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Abstract: A crucial feature of life is its spatial organization and compartmentalization on the molec-
ular, cellular, and tissue levels. Spatial transcriptomics (ST) technology has opened a new chapter
of the sequencing revolution, emerging rapidly with transformative effects across biology. This
technique produces extensive and complex sequencing data, raising the need for computational
methods for their comprehensive analysis and interpretation. We developed the ST browser web tool
for the interactive discovery of ST images, focusing on different functional aspects such as single gene
expression, the expression of functional gene sets, as well as the inspection of the spatial patterns
of cell–cell interactions. As a unique feature, our tool applies self-organizing map (SOM) machine
learning to the ST data. Our SOM data portrayal method generates individual gene expression
landscapes for each spot in the ST image, enabling its downstream analysis with high resolution. The
performance of the spatial browser is demonstrated by disentangling the intra-tumoral heterogeneity
of melanoma and the microarchitecture of the mouse brain. The integration of machine-learning-
based SOM portrayal into an interactive ST analysis environment opens novel perspectives for the
comprehensive knowledge mining of the organization and interactions of cellular ecosystems.

Keywords: molecular biology; melanoma; mouse brain; spatial gene set analysis; receptor–ligand
interactions; self-organizing map (SOM) machine learning; intra-tumoral heterogeneity microanatomy;
10x Visium technology

1. Introduction

Molecular diagnostics of transcriptional activity in tissue biopsies has experienced
multiple technical revolutions in the last two decades. Initially, surface hybridization-based
microarrays allowed for targeted profiling of more than 20,000 human genes per chip
at moderate costs [1]. These were later superseded by high-throughput DNA and RNA
sequencing [2], which facilitated the expression profiling and also untargeted detection
of novel transcripts, depending on sequencing depth [3,4]. Both techniques require a
significant amount of sample material for extraction of the desired RNA, which is pro-
vided by bulk samples, usually containing pooled populations of hundreds to millions
of individual cells. This entails the problem of intermixing expression signatures, as
cells from different tissues, different cell types, and potentially diseased and healthy cells
are captured together by the biopsy. A further problem is the sampling bias caused by
intra-tumor heterogeneity [5,6]. Emerging single-cell isolation methods overcame these
issues and delivered the individual cells’ transcriptomes [7]. Hence, transcriptomics is
a child of technological progress, from the microarrays that first enabled genome-scale
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experiments to high-throughput sequencing and, afterward, the revolution triggered by
single-cell methods.

However, these dissociation-based techniques share a major drawback: the loss of
spatial information, crucial for understanding tissue functionality. Recent developments
in sequencing technologies overcame this gap by resolving the spatial information of
transcriptomes on a microscopic scale [8]. For example, the Visium spatial transcriptomics
(ST) technique uses sequencing and localization barcoding [9] to analyze elementary spatial
units of about 55 µm in diameter, called ‘spots’. Each spot contains a few (up to about a
dozen) cells enabling a sort of ST microscopy (Greek ‘mikros’—small—and ‘skopeo’—look
at [10]).

The field of ST is now developing rapidly, with a potentially transformative effect
across many areas of biology [11]. Spatial resolution will be vital for scientific questions
such as understanding the complex ecosystem of the tumor microenvironment (TME),
or the cellular architecture of organismal development and the resulting microanatomy
of complex healthy tissues such as the brain. The wet lab technologies that produce big
(i.e., very large and complex) sequencing data urgently require computational methods
for their comprehensive analysis and interpretation. Single-cell sequencing previously led
to an explosion of computational tools, ranging from adaptations of bulk omics methods
to inventions of novel machine learning approaches for pseudotime and RNA velocity
analyses. Now, the spatial field is similarly poised for a period of rapid and exciting
progress in bioinformatics and systems biology [12].

So far, the development of computational methods for spatial omics has focused
on preprocessing, read mapping, and quality control tasks, facilitated by tools such as
Space Ranger [13], ST Pipeline [14], or SnapATAC [15]. Next-step tools like Seurat [16],
BayesSpace [17], and SpaGCN [18] accomplish class discovery tasks, providing insights
into cell types and cellular subpopulations. Other questions, such as spatially-variable
gene identification, benefit from tools like SpatialDE [19], trendsceek [20], and SPARK [21],
with each offering unique strategies for pinpointing genes with distinct spatial expression
patterns. Further tools like CARD [22], Tangram [23], SpaGE [24], GCNG [25], SpaOTsc [26],
MULTILAYER [27], stLearn [28], SpaRx [29], SiGra [30], and SpatialData [31] address
diverse issues ranging from cell-type deconvolution in the capture spots to the exploration
of cell–cell interactions, and also support region annotation, drug response, and spatial
trajectory analyses. These tools collectively provide a first (by far not complete) set of
bioinformatics tools enhancing our understanding of spatial transcriptomics data. Recent
reviews provide a wide overview of the state of the art of the field (see [8,32–34] and
references cited therein).

