to include
metabolic health risk outcomes, as discussed in this review. The ACLS Jackson equation
was most commonly used to calculate eCRF in six investigations [9]. The Jackson equation
uses self-reported physical activity as one of the equation parameters, initially validated
using the ACLS physical activity index [48]. Only the investigation by Patel et al. used the
ACLS-validated scale [25]. The FOS, TMJC, RCCS, and CHARLS studies used unvalidated
domestically designed questionnaires and adapted the parameter into the equation. This
adaptation method likely resulted in misclassification of eCRF levels in some participants,
thereby reducing the accuracy and reliability of findings. It is also important to point out
that the self-reported physical activity status is prone to bias, leading to misclassification.

Other commonly cited issues are the homogeneous populations studied, often with
high socioeconomic status or specific ethnic backgrounds, limiting the external validity
of the results. The Wang et al. review also recommended choosing equations that share
the same ethnicity and age group. While there are validated eCRF equations for people of
Chinese ethnicity, the CHARLS, TMJC, and RCCS used the Caucasian-validated Jackson
equation with promising findings aligned with CRF meta-analyses. Notably, most of the
participants in the meta-analyses are Caucasian males [22,36].

Another caution when applying eCRF equations is using redundant covariates or
confounders in multivariate analyses. For example, when BMI is a parameter in an eCRF
equation and is used again as a covariate during analysis, it could lead to multicollinear-
ity. Multicollinearity occurs when two or more predictor variables in a regression model
are highly correlated, meaning that one can be linearly predicted from the others with a
substantial degree of accuracy [49]. This redundancy may inflate the variance of the coeffi-
cient estimates and the standard errors, making statistical tests less reliable, the model’s
predictions less precise, and leading to wider confidence intervals. Potential solutions
include conducting variance inflation factor (VIF) analysis or transforming a continuous
variable by categorizing the covariate or confounder (e.g., 1 = BMI < 30, 2 = BMI ≥ 30) [50].
More recently, the advancement of causal inference through causal machine learning may
offer a solution for more accurately accounting for covariates and confounders. Unlike
associative studies that incorporate confounding variables to enhance the accuracy of out-
come predictions, causal machine-learning models meticulously seek to isolate and exclude
the influence of these variables to assess the impact of the exposure variable directly [51].
Furthermore, machine learning methods may be more beneficial when using large amounts
of real-world data, such as electronic health records.

With the current dearth of literature, there are ample opportunities for further study
regarding eCRF, metabolic risks, NCDs, and a broad range of health outcomes. Potential
areas for future research may include focusing on larger multiethnic cohorts and young
adults and comparing other eCRF equations for their predictive capability. Also, more
evidence across diverse ethnicities of women is needed. One drawback is that a limited
number of population health data sets or electronic health records contain CRF or all the
parameters (e.g., Jackson) needed to calculate eCRF [38]. Different eCRF equations may
need to be applied to access more extensive, heterogeneous cohorts over longer durations.
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As discussed by Wang et al., eCRF models that do not use self-reported physical activity as
a parameter may be applied more broadly (e.g., electronic health records) [21,38].

From a metabolic health outcomes perspective, there are various potential cohort
studies to consider. eCRF prediction of prehypertension, prediabetes, and borderline
dyslipidemia would be helpful to inform primordial prevention initiatives. Studies focused
on the incidence of obesity, metabolic syndrome, and NCDs would add significant value to
the growing eCRF prediction literature. Prevalence studies for understanding the fitness
level of a particular community, region, or company can help map the magnitude and
distribution of low fitness and assist with public health planning. Lastly, conducting
experimental intervention studies using changes in eCRF would provide more evidence
for the tool’s validity.

