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Abstract: Partial discharge detection is considered a crucial technique for evaluating insulation
performance and identifying defect types in cable terminals of high-speed electric multiple units
(EMUs). In this study, terminal samples exhibiting four typical defects were prepared from high-speed
EMUs. A cable discharge testing system, utilizing high-frequency current sensing, was developed to
collect discharge signals, and datasets corresponding to these defects were established. This study
proposes the use of the convolutional neural network (CNN) for the classification of discharge signals
associated with specific defects, comparing this method with two existing neural network (NN)-
based classification models that employ the back-propagation NN and the radial basis function NN,
respectively. The comparative results demonstrate that the CNN-based model excels in accurately
identifying signals from various defect types in the cable terminals of high-speed EMUs, surpassing
the two existing NN-based classification models.

Keywords: high-speed electric multiple units; cable terminal; partial discharge; pattern recognition;
convolutional neural network

1. Introduction

The cable of the high-speed electric multiple unit (EMU) plays a critical role in the
power supply system of high-speed trains, directly impacting the safety of train operations.
The terminal, as a vulnerable component of the high-speed EMU cable, is particularly
susceptible to partial discharge (PD), which poses a threat to the efficient functioning of
high-speed trains [1–4]. Detecting PD is crucial for assessing the insulation condition of
cable terminals. By identifying local discharges, the extent of insulation deterioration can
be determined, allowing for timely maintenance or replacement measures [5–7]. Currently,
technologies for the PD detection encompass a variety of methods, including the pulse
current method, the high-frequency pulse current method, the ultra-high frequency de-
tection method, the ultrasonic detection method, the optical measurement method, and
the infrared imaging technology [8–14]. The advantages and disadvantages of these PD
detection methods, along with their applicable scopes, are presented in Table 1.

Currently, the pulse current method, while being the earliest and most widely used
PD detection method under the International Electrotechnical Commission standard, has
some limitations [15]. Firstly, it primarily captures the lower frequency band of the PD
signal, failing to acquire complete frequency information, particularly the high-frequency
components. This omission may result in the neglect or misinterpretation of crucial dis-
charge patterns. Secondly, the pulse current method has limited resistance to interference
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in practical applications, making it susceptible to electromagnetic interference. This vulner-
ability leads to a high bit error rate and diminished detection efficacy [16–18]. In contrast,
the high-frequency pulse current detection system boasts advantages such as the ease of
installation, a straightforward design, no impact on the operational state of the high-speed
EMU cable terminal, broader frequency range coverage of PD signals, heightened test
sensitivity, and robust anti-interference capabilities. It enables a quantitative analysis of
the discharge magnitude of PD signals [19,20]. Consequently, this paper employs the
high-frequency pulse current method as the PD testing approach for the cable terminals of
high-speed EMUs.

Table 1. Advantages and disadvantages of PD detection methods and their application scopes.

Detection Method Major Advantage Major Defect Main Applicable Scopes

Pulse current method High sensitivity Limited
anti-interference capability

Offline
measurement

Chemical detection
method

Strong
anti-interference

Challenges in online gas
component extraction

Oil filling
equipment

Radio frequency
detection method

High sensitivity without
affecting equipment

operation

Limited
anti-interference capability

Online
measurement

Infrared imaging High sensitivity Incomplete
detection

Electrical
equipment

Flash spotting
Strong resistance to

electromagnetic
interference

Expensive Laboratory
research

High-frequency pulse
current method High sensitivity; easy to install Susceptible to ground

commutation

High voltage
cables and electrical

equipment

Ultrasonic method
Strong resistance to

electromagnetic
interference

Average sensitivity Electrical primary equipment

Ultra-high
frequency method High sensitivity Limitations in quantifying Electrical equipment such as

transformers

The PD, as a crucial indicator for assessing the condition of power equipment, has
been incorporated into the testing standards by the International Electrotechnical Com-
mission [21]. However, the pattern recognition and fault diagnosis of the PD of the cable
require further exploration. Numerous factors contribute to the PD, and the locations and
mechanisms of cable defects vary.