Traditional optical microscopy requires ‘skopus’ functionalities to ‘look at’ the spec-
imen, i.e., its detailed visual inspection, usually through its eyepiece, enabling active
manipulations such as shifting and zooming the inspected region of the microscopic slide.
This process often incorporates a variety of histochemical staining, e.g., for pathological
inspections. In ST, such ‘skopus’ tasks are accomplished computationally and have the need
for versatile platforms, advanced data exploration capabilities, user-friendly interfaces,
and knowledge mining of spatial information, such as that provided partly by the ‘Loupe
Browser’ [35] for 10x Genomics data.

We here present a newly developed ST web tool, designed for the interactive discovery
of ST images under various functional aspects. A central novel feature that makes our
tool unique is the application of self-organizing map (SOM) machine learning to ST data,
which generates individual expression portraits for each of the spots in the ST image,
enabling combined ‘skopus’ tasks in the transcriptome landscape and the ST image as well.
These portraits provide detailed information about the local expression landscape with
individual spot resolution in an easily perceivable and interpretable fashion. Our browser
enables users to investigate single gene expression by selecting any of the more than ten
thousand genes in the dataset, explore the expression of functional gene signatures by
selecting them from a repository of a few thousand gene sets implemented in the tool, as
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well as inspect the joint expression of receptor–ligand pairs to study the spatial patterns of
cell–cell interactions.

The method of data portrayal through SOMs has been previously developed for
dimension and redundancy reduction in multidimensional omics data [36], making use of
the algorithm of Kohonen maps [37]. It was previously applied by us to a wide spectrum
of bulk omics and single-cell data using genetic, transcriptomic, and epigenetic data, and
to their integrative multi-omics analysis (see, e.g., [38–42]). The method has been proven
effective for the modularization and functional interpretation of cellular programs and, as
its specific feature, enables an easily perceivable and interpretable visualization of granular
data landscapes [43]. Our ST application makes use of the previously developed ‘oposSOM’
software (version 2.4) [44]. The ST browser is offered as a novel extension of the oposSOM-
Browser [45] developed for bulk and single-cell omics data. In this publication, we describe
the functionality of the spatial browser in the context of two use cases, addressing in
detail the intra-tumoral heterogeneity of melanoma and, as an illustration, the cellular
architecture of the mouse brain. We focus on the application aspects and on biological
knowledge mining at the gene and cell levels to illustrate the association between spatial
and functional aspects for the two selected use cases.

2. Materials and Methods
2.1. The Spatial oposSOM-Browser: Overview and Availability

The spatial transcriptomics (ST) browser is a novel bioinformatics tool enabling the
interactive analysis of microscopic tissue slices using transcriptomic data. The tool is
embedded as an ST module in the oposSOM-Browser, which has been previously developed
for the interactive exploration of omics data processed by the SOM portrayal method ([45],
Figure 1). The ST browser adds functions that enable the detailed interactive analysis
of data obtained by the spatial mRNA capture technology of microscopic tissue sections,
resolving them into spots of sizes of about 55 × 55 µm containing typically up to one dozen
single cells. Adaptations to single-cell resolved ST technologies such as Visium HD are
presently under way.
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Figure 1. The spatial transcriptomics browser is a novel functionality of the interactive oposSOM-
Browser data mining tool [45], providing various options for gene profiling and function mining of ST
data such as coloring of the images according to expression levels of selected genes, gene signatures,
receptor–ligand interactions, and clusters of spots. It supplements already implemented modules
of the oposSOM-Browser such as the expression module browser (providing details of the SOM
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expression landscape), pathway signal flow (PSF) browser (providing class-specific activation topolo-
gies of KEGG pathways), as well as gene and functional gene set browsers.

As a unique feature, the ST browser provides an individual SOM image of each spot,
which serves as a local fingerprint of its transcriptomic landscape [44]. For a detailed
description of the SOM portrayal method and its applications, we refer to our previous
publications (method: [36,46]; selected applications: [41,43,47]). The SOM portrayal of ST
data resembles previous SOM portrayals of bulk transcriptomics samples, where each
spatial spot represents a ‘micro-bulk’ sample capturing the transcriptomes of 7–15 cells.
For interactive SOM space discovery, one can use the previously described functions of the
oposSOM-Browser [45], while the discovery of the transcriptome in spatial coordinates is
provided by the novel ST browser module.

The spatial browser is implemented as an R-Shiny application [48] and can be accessed
via standard web browsers under www.izbi.uni-leipzig.de/opossom-browser (accessed
on 2 May 2024). Currently, the ST browser provides the two use cases described below
and four additional ST samples of cancer and healthy tissues. The input data are split
into different data types which require several preprocessing steps (see next subsection).
To avoid performance problems, usually related to the SOM processing of ST data, we
offer the implementation of external data via support by the authors. Interested users are
invited to provide their analyses to the browser via request to the corresponding author.
The workflow together with a list of the required data for integration into the oposSOM-
Browser is given as Supplementary Figure S1. Note that input data for the ST browser
can be used for independent downstream analyses by applying additional methods such
pseudotime and RNA velocity analyses for identifying developmental trajectories in the
ST images.