A growing and essential area of eCRF research and primary care is net reclassification
improvement (NRI) for risk estimation. NRI is a statistical approach that assesses the extent
to which incorporating a new biomarker, such as eCRF, improves the classification accuracy
of individuals into more appropriate risk categories [5]. For example, physicians often use
the Framingham Risk Score to make patient clinical decisions. To improve the accuracy
of the 10-year CHD risk score, Gander et al. applied the Jackson eCRF [52]. The study
showed that adding the eCRF improves the overall accuracy of the Framingham Risk Score
in Caucasian men for heart disease risk. Similar findings were also found in a nationally
representative sample of Koreans and a southern Chinese population for CVD mortality
and morbidity, respectively [53,54]. There are numerous other risk prediction tools (e.g.,
DM, CKD, dementia) where adding eCRF may add predictive value.

Future Directions

CRF has been stipulated as a vital sign by the American Heart Association, and eCRF
has been proposed to be used regularly in primary care settings to identify patients with low
fitness and provide brief counseling [6,55]. However, a recent meta-analysis and systematic
review concluded that the effectiveness of this individualistic approach might not, on its
own, improve physical activity, a key determinant of fitness, to sustain itself beyond 6
to 12 months [56,57]. In agreement with this observation, the International Society for
Physical Activity and Health states, “Searching for a single solution to increasing physical
activity may have hampered progress in this field by encouraging focus on simple, often
short-term, individual-level health outcomes rather than complex, multiple, upstream,
population-level actions and outcomes [58].” Brief counseling may be more effective when
combined with the determinants of eCRF in an individual’s environment [58]. This method
is in line with the conceptual framework of the determinants of CRF (Figure 1) and stems
from social ecological theory [18]. Consequently, research has to be conducted on using
this framework with eCRF.

Given the growing sophistication of technology, eCRF has the potential to be utilized
as a population health vital sign to help prevent metabolic and other health risks. Electronic
health records can auto-populate eCRF for rapid access and review [29]. Integrating
geographic information systems with electronic health record-derived eCRF data can
enhance the early identification and mapping of metabolic risk factors [59]. This integration
allows public health officials to visually pinpoint areas of low fitness, referred to as hot
spots, and further leverage eCRF parameters to segment and target specific populations,
such as unfit middle-aged male smokers. Machine learning and artificial intelligence can
further augment this process, enabling sophisticated, actionable analyses to guide targeted
interventions and potentially maximize the impact of individual, community, and public
health initiatives [60].

The use of eCRF in healthcare and public health settings aligns with the International
Society for Physical Activity and Health’s Eight Investments That Work for Physical Ac-
tivity [58]. Both initiatives focus on accessibility to diverse physical activity, exercise, and
sports opportunities, facilitating the implementation of strategies like active travel and
urban design. Effective collaboration between healthcare systems and public health is
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crucial for navigating the complex social ecology of communities. Such partnerships are in-
strumental in planning and deploying a systems-based approach to reduce metabolic risks.

5. Conclusions

This review underscores the emerging evidence of eCRF as a primordial indicator
of metabolic health risks. The current literature affirms a consistent inverse association
between higher eCRF and reduced metabolic risks, highlighting eCRF’s predictive ability
to be concomitant with CRF. Future research should aim to explore eCRF’s predictive
capability across a broader spectrum of populations and outcomes and evaluate its real-
world utility in healthcare and public health settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph21050635/s1, File S1 Jackson et al. [9], and File S2 Sloan
et al. [38], equations.

Funding: This research received no external funding.

Institutional Review Board Statement: This review article does not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic

analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [CrossRef] [PubMed]
2. Li, Y.; Pan, A.; Wang, D.D.; Liu, X.; Dhana, K.; Franco, O.H.; Kaptoge, S.; Di Angelantonio, E.; Stampfer, M.; Willett, W.C.;

et al. Impact of Healthy Lifestyle Factors on Life Expectancies in the US Population. Circulation 2018, 138, 345–355. [CrossRef]
[PubMed]

3. Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers.
Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [CrossRef] [PubMed]

4. Ross, R.; Myers, J. Cardiorespiratory Fitness and Its Place in Medicine. RCM 2023, 24, 14. [CrossRef]
5. Myers, J.; Ross, R. Implementing Cardiorespiratory Fitness as a Routine Measure in Health Care Settings. J. Clin. Exerc. Physiol.