2.2. Input Data, Preprocessing, and SOM Portrayal of the Spatial Transcriptome

Input data for the browser comprise the ST image, the preprocessed spot data (e.g.,
as Seurat R-object [49]), and the SOM-processed spot-level data as an R-object using the
package ‘oposSOM’ available on Bioconductor and Github [44] (see Figure S1 for an
overview of input data requirements). Processing of an ST use case with a few thousand
spots requires about 12–48 h of runtime on a standard scientific laptop (Intel i7 CPU, 16 GB
memory), covering SOM training and subsequent statistical routines that are implemented
in oposSOM.

We apply self-organizing map (SOM) machine learning to the normalized and central-
ized ST data expression data in logarithmic scale, where each of the spots is considered
as a single ‘micro-bulk’ transcriptome sample. The expression values of each gene across
all spots are considered as its expression profile. SOM processing clusters these expres-
sion profiles into 50 × 50 = 2500 so-called metagene profiles and distributes them in a
two-dimensional quadratic grid using Euclidian distance similarity metrics [36]. The tran-
scriptomic patterns of each spot are visualized as ‘expression portraits’ by color-coding the
metagene expression values in the square grid topology using a red-to-blue color scale for
coding over- and underexpression, respectively. Importantly, all expression portraits of the
different spots can be directly compared as the localization of the genes in the SOM grid is
fixed at the same position in all portraits. Mean portraits, e.g., per cell type or spot cluster,
were obtained by averaging the metagene expression values across all members of a given
group of spots in the respective image.

2.3. Downstream Analysis and Function Mining of the Spatial Images and SOM Portraits

Downstream analysis functions are implemented in the oposSOM-Browser, compris-
ing gene and biological function analyses with spatial resolution as well as pathway mining
on the class level (Figure 1 and [45]). The ST browser also provides detailed spot-level
information when hovering over the image for zoomed-in views on every spot-related
SOM portrait (Figures S2 and S3).

www.izbi.uni-leipzig.de/opossom-browser
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Function mining of the spatial images is performed by coloring them using several
options, namely by selecting the expression levels of (i) single genes, (ii) gene sets, (iii) gene
modules identified in SOM analysis (i.e., sets of genes extracted from the modules), and
(iv) receptor–ligand interactions in terms of co-expression of the receptor and ligand pairs
taken from a predefined list of genes referring to distinct pathways. Options (i)–(iii) color
code the spatial spots in brown to blue for high to low expression, respectively (see below),
and for option (iv), we use triple coloring with apricot/blue/green for the co-expression of
the receptor and ligand or the expression of only the receptor or only the ligand, respectively.
Color saturation then scales with the expression level. Receptor–ligand interaction (RLI)
pairs can be selected either individually or related to pathways considering respective sets.
RLs were obtained from ‘omnipath database’ [50].

Function mining of the SOM expression portraits is performed by visual inspection
of different types of maps. The SOM algorithm self-organizes co-expressed metagene
profiles into red ‘spot’-like activation patterns in the portraits. The genes included in
these expression modules were extracted from the SOM portraits as gene lists as described
previously [36]. Gene set enrichment and overexpression analysis based on a large collection
of functional gene signatures implemented in oposSOM [44] then provides functional
information about the genes in each of the modules. Another complementary option for
functional mining is the mapping of the genes of a gene set into the SOM, resulting in
so-called gene set maps for direct comparison with the expression patterns observed in the
portraits. The pathway signal flow (PSF) algorithm provides a third option for functional
analysis, tracking transcriptional activity through more than 50 KEGG pathways under
consideration of the pathway topology [51].

2.4. Use Case Datasets: Human Melanoma and Mouse Brain

We implemented two ST datasets as use cases to illustrate the functions of the spatial
browser: (i) A microscopic section of human (malignant skin) melanoma with 18,051 genes
in 3458 spots as an example of the microarchitecture of cancer tissue expressing high
molecular and cellular heterogeneity. (ii) The second use case dataset was chosen to
describe the microanatomy of a healthy mouse brain as an example of a microscopically
well-structured tissue. It consists of the profiles of 14,858 genes in 2696 spots. Both
datasets were generated by 10x technology and are publicly available on the 10x Genomics
website [52]. The datasets were preprocessed using the Seurat [16,49] and oposSOM [44]
packages. Seurat provides the standard UMAP projection of the spots, cell type assignment,
and spot clusters using the default Louvain algorithm. Further datasets are presently in
preparation and will be released together with the accompanying scientific publications.

3. Results
3.1. Browsing the Spatially Resolved SOM Portraits of Melanoma

Spatial transcriptomics functionalities of the ‘oposSOM-Browser’ are illustrated for
the melanoma use case in Figure 2a–d. Hovering over the image shows the SOM expression
portrait of the spot at cursors position together with an enlargement enabling to compare
the plain and the spot images (Figure 2a–c). An overview of the spot portraits is available
by selecting the ‘spot portrait’ option of image visualization (Figure 2d). The image can
alternatively be colored by choosing ‘spot clusters’ or ‘cell types’. The former option
is usually taken from standard clustering as provided by preprocessing using Seurat,
while the latter one typically results from transfer learning based on cell-type-specific
marker genes. Spot clustering, for example, segments the ST image into areas of different
functional impact, which identifies fine structures referring to the dominant cell type
present in the spots (Figure 2e, see next subsection). Clicking on a spot opens a zoomed-
in view at the cursor position showing the local portraits of the selected spot and of its
neighbors, as well as their cluster memberships as colored circles (Figure 2f). Notably,
the individual spot portraits slightly differ due to variations in the cell compositions
and/or transcriptional programs in the respective spots, even if assigned to the same



Curr. Issues Mol. Biol. 2024, 46 4706

cluster. Their inspection thus provides an overview of the local heterogeneity of activated
transcriptional programs with single-spot resolution. Contiguous spots, especially if they
belong to different clusters, can express SOM portraits sharing common transcriptomic
patterns due to the changing and partly overlapping cell states (see, e.g., Figure 2e,f). Hence,
the portrayal with ‘individual’ single-spot resolution in combination with the functional
interpretation of the portraits (see below) enables the spot-by-spot discovery of the image,
particularly in areas of changing compositions.
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Figure 2. Data portrayal applies SOM to ST spots: (a) Screenshot of the H&E-stained (plain) image of
the melanoma sample in the oposSOM-Browser. Hovering over the image with the cursor displays
the expression portrait of the selected ST spot at the cursor’s position. (b) An enlarged view of the
H&E image and (c) a second zoomed panel shows the cell type/cluster assignments of the spots as
colored circles. (d) The ST image shows the SOM portraits of each of the spots as indicated in the
enlargement. (e) Segmentation of the ST image into Seurat clusters enables zoomed-in discovery
of the spot portrait environment at the cursor position. Three examples are shown on the right.
(f) Clicking on a spot in the image opens a window that shows the spot portrait, the cell cluster
archetypic portraits, a correlation-ranked list of cell types, and a zoomed-in image showing the
portraits of the neighboring spots.
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3.2. Spot Clusters and SOM Portrayal Stratify the ST Images into Major Transcriptional Types

Clustering is a common and very useful concept to stratify high-dimensional data
and, particularly, to segment the spots of ST images into areas of different cell compositions
and/or transcriptional states of the cells. There is usually no gold standard for the right
choice of clusters. Instead, clustering depends on the biological question pursued in a
study. For ST data, it usually requires a combined evaluation including (i) statistical
and bioinformatics criteria such as silhouette plots (available in the standard oposSOM-
reports) or consensus clustering approaches, (ii) pathologists’ evaluation of the images,
(iii) marker genes for different cell types and/or developmental stages in the case of cancers,
and (iv) functional interpretation, e.g., by means of association of gene signatures with
the clusters. In general, justification of the clusters chosen here for the illustration of the
browser functions is beyond the scope of this publication and was previously discussed (see,
e.g., [53]). In agreement with the state of the art used in numerous single-cell and ST data
analyses, we applied unsupervised Louvain clustering as provided by the Seurat R-package,
which stratifies the 3458 spots of the melanoma ST image into fifteen clusters labeled as
c1-c15. For the association with their functional contexts and cell type composition, we
used previous knowledge from numerous publications and illustrate how the browser can
be used to interpret the areas and clusters identified in the ST image (see below). Moreover,
hovering over the local spot portraits across the image enables the consistency of clustering
to be controlled by comparing, e.g., expression patterns along the cluster boundaries (see
Figure 2). Note that the clustering used in the browser is provided by the preprocessing
and thus by the user’s choice.

The UMAP of the spots was generated using the Seurat R-package [49]. It transforms
the ST patterns into a spot-similarity plot supporting the selected clusters and, beyond
this result, revealing four superclusters with different cellular and functional impacts:
three of these regions relate to spots mainly containing melanoma cells with specific signa-
tures of pigmentation, immune response, and proliferation, respectively, and one collects
keratinocyte- and fibroblast-rich spots (Figure 3b). Particularly, six clusters (c1–c6) re-
fer to different transcriptional types of melanoma cells pursuing a pigmentation (type 1)
or proliferative (c6) program; three clusters (c7–c9) were assigned to inflammatory and
mesenchymal melanoma cells (type 2) including their tumor microenvironmental cell com-
munities using gene signatures taken from [54,55]; and six clusters (c10–c15) accumulate
different types of bystander cells such as keratinocytes, fibroblasts, pericytes, and immune
cells (T- and B-cells and macrophages) based on single-cell transcriptomics data and cell
type markers taken from [56,57]. The ST image shows the spatial distribution of these clus-
ters forming a distinct microanatomy of the tumor, where clusters of type 1, proliferative,
and type 2 malignant cells form well-separated areas, respectively, which are separated
from regions dominated by keratinocytes and stromal cells (Figure 3a, select the ‘spot clus-
tering’ option in the pull-down menu). Interestingly, the UMAP spot-similarity patterns
show a similar structure to the ST cluster patterns (compare Figure 3a,b), with the stroma-
and keratinocyte-related regions separated from regions of type 1, type 2, and proliferative
melanoma (from right to left). This result reflects the fact that the cells form intrinsically
interacting communities, resulting in a similar gradient of transcriptional patterns in the ST
image and UMAP projection.