2021, 10, 62–69. [CrossRef]
6. Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Despres, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie,

C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A
Scientific Statement From the American Heart Association. Circulation 2016, 134, e653–e699. [CrossRef] [PubMed]

7. Despres, J.P. Physical Activity, Sedentary Behaviours, and Cardiovascular Health: When Will Cardiorespiratory Fitness Become a
Vital Sign? Can. J. Cardiol. 2016, 32, 505–513. [CrossRef] [PubMed]

8. Lin, X.; Zhang, X.; Guo, J.; Roberts, C.K.; McKenzie, S.; Wu, W.C.; Liu, S.; Song, Y. Effects of Exercise Training on Cardiorespiratory
Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J.
Am. Heart Assoc. 2015, 4, e002014. [CrossRef] [PubMed]

9. Jackson, A.S.; Sui, X.; O’Connor, D.P.; Church, T.S.; Lee, D.C.; Artero, E.G.; Blair, S.N. Longitudinal cardiorespiratory fitness
algorithms for clinical settings. Am. J. Prev. Med. 2012, 43, 512–519. [CrossRef]

10. Prince, S.A.; Dempsey, P.C.; Reed, J.L.; Rubin, L.; Saunders, T.J.; Ta, J.; Tomkinson, G.R.; Merucci, K.; Lang, J.J. The Effect of
Sedentary Behaviour on Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. Sports Med. 2024, 54, 997–1013.
[CrossRef] [PubMed]

11. Blair, S.N.; Kohl, H.W., 3rd; Paffenbarger, R.S., Jr.; Clark, D.G.; Cooper, K.H.; Gibbons, L.W. Physical fitness and all-cause mortality:
A prospective study of healthy men and women. JAMA 1989, 262, 2395–2401. [CrossRef] [PubMed]

12. Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al.
Hirohito Sone Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy
men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [CrossRef] [PubMed]

13. Akiyama, H.; Watanabe, D.; Miyachi, M. Estimated standard values of aerobic capacity according to sex and age in a Japanese
population: A scoping review. PLoS ONE 2023, 18, e0286936. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijerph21050635/s1
https://www.mdpi.com/article/10.3390/ijerph21050635/s1
https://doi.org/10.1016/S0140-6736(20)30752-2
https://www.ncbi.nlm.nih.gov/pubmed/33069327
https://doi.org/10.1161/CIRCULATIONAHA.117.032047
https://www.ncbi.nlm.nih.gov/pubmed/29712712
https://doi.org/10.1186/s12966-015-0314-1
https://www.ncbi.nlm.nih.gov/pubmed/26684758
https://doi.org/10.31083/j.rcm2401014
https://doi.org/10.31189/2165-6193-10.2.62
https://doi.org/10.1161/CIR.0000000000000461
https://www.ncbi.nlm.nih.gov/pubmed/27881567
https://doi.org/10.1016/j.cjca.2015.12.006
https://www.ncbi.nlm.nih.gov/pubmed/26907579
https://doi.org/10.1161/JAHA.115.002014
https://www.ncbi.nlm.nih.gov/pubmed/26116691
https://doi.org/10.1016/j.amepre.2012.06.032
https://doi.org/10.1007/s40279-023-01986-y
https://www.ncbi.nlm.nih.gov/pubmed/38225444
https://doi.org/10.1001/jama.1989.03430170057028
https://www.ncbi.nlm.nih.gov/pubmed/2795824
https://doi.org/10.1001/jama.2009.681
https://www.ncbi.nlm.nih.gov/pubmed/19454641
https://doi.org/10.1371/journal.pone.0286936
https://www.ncbi.nlm.nih.gov/pubmed/37713405


Int. J. Environ. Res. Public Health 2024, 21, 635 12 of 14

14. Kaminsky, L.A.; Arena, R.; Myers, J.; Peterman, J.E.; Bonikowske, A.R.; Harber, M.P.; Medina Inojosa, J.R.; Lavie, C.J.; Squires,
R.W. Updated Reference Standards for Cardiorespiratory Fitness Measured with Cardiopulmonary Exercise Testing: Data from
the Fitness Registry and the Importance of Exercise National Database (FRIEND). Mayo Clin. Proc. 2022, 97, 285–293. [CrossRef]