SOM portrayal complements Louvain clustering of the spots by an orthogonal cluster-
ing of the gene expression profiles. In particular, each of the fifteen spot clusters is charac-
terized by its mean expression SOM portrait obtained by averaging over all individual spot
portraits of the respective cluster (Figure 3c). These portraits reveal the underlying clusters
of co-regulated genes in terms of specific patterns of modules showing over- and underex-
pressed genes in red and blue, respectively. Overall, eight modules of co-overexpressed
genes were identified and labeled with capital letters A–H. Their major functional con-
text was evaluated using gene set analysis (Figure 3d and next subsection). Accordingly,
melanoma spots of the pigmentation type uniquely express module D, which collects genes
of the MITF-program active in melanocyte-like tumor cells assigned as type 1 [58]. Spots of
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a proliferative melanoma type express module C, which accumulates cell cycle signature
genes, while inflammatory type 2 melanoma spots express module E, rich in genes of the
AXL-program, along with modules originating from transcriptional signatures of the TME,
such as immune T- and B-cells, macrophages, keratinocytes and fibroblasts (modules F, G
and A). Keratinocyte- and fibroblast-rich spots express these latter modules in different
combinations and underexpressing the melanoma-related modules C–F.
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2 (inflammation), and proliferative tumor types, as well as to an epithelial cluster dominated by
keratinocytes and fibroblasts. (c) Mean SOM portraits of the spot in each of the clusters characterize
their expression landscapes. Modules of coregulated genes appear as red areas and are labeled with
capital letters A–H. (d) Major biological context of the expression modules (see also Figure 4).

In summary, we extracted three closely related similarity patterns, namely, the ST
microscopic image, the UMAP revealing similarities of the transcriptional patterns of the
spots, and the SOM portraits visualizing the expression landscape of the clusters and
disentangling them into modules of co-expressed genes of interpretable functional and
biological context.
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Figure 4. Modules of co-expressed genes and their spatial activation patterns: (a) The screenshot of
the module browser shows the overview map (top left) and information about each module selected
by clicking on the module (here module D), namely, the boxplot of its expression across the cluster
(bottom left panel), and a table (right panel) listing the genes contained in the module, the enriched
gene sets, as well as the activation across the cell types (in %). Modules B and H are omitted for clarity.
(b) Module-specific spatial activation patterns reveal the underlying ST patterns. The modules relate
to different cell subpopulations and biological processes, which can be further assessed in the module
browser (see part (a)). Activated cluster numbers are indicated in the images.



Curr. Issues Mol. Biol. 2024, 46 4710

3.3. Gene Expression Modules Resolve ST Micropatterns

SOM portrayal not only generates transcriptional landscapes for each cluster as dis-
cussed in the previous section, but also individual SOM portraits of each spot which
decipher the ‘micro-bulk’ transcriptome landscapes of the up to about one dozen cells
included. These portraits show characteristic module patterns that are upregulated depend-
ing on the underlying cell types and their transcriptional programs. An overview map of
the observed modules is available under the ‘map browser’ section in the oposSOM menu
for more detailed knowledge mining. For the spatial melanoma data, this overview map
identified major modules marked with capital letters A–G (Figure 4a, module H is omitted
there). Each module represents a cluster of coregulated genes, which can be inspected in
the table on the right after clicking on the module of interest on the map. The table then
provides the lists of genes in the module, a list of functional gene signatures enriched in
the selected module, as well as the clusters activated in this module (click on the header
of the column). For example, module D upregulates in melanoma cells of pigmentation
type 1 and associates with the MITF transcriptional program as well as with oxidative
phosphorylation (oxphos). The neighboring module C associates with DNA repair and cell
cycle activity and mitochondrial activity and is assigned to proliferating melanoma cells.
In contrast, module E upregulates immune response and inflammatory signatures as well
as the AXL transcriptional program. Module F is activated in keratinocytes, but also in
plasma cells, and associates with mucosa functions such as cornification, keratinization,
and epidermis development. Module G activates in pericytes and fibroblasts and associates
with collagen-containing extracellular matrix signatures, immune system processes, and
epithelial–mesenchymal transition (EMT) functionality. Finally, module A associates with
functions like transferase activity and DNA damage. Note that the module browser offers
several module selection options such as single-spot overexpression, group overexpression
(discussed here), underexpression, K-means, correlation clustering, and D-map segmenta-
tion, each considering different features of the expression landscape (see [36] for details)
and, in practical consequence, enables any region in the SOM to be analyzed.

The browser enables the coloring of the ST image according to the mean expression of
a selected module in each of the spots (select the module letter in the pull-down menu of the
spatial browser). It visualizes spatial regions by activating or de-activating the respective
module in red and blue, respectively (Figure 4b). Keratinocyte-enriched regions can be
clearly distinguished from their environment (modules A, F, and G). Module C assigns
highly proliferative regions of tumor cells, while module D identifies type 1 melanoma
regions and module G identifies fibroblast- and endothelial-related areas. Interestingly,
modules F and G both upregulate in the endothelial region but show opposite activity
in the keratinocyte region on the right. It suggests a mix of keratinocytes, immune cells,
and fibroblasts in the former but nearly exclusively keratinocytes in the latter region. In
summary, the module browser enables a detailed functional interpretation of the expression
modules, which, in turn, provides a module-based segmentation of the ST image to identify
the relevant regions with information about cellular composition and association with
functional knowledge.