15. Qiu, S.; Cai, X.; Yang, B.; Du, Z.; Cai, M.; Sun, Z.; Zugel, M.; Michael Steinacker, J.; Schumann, U. Association between
Cardiorespiratory Fitness and Risk of Type 2 Diabetes: A Meta-Analysis. Obesity 2019, 27, 315–324. [CrossRef] [PubMed]

16. Kunutsor, S.K.; Isiozor, N.M.; Myers, J.; Seidu, S.; Khunti, K.; Laukkanen, J.A. Baseline and usual cardiorespiratory fitness and the
risk of chronic kidney disease: A prospective study and meta-analysis of published observational cohort studies. Geroscience 2023,
45, 1761–1774. [CrossRef] [PubMed]

17. Perumal, N.; Mensink, G.B.M.; Keil, T.; Finger, J.D. Why are some people more fit than others? Correlates and determinants of
cardiorespiratory fitness in adults: Protocol for a systematic review. Syst. Rev. 2017, 6, 102. [CrossRef] [PubMed]

18. Zeiher, J.; Ombrellaro, K.J.; Perumal, N.; Keil, T.; Mensink, G.B.M.; Finger, J.D. Correlates and Determinants of Cardiorespiratory
Fitness in Adults: A Systematic Review. Sports Med. Open 2019, 5, 39. [CrossRef] [PubMed]

19. Stokols, D. Translating social ecological theory into guidelines for community health promotion. Am. J. Health Promot. 1996, 10,
282–298. [CrossRef] [PubMed]

20. Zeiher, J.; Manz, K.; Kuntz, B.; Perumal, N.; Keil, T.; Mensink, G.B.M.; Finger, J.D. Individual and interpersonal correlates of
cardiorespiratory fitness in adults—Findings from the German Health Interview and Examination Survey. Sci. Rep. 2020, 10, 445.
[CrossRef] [PubMed]

21. Wang, Y.; Chen, S.; Lavie, C.J.; Zhang, J.; Sui, X. An Overview of Non-exercise Estimated Cardiorespiratory Fitness: Estimation
Equations, Cross-Validation and Application. J. Sci. Sport Exerc. 2019, 1, 38–53. [CrossRef]

22. Tarp, J.; Stole, A.P.; Blond, K.; Grontved, A. Cardiorespiratory fitness, muscular strength and risk of type 2 diabetes: A systematic
review and meta-analysis. Diabetologia 2019, 62, 1129–1142. [CrossRef] [PubMed]

23. Artero, E.G.; Jackson, A.S.; Sui, X.; Lee, D.C.; O’Connor, D.P.; Lavie, C.J.; Church, T.S.; Blair, S.N. Longitudinal algorithms to
estimate cardiorespiratory fitness: Associations with nonfatal cardiovascular disease and disease-specific mortality. J. Am. Coll.
Cardiol. 2014, 63, 2289–2296. [CrossRef] [PubMed]

24. Lee, J.; Song, R.J.; Musa Yola, I.; Shrout, T.A.; Mitchell, G.F.; Vasan, R.S.; Xanthakis, V. Association of Estimated Cardiorespiratory
Fitness in Midlife With Cardiometabolic Outcomes and Mortality. JAMA Netw. Open 2021, 4, e2131284. [CrossRef] [PubMed]

25. Patel, P.H.; Gates, M.; Kokkinos, P.; Lavie, C.J.; Zhang, J.; Sui, X. Non-Exercise Estimated Cardiorespiratory Fitness and Incident
Hypertension. Am. J. Med. 2022, 135, 906–914. [CrossRef] [PubMed]

26. Cabanas-Sanchez, V.; Artero, E.G.; Lavie, C.J.; Higueras-Fresnillo, S.; Garcia-Esquinas, E.; Sadarangani, K.P.; Ortola, R.; Rodriguez-
Artalejo, F.; Martinez-Gomez, D. Prediction of cardiovascular health by non-exercise estimated cardiorespiratory fitness. Heart
2020, 106, 1832–1838. [CrossRef] [PubMed]