3.4. Visualizing Gene and Gene Set Activities

The previous section describes the coloring of the ST image according to the expression
of the modules, usually including several hundreds of co-regulated genes. It visualizes
the spatial patterns differing in the activation of the underlying cellular processes. In
a complementary approach, one can choose the option ‘gene expression’ or ‘gene set
expression’ (in the pull-down menu of the spatial browser) to visualize their expression
topologies. Selected genes and gene sets are overexpressed in distinct areas of the image,
e.g., AXL, MITF, and EZH2 in different melanoma cell-rich clusters (c2/c3, c4/c5, and c6,
respectively), also upregulating the hallmark (HM) gene sets oxphos and G2/M checkpoint,
respectively (Figure 5a,b; compare with Figure 3a). The mapping of the single gene(s)
into the SOM gene map, on the other hand, reveals their location in or near modules D



Curr. Issues Mol. Biol. 2024, 46 4711

and C, respectively, which explains their similar ST patterns. Another group of genes and
gene sets (e.g., AXL, HM angiogenesis, and HM inflammatory response) refers to the ST
pattern associating with modules G and F. The gene S100A8 is reported to act as an early
marker of melanoma development [59]. It upregulates in and near the keratinocyte region
of the ST image (c11 and c10). Neurolipin1 (NRP1), a prognostic marker for melanoma
progression [60], is activated diffusely across the type 1 melanoma areas. The gene PSAT1,
together with ATF4 and NRF2, is associated with thiol starvation in melanoma [61]. Their
upregulation in c6 assigns proliferative melanoma and module C to a starvation phenotype
discussed earlier [62].

Other examples of knowledge mining using gene sets of immune functions and cell
types, chromatin states, and previous melanoma signatures are provided in Figures S4–S6,
respectively. They illustrate the intra-tumor heterogeneity of melanomas in terms of
immunogenicity and epigenetic states, which, in turn, relate to the subtypes of melanomas
established as inter-tumor heterogeneity in previous bulk transcriptomic studies [58,63,64].
Importantly, the ST patterns of these gene sets illustrate that bulk transcriptomics subtypes
can refer to melanoma states existing in parallel in different regions of the same tumor and
thus reflect not only inter- but also intra-tumoral heterogeneity (Figure S6).
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Figure 5. Single gene and gene set coloring of the ST image: (a) Selected single genes show character-
istic activation patterns in the ST images. The location of each of the genes is shown separately in the
gene map by blue arrows. (b) Coloring according to the mean expression of gene signatures taken
from the category ‘hallmarks of cancer’ (HM) [65]. The gene set maps show the distribution of the
signature genes in the SOM. Accumulation of genes is highlighted by red circles.
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These examples of knowledge mining in the ST image illustrate the analytic strength
of the browser for researchers who are interested in interactively discovering the expression
of single genes or functions. Selecting a module, gene set, or single gene expression enables
fine-grained function browsing by applying different complementary options where the
modules identify the major differential regions while the gene set and gene colorings
can further specify areas in these regions due to changing cell compositions and/or cell-
type-related transcriptional programs. Gene set selections allow views from different
perspectives using different categories such as cancer hallmarks, GO terms for biological
processes or molecular functions, and other sets taken from the literature, e.g., previous
bulk and single-cell melanoma studies, immune cell signatures, and signatures of epigenetic
chromatin states.

3.5. Spatial Distributions of Receptor–Ligand Interactions

A particular strength of ST is the ability to visualize cell–cell interactions in terms of
co-expressed receptor–ligand (R-L) pairs at the transcript level. R-L pairs can be selected in
the browser from predefined lists as single pairs taken from the omnipath database [50]
or as a collection of pairs referring to distinct pathways downloaded from KEGG [66],
Biocarta [67], and PID [68]. The browser then colors spots according to four situations,
namely, if either only receptor or ligand is expressed (blue or green color, respectively),
both receptor and ligand are co-expressed (apricot), or both are not expressed (no color)
(Figure 6). R-L co-expression is assumed to reflect R-L-mediated cell–cell interactions
in the respective spot. For example, R-Ls of different pathways (JAK-STAT, Cytokine,
PPAR, ECM, and tight junctions) co-express in different areas of the map, namely, in the
immune-cell-enriched and keratinocyte-enriched regions, respectively (Figure 6a, compare
with Figure 3). Receptors and ligands related to the MAPK pathway co-express mainly
in the immune-cell- and stroma-enriched area, while receptors alone upregulate in the
fibroblast-enriched area (blue). The melanoma-enriched region shows low expression of all
situation (solely receptor, solely ligand, and R-L).