27. Zhao, Y.; Fu, X.; Ke, Y.; Wu, Y.; Qin, P.; Hu, F.; Zhang, M.; Hu, D. Independent and joint associations of estimated cardiorespiratory
fitness and its dynamic changes and obesity with the risk of hypertension: A prospective cohort. J. Hum. Hypertens. 2024, 38,
413–419. [CrossRef] [PubMed]

28. Zhao, Y.; Qie, R.; Han, M.; Huang, S.; Wu, X.; Zhang, Y.; Feng, Y.; Yang, X.; Li, Y.; Wu, Y.; et al. Independent and joint associations
of non-exercise cardiorespiratory fitness and obesity with risk of type 2 diabetes mellitus in the Rural Chinese Cohort Study. Nutr.
Metab. Cardiovasc. Dis. 2022, 32, 929–936. [CrossRef] [PubMed]

29. Sloan, R.A.; Kim, Y.; Kenyon, J.; Visentini-Scarzanella, M.; Sawada, S.S.; Sui, X.; Lee, I.M.; Myers, J.N.; Lavie, C.J. Association
between Estimated Cardiorespiratory Fitness and Abnormal Glucose Risk: A Cohort Study. J. Clin. Med. 2023, 12, 2740. [CrossRef]
[PubMed]

30. Liu, Y.; Zhu, J.; Yu, J.; Zhang, X. Cardiorespiratory fitness and metabolic risk in Chinese population: Evidence from a prospective
cohort study. BMC Public Health 2024, 24, 522. [CrossRef]

31. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control
from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398,
957–980. [CrossRef] [PubMed]

32. Cheng, C.; Zhang, D.; Chen, S.; Duan, G. The association of cardiorespiratory fitness and the risk of hypertension: A systematic
review and dose-response meta-analysis. J. Hum. Hypertens. 2022, 36, 744–752. [CrossRef] [PubMed]

33. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of
prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [CrossRef]
[PubMed]

34. Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova,
K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the
International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [CrossRef] [PubMed]

35. Agliano, D.J.; Boyko, E.J. IDF Diabetes Atlas 10th Edition Scientific Committee, 10th ed.; International Diabetes Federation: Brussels,
Belgium, 2021; Chapter 3. Available online: https://www.ncbi.nlm.nih.gov/books/NBK581940/ (accessed on 30 March 2024).

https://doi.org/10.1016/j.mayocp.2021.08.020
https://doi.org/10.1002/oby.22368
https://www.ncbi.nlm.nih.gov/pubmed/30604925
https://doi.org/10.1007/s11357-023-00727-3
https://www.ncbi.nlm.nih.gov/pubmed/36646903
https://doi.org/10.1186/s13643-017-0497-4
https://www.ncbi.nlm.nih.gov/pubmed/28521801
https://doi.org/10.1186/s40798-019-0211-2
https://www.ncbi.nlm.nih.gov/pubmed/31482208
https://doi.org/10.4278/0890-1171-10.4.282
https://www.ncbi.nlm.nih.gov/pubmed/10159709
https://doi.org/10.1038/s41598-019-56698-z
https://www.ncbi.nlm.nih.gov/pubmed/31949174
https://doi.org/10.1007/s42978-019-0003-x
https://doi.org/10.1007/s00125-019-4867-4
https://www.ncbi.nlm.nih.gov/pubmed/31011778
https://doi.org/10.1016/j.jacc.2014.03.008
https://www.ncbi.nlm.nih.gov/pubmed/24703924
https://doi.org/10.1001/jamanetworkopen.2021.31284
https://www.ncbi.nlm.nih.gov/pubmed/34714339
https://doi.org/10.1016/j.amjmed.2022.01.048
https://www.ncbi.nlm.nih.gov/pubmed/35235822
https://doi.org/10.1136/heartjnl-2020-316871
https://www.ncbi.nlm.nih.gov/pubmed/32616509
https://doi.org/10.1038/s41371-024-00910-9
https://www.ncbi.nlm.nih.gov/pubmed/38600254
https://doi.org/10.1016/j.numecd.2022.01.005
https://www.ncbi.nlm.nih.gov/pubmed/35067443
https://doi.org/10.3390/jcm12072740
https://www.ncbi.nlm.nih.gov/pubmed/37048823
https://doi.org/10.1186/s12889-024-17742-4
https://doi.org/10.1016/S0140-6736(21)01330-1
https://www.ncbi.nlm.nih.gov/pubmed/34450083
https://doi.org/10.1038/s41371-021-00567-8
https://www.ncbi.nlm.nih.gov/pubmed/34168273
https://doi.org/10.1016/S0140-6736(23)01301-6
https://www.ncbi.nlm.nih.gov/pubmed/37356446
https://doi.org/10.1016/j.diabres.2019.107843
https://www.ncbi.nlm.nih.gov/pubmed/31518657
https://www.ncbi.nlm.nih.gov/books/NBK581940/


Int. J. Environ. Res. Public Health 2024, 21, 635 13 of 14

36. Zaccardi, F.; O’Donovan, G.; Webb, D.R.; Yates, T.; Kurl, S.; Khunti, K.; Davies, M.J.; Laukkanen, J.A. Cardiorespiratory fitness
and risk of type 2 diabetes mellitus: A 23-year cohort study and a meta-analysis of prospective studies. Atherosclerosis 2015, 243,
131–137. [CrossRef] [PubMed]

37. Lindeman, C.; McCurdy, A.; Lamboglia, C.G.; Wohlers, B.; Pham, A.N.Q.; Sivak, A.; Spence, J.C. The extent to which family
physicians record their patients’ exercise in medical records: A scoping review. BMJ Open 2020, 10, e034542. [CrossRef] [PubMed]

38. Sloan, R.; Visentini-Scarzanella, M.; Sawada, S.; Sui, X.; Myers, J. Estimating Cardiorespiratory Fitness Without Exercise Testing or
Physical Activity Status in Healthy Adults: Regression Model Development and Validation. JMIR Public Health Surveill. 2022, 8,
e34717. [CrossRef] [PubMed]

39. Sui, X.; Hooker, S.P.; Lee, I.-M.; Church, T.S.; Colabianchi, N.; Lee, C.-D.; Blair, S.N. A prospective study of cardiorespiratory
fitness and risk of type 2 diabetes in women. Diabetes Care 2008, 31, 550–555. [CrossRef] [PubMed]

40. Liu, T.; Zhao, D.; Qi, Y. Global Trends in the Epidemiology and Management of Dyslipidemia. J. Clin. Med. 2022, 11, 6377.
[CrossRef]

41. Park, Y.M.; Sui, X.; Liu, J.; Zhou, H.; Kokkinos, P.F.; Lavie, C.J.; Hardin, J.W.; Blair, S.N. The effect of cardiorespiratory fitness on
age-related lipids and lipoproteins. J. Am. Coll. Cardiol. 2015, 65, 2091–2100. [CrossRef] [PubMed]

42. Breneman, C.B.; Polinski, K.; Sarzynski, M.A.; Lavie, C.J.; Kokkinos, P.F.; Ahmed, A.; Sui, X. The Impact of Cardiorespiratory
Fitness Levels on the Risk of Developing Atherogenic Dyslipidemia. Am. J. Med. 2016, 129, 1060–1066. [CrossRef] [PubMed]

43. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: A pooled
analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050.
[CrossRef] [PubMed]

44. Kodama, S.; Horikawa, C.; Fujihara, K.; Heianza, Y.; Hirasawa, R.; Yachi, Y.; Sugawara, A.; Tanaka, S.; Shimano, H.; Iida, K.T.; et al.
Comparisons of the strength of associations with future type 2 diabetes risk among anthropometric obesity indicators, including
waist-to-height ratio: A meta-analysis. Am. J. Epidemiol. 2012, 176, 959–969. [CrossRef] [PubMed]