To obtain a visualization of spatial transcriptomics colored by the expression of a
receptor–ligand pair within a particular gene set, users should start by selecting the ‘Recep-
tor/Ligand Interactions RLI’ option from the spatial browser’s pull-down menu. Addition-
ally, one can select the ‘pathway-wide RLIs’ option to color the map based on the collective
expression of all cell–cell interactions in a given gene set. Clicking on a selected spot in the
ST image opens a window (‘receptor-ligand interactions’) which lists the top R-L-pairings,
and their activity in the neighboring spots, and shows a map of the R-L genes in the SOM
(Figure 6b). Most R-L genes are located in the modules upregulated in the respective SOM
portraits, namely, modules F and G in the first situation and module D in the second one
(Figure 6b, part above and below, respectively). This reflects the overall co-regulation of
R-L genes, as expected. R-L pairs are then ranked according to joint (mean) expression.
The top listed genes in keratinocyte module F include COLA1, known as a marker for poor
prognosis [69], and SDC1, a gene of the syndecan family promoting the invasiveness [70]
of melanomas. Another syndecan, SDC2, together with PTPRJ is on top of the R-L-list in
the melanocytic module and plays a crucial role in the migratory potential of melanoma
cells [71] and metastatic melanoma associated with cachexia [72], respectively. Hence,
co-expression of the intended R-L gene pairs provides an analytic option for searching and
visualizing cell–cell interactions in the images.
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3.6. Cell-Type-Resolved Pathway Activities and Signature Browsing

The pathway signal flow (PSF) browser selection (Figure 1) provides directed graphs
of a set of KEGG pathways, visualizing the activation patterns of the genes along the
pathway branches in a spot-cluster-specific fashion. For illustration, we provide activation
patterns of the MAPK and VEGF pathways in selected clusters (Figure S7 and Figure S8,
respectively). MAPK is primarily activated along the TNF branch in keratinocytes, to a
lesser degree in fibroblasts, and at low activity levels in type 1 melanoma spots (Figure S7).
Thus, the pathway browsing function enables visualization of pathway activation with
cell-type and/or cluster resolution using PSF metrics. These metrics consider directed
interactions between the genes along the pathways, starting from the source towards the
sink nodes [51].
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3.7. Resolving the Microanatomy of the Mouse Brain

As a second use case of the ST browser, we selected an ST image of a mouse brain taken
from [52]. The mouse brain revealed a highly complex cellular architecture essential for
integrating information and interpreting the structure–function relationship at the cellular
level [73]. Spot cluster and cell type coloring reveal the basic microanatomy of the brain,
distinguishing regions such as the olfactory bulb (OB), the MEIS2-enriched region (M2),
the meninges (Me), the cerebral cortex (CeC), the corpus callosum (CoC), the thalamus
(Th), the hypothalamus (HTh), the caudate putamen (CP), the basal forebrain (BF), and the
ventral stratum (VT) (Figure 7a). Region-related portraits (Figure 7b) associate with the
respective ST coloring (Figure 7a). Different neurons (L2/3, L4, L5, L6) form the cortical
layers with a characteristic expression of module B in the left upper corner of the SOM,
which associates with synaptic- and axon-related gene expression patterns (Figure 7b,c),
while neuronal cells of the thalamus express characteristic genes in module A (glutamergic
synapse). Other modules associate with non-neuron cell types and structures, e.g., module
C with ion channel activity; F and G with astrocytes and oligodendrocytes, respectively;
and H is expressed in the meninges with collagen and vascular cells (VLMCs) [74]. Coloring
of the ST images using the genes taken from the module transforms them into unique
spatial patterns, which underlines their character as a sort of ‘eigen-gene’ in gene and
tissue space (Figure 7d). Gene set expression and R-L coloring assign functional aspects
to the spatial patterns (Figure 7e,f). More detailed information can be extracted by using
the browsing functions as described in the melanoma use case and the large repertoire
of implemented gene sets. Use case 2 illustrates the potential of the browser by studying
spatial transcriptomics to resolve the microanatomy of healthy tissues.
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of neuronal and non-neuronal cells. (c) The module overview map provides an overview of the
major expression modules labeled A–I. (d) Each of them transforms into a unique ST pattern. (e,f) ST
of selected gene sets and receptor–ligand interactions support the functional interpretation of the
microanatomy of the sample.

4. Discussion

We here introduce a novel bioinformatics tool for the comprehensive, interactive study
of ST data with the unique feature of applying SOM data portrayal machine learning
to the spatial spot-level transcriptome data. It provides individual images of the gene
expression landscape with single-spot resolution, which enables transcriptional programs
to be deciphered via a bundle of browsing functions by coloring and segmenting the image
based on functional aspects. The spatial architecture of the tissue under study here is
the focus of the tool. In addition to the imaging of the ST data, it provides two other
visualizations: a UMAP of the spots, which shows the similarity relations between the
transcriptional spots (Figure 3b), and a module overview map providing an overview of the
observed modules of co-regulated genes, which, in turn, decipher the cell-related activity
states in each of the spots (Figure 4a). These modules enable the data-driven interpretation
of the ST image without using sets of markers from external studies. This triple-clustering
strategy in microscopy space, sample similarity space, and gene expression space enables
the user to link directly spot clusters in the image and the UMAP with specifically up- and
downregulated transcripts evident as colored patterns in the portraits.