45. Liu, Y.; Zhu, J.; Guo, Z.; Yu, J.; Zhang, X.; Ge, H.; Zhu, Y. Estimated cardiorespiratory fitness and incident risk of cardiovascular
disease in China. BMC Public Health 2023, 23, 2338. [CrossRef] [PubMed]

46. Ortega, R.; Grandes, G.; Agullo-Ortuno, M.T.; Gomez-Cantarino, S. Changes in Cardiorespiratory Fitness and Probability of
Developing Abdominal Obesity at One and Two Years. Int. J. Environ. Res. Public Health 2023, 20, 4754. [CrossRef] [PubMed]

47. Ortega, R.; Grandes, G.; Sanchez, A.; Montoya, I.; Torcal, J.; PEPAF group. Cardiorespiratory fitness and development of
abdominal obesity. Prev. Med. 2019, 118, 232–237. [CrossRef] [PubMed]

48. Blair, S.N.; Kannel, W.B.; Kohl, H.W.; Goodyear, N.; Wilson, P.W. Surrogate measures of physical activity and physical fitness.
Evidence for sedentary traits of resting tachycardia, obesity, and low vital capacity. Am. J. Epidemiol. 1989, 129, 1145–1156.
[CrossRef] [PubMed]

49. Vatcheva, K.P.; Lee, M.; McCormick, J.B.; Rahbar, M.H. Multicollinearity in Regression Analyses Conducted in Epidemiologic
Studies. Epidemiology 2016, 6, 227. [CrossRef] [PubMed]

50. Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al.
Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 38, 27–46.
[CrossRef]

51. Shi, J.; Norgeot, B. Learning Causal Effects From Observational Data in Healthcare: A Review and Summary. Front. Med. 2022, 9,
864882. [CrossRef] [PubMed]

52. Gander, J.C.; Sui, X.; Hebert, J.R.; Lavie, C.J.; Hazlett, L.J.; Cai, B.; Blair, S.N. Addition of estimated cardiorespiratory fitness to
the clinical assessment of 10-year coronary heart disease risk in asymptomatic men. Prev. Med. Rep. 2017, 7, 30–37. [CrossRef]
[PubMed]

53. Sun, X.-Y.; Ma, R.-L.; He, J.; Ding, Y.-S.; Rui, D.-S.; Li, Y.; Yan, Y.-Z.; Yi-Dan, M.; Sheng-Yu, L.; Xin, H.; et al. Updating Framingham
CVD risk score using waist circumference and estimated cardiopulmonary function: A cohort study based on a southern Xinjiang
population. BMC Public Health 2022, 22, 1715. [CrossRef] [PubMed]

54. Lee, I.; Kim, J.; Kang, H. Adding Estimated Cardiorespiratory Fitness to the Framingham Risk Score and Mortality Risk in a
Korean Population-Based Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 510. [CrossRef] [PubMed]

55. Franklin, B.A.; Wedig, I.J.; Sallis, R.E.; Lavie, C.J.; Elmer, S.J. Physical Activity and Cardiorespiratory Fitness as Modulators of
Health Outcomes: A Compelling Research-Based Case Presented to the Medical Community. Mayo Clin. Proc. 2023, 98, 316–331.
[CrossRef] [PubMed]

56. Lamming, L.; Pears, S.; Mason, D.; Morton, K.; Bijker, M.; Sutton, S.; Hardeman, W.; Team, V.B.I.P. What do we know about brief
interventions for physical activity that could be delivered in primary care consultations? A systematic review of reviews. Prev.
Med. 2017, 99, 152–163. [CrossRef] [PubMed]

57. van der Wardt, V.; di Lorito, C.; Viniol, A. Promoting physical activity in primary care: A systematic review and meta-analysis. Br.
J. Gen. Pract. 2021, 71, e399–e405. [CrossRef] [PubMed]

58. Milton, K.; Cavill, N.; Chalkley, A.; Foster, C.; Gomersall, S.; Hagstromer, M.; Kelly, P.; Kolbe-Alexander, T.; Mair, J.; McLaughlin,
M.; et al. Eight Investments That Work for Physical Activity. J. Phys. Act. Health 2021, 18, 625–630. [CrossRef] [PubMed]

https://doi.org/10.1016/j.atherosclerosis.2015.09.016
https://www.ncbi.nlm.nih.gov/pubmed/26386209
https://doi.org/10.1136/bmjopen-2019-034542
https://www.ncbi.nlm.nih.gov/pubmed/32054628
https://doi.org/10.2196/34717
https://www.ncbi.nlm.nih.gov/pubmed/35793133
https://doi.org/10.2337/dc07-
https://www.ncbi.nlm.nih.gov/pubmed/18070999
https://doi.org/10.3390/jcm11216377
https://doi.org/10.1016/j.jacc.2015.03.517
https://www.ncbi.nlm.nih.gov/pubmed/25975472
https://doi.org/10.1016/j.amjmed.2016.05.017
https://www.ncbi.nlm.nih.gov/pubmed/27288861
https://doi.org/10.1016/S0140-6736(23)02750-2
https://www.ncbi.nlm.nih.gov/pubmed/38432237
https://doi.org/10.1093/aje/kws172
https://www.ncbi.nlm.nih.gov/pubmed/23144362
https://doi.org/10.1186/s12889-023-16864-5
https://www.ncbi.nlm.nih.gov/pubmed/38001416
https://doi.org/10.3390/ijerph20064754
https://www.ncbi.nlm.nih.gov/pubmed/36981663
https://doi.org/10.1016/j.ypmed.2018.10.020
https://www.ncbi.nlm.nih.gov/pubmed/30414943
https://doi.org/10.1093/oxfordjournals.aje.a115236
https://www.ncbi.nlm.nih.gov/pubmed/2729253
https://doi.org/10.4172/2161-1165.1000227
https://www.ncbi.nlm.nih.gov/pubmed/27274911
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.3389/fmed.2022.864882
https://www.ncbi.nlm.nih.gov/pubmed/35872797
https://doi.org/10.1016/j.pmedr.2017.05.008
https://www.ncbi.nlm.nih.gov/pubmed/28593120
https://doi.org/10.1186/s12889-022-14110-y
https://www.ncbi.nlm.nih.gov/pubmed/36085029
https://doi.org/10.3390/ijerph19010510
https://www.ncbi.nlm.nih.gov/pubmed/35010771
https://doi.org/10.1016/j.mayocp.2022.09.011
https://www.ncbi.nlm.nih.gov/pubmed/36737120
https://doi.org/10.1016/j.ypmed.2017.02.017
https://www.ncbi.nlm.nih.gov/pubmed/28232098
https://doi.org/10.3399/BJGP.2020.0817
https://www.ncbi.nlm.nih.gov/pubmed/33824160
https://doi.org/10.1123/jpah.2021-0112
https://www.ncbi.nlm.nih.gov/pubmed/33984836


Int. J. Environ. Res. Public Health 2024, 21, 635 14 of 14

59. Laranjo, L.; Rodrigues, D.; Pereira, A.M.; Ribeiro, R.T.; Boavida, J.M. Use of Electronic Health Records and Geographic Information
Systems in Public Health Surveillance of Type 2 Diabetes: A Feasibility Study. JMIR Public Health Surveill. 2016, 2, e12. [CrossRef]
[PubMed]

60. Wiemken, T.L.; Kelley, R.R. Machine Learning in Epidemiology and Health Outcomes Research. Annu. Rev. Public Health 2020, 41,
21–36. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2196/publichealth.4319
https://www.ncbi.nlm.nih.gov/pubmed/27227147
https://doi.org/10.1146/annurev-publhealth-040119-094437
https://www.ncbi.nlm.nih.gov/pubmed/31577910

	Introduction 
	Cardiorespiratory Fitness and Metabolic Health 
	Limitations of Measured CRF in Healthcare and Public Health 

	Literature Search 
	eCRF and the Incidence of Metabolic Risks 
	Hypertension 
	Hyperglycemia 
	Dyslipidemia 
	Obesity 

	Discussion 
	Conclusions 
	References