The performance of the spatial browser is illustrated using two selected use cases
from 10x Visium ST repository. The first use case demonstrates the power of the tool to
explore the characteristics of complex cell communities by deciphering the intra-tumoral
heterogeneity in melanoma. By employing data-driven segmentation based on expression
modules, our tool extracts the relevant components, including different tumoral types, and
TME- and keratinocyte-rich areas. This allows for deeper exploration through querying the
expression of single genes and gene signatures within a defined functional context, as well
as using co-expression information of receptor–ligand pairs. This functional segmentation
of the ST image supports the clustering provided by unsupervised methods and thus, in
a more general context, offers an option to verify clusters in ST images based on their
biological meaning as well as the gene expression landscapes of the spatial spots. The
availability of individual spot portraits enables the detailed study of subtle changes in
the transcriptional landscape between adjacent spots under developmental aspects to
identify and visualize possible trajectories of tumor progression in ST images. Extended
analyses using pseudotime and RNA velocity methods in spatial coordinates using SOM
portrayal are presently under way to better understand tumor development and/or the
differentiation of healthy tissues.

Interestingly, the transcriptional signatures of melanoma extracted from previous bulk
transcriptomics studies mark different regions of the ST sample. For example, marker genes
for ‘low-grade melanoma’, ‘pigmentation subtype’, and ‘metastatic melanoma’ (Figure S6)
all show overexpression in one and the same ST melanoma sample, but in different areas
assigned to keratinocyte-rich, melanocyte-like, and proliferative melanoma by alternative
signatures [54,58]. This ‘all-in-one’ result sheds an interesting light on previous melanoma
subtyping. It indicates the co-existence of clones with varying cellular compositions in
the TME and among the tumor cells. This diversity presumably reflects different stages
of tumor development, which are associated with spatial segregation and might have an
impact on treatment options [58].

The browser thus features an intuitive interface for the efficient analysis of receptor–
ligand interactions with spot resolution. In the exemplary study, it allowed for a detailed
examination of the key genes and pathways possibly relevant for cancer progression [62],
thus allowing tumor development to be studied in time and space. This easy-to-use browser
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enhances our ability to understand cellular interactions in tissues, making complex spatial
data more accessible for research on disease mechanisms and potential therapeutic targets.

The limitations of the present version of the browser are the relatively low number
of implemented applications (six as of April 2024), the restriction to 10x Visium images,
and the lack of direct upload options for interested users. Currently, we provide images
addressing the microanatomy of skin structures (sebaceous and meibomian glands) and five
images of colorectal cancer in addition to the use cases presented here. The tool is adjusted
to 10x Visium technology and will be updated to Visium HD, enabling ST with a single-cell
resolution with a spot size of 2 µm, and can prospectively be adapted to other emerging
spatial transcriptomics systems. As described above, we invite interested scientists to
contact the browser team to implement their own images in the browser. Options for
independent upload are currently under consideration.

The second use case briefly illustrates the different options for analysis to disentangle
the microanatomy of healthy tissues. We address the transcriptional diversity in the
brain, which reflects a high complexity of interconnected neuronal cell types. The spatial
oposSOM-Browser further hosts original ST datasets on the sebaceous gland and the
meibomian gland as additional examples for discovering the microanatomy of skin organs.

5. Conclusions

The interactive ST SOM browser provides a new bioinformatics resource to study
the spatial architecture of diseased and healthy tissues with gene transcript and cellular
resolutions. It enables knowledge mining in the sense of the ‘skopus’, i.e., the ‘look at’
functionality, of microscopic images based on the expression of nearly twenty thousand
genes varying across the image and serving as markers for cell types and their varying
transcriptional programs. The use cases demonstrate that the detailed look-at option
will allow a better understanding of intra-tumoral heterogeneity in solid tumors. The ST
patterns of the mouse brain illustrate a use case related to the microanatomy of healthy
tissues, which will soon be extended by novel ST data of the sebaceous gland available in the
browser. Future addition of spatial transcriptomics samples will eventually enable healthy
and diseased tissues, or different samples of the same tumors, to be directly compared.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cimb46050284/s1, Figure S1: Data workflow of ST: Data was generated
using 10x Visium sequencing and followed by preprocessing using spaceranger software; Figure S2:
The layout of the spatial browser app consists of three panels; Figure S3: Spot-related information
panel when clicking on a spot in the main panel; Figure S4: Gene set expression mapping of im-
munome and tumor microenvironment (TME) signatures; Figure S5: Gene set expression mapping of
epigenetic signatures of gene promoter states of melanocytes; Figure S6: Gene set expression map-
ping of signatures; Figure S7: Cell cluster specific pathway activity in melanoma (MAPK signaling
pathway); Figure S8: Cell cluster specific pathway activity in melanoma (VEGF signaling pathway).
References [51,55,63,64,75–78] are cited in the supplementary materials.
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