As a key component connecting the electric equipment in the vehicle to the external
power supply, the cable terminal of high-speed EMUs exhibits unique characteristics in
terms of operating environment, structural design, and performance requirements. It differs
significantly from other types of cable terminals, such as those in the power grid. High-
speed EMU cable terminals operate in complex environments characterized by high-speed
movement, vibration, and severe temperature and humidity fluctuations. Consequently,
they are subjected to more severe mechanical and environmental stresses than those experi-
enced by power grid cable terminals. The demanding operating conditions also necessitate
significant differences in the structure and insulation materials of vehicle cable terminals.
Generally, these terminals utilize a heat-shrink structure that offers improved sealing,
weather resistance, and durability. They are made from EPDM rubber (EPR) materials,
which provide resistance to oxidation, heat, and aging [22,23].
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Based on the anatomy of high-speed EMU cable terminals with on-site faults and the
maintenance experience of on-site staff, faults in these terminals are generally categorized
as long-term, short-term, and unpredictable. Among these, short-term faults are the most
prominent, with typical defects including insulation scratches, interlayer air gaps, metal
particles, and uneven semi-conductive layers [24]. Clarifying the cause and action mecha-
nism of each type of discharge holds significant importance for the routine maintenance of
high-speed EMU cables and the early warning of potential accidents.

With rapid advancements in artificial intelligence (AI), its techniques are increasingly
being adopted for robust control, accurate diagnosis, reliable prognosis, and effective signal
analysis in electrical apparatus and systems [25–32]. Researchers globally have delved into
the development of AI-powered pattern recognition methods for the PD of high-voltage
cables. Common pattern recognition methods include the artificial neural network (NN),
the support vector machine (SVM), the Bayes criterion, and the cluster analysis [33–38].
In the realm of PD pattern recognition, the back-propagation NN (BPNN) and the radial
basis function NN (RBFNN) are widely used. In [39], the creation of cable models with
five types of defects and the establishment of a dataset based on the phase-resolved PD
(PRPD) spectrum were detailed, and the convolutional NN (CNN) was employed to
achieve successful recognition of defect signals. In [40], PD signals from power cables
with five types of insulation defects were collected, and a set of parameters characterizing
discharge characteristics was established. The study found that the CNN-based model
outperformed the BPNN-based and SVM-based models in signal identification. In [41],
a time-domain waveform image database of four kinds of PD defects was constructed,
and image processing technologies such as image enhancement and normalization were
used to process these waveform images, and a DenseNet model was built to realize the
recognition of the four kinds of defects, and the model has good robustness. In [42], the
PD and corona signals were collected from cable terminals, and a CNN-based model was
used for the signal recognition. However, this study bypassed the construction of a feature
dataset, opting to directly feed discharge signals into the model.

In this paper, a CNN-based PD signal classification model is proposed for high-speed
EMUs, which enables the identification of discharge signals from cable terminals exhibiting
four typical defects. The main contributions of this paper are summarized as follows:

1. Characteristic parameters of terminal discharge signals in high-speed EMU cables are
not extracted; instead, the four types of discharge signals are directly used as input to
the model, achieving high accuracy.

2. The impact of different training datasets on the classification performance of the
terminal discharge signal recognition model for high-speed EMUs is compared and
analyzed. The proposed CNN-based model is demonstrated to flexibly meet the
varying requirements for processing time and accuracy across different scenarios.

3. The proposed recognition model for terminal discharge signals in high-speed EMU
cables is compared with two existing NN-based models, and it is verified that the
CNN-based model exhibits superior recognition effectiveness.

2. Experimental Data Acquisition
2.1. PD Test Platform

The PD test platform used in this study comprises the voltage regulator, the test
transformer, the protection resistance, the discharge sample, the high-frequency current
transformer (HFCT), and the high-frequency oscilloscope, among other components, as
depicted in Figure 1. The HFCT, known for its exceptional sensitivity, straightforward
setup, and strong anti-interference capabilities [43], is a widely used instrument for the
online detection of PD signals, particularly when the ground conductor of the device under
test is accessible. The circuit of the PD test platform is illustrated in Figure 2. By increasing
the test voltage with the voltage regulator, insulation defect sample discharges are induced,
thereby simulating PD defects [44].
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2.2. Four Typical Defect PD Models

During testing and operation, the cable terminal may exhibit discharge phenomena
due to internal defects. The primary defect types include wire core burrs, surface sliding,
internal air gaps, and suspended metal particles. To simulate these four discharge defects
at the cable terminal, electrode structures for four typical discharge models are designed,
as depicted in Figure 3. The tip discharge model simulates conductor burrs, which are
difficult to eliminate completely during the fabrication of cable terminals and may cause
discharge phenomena during operation. The surface discharge model simulates discharges
caused by looseness or delamination between the insulation layers inside the cable terminal.
The air gap discharge model simulates discharges caused by tiny bubbles or knife marks
in the insulation layer during terminal operation. Lastly, the suspended discharge model
simulates PD issues caused by conductive and semi-conductive impurities attached to the
main insulation surface [45–50].

1. Tip discharge model: This model employs a steel needle with a curvature radius
of 5 µm and uses ethylene–propylene–diene monomer (EPDM) rubber film as the
insulating medium, with a diameter of 120 mm and a thickness of 3 mm. A ground
electrode with a diameter of 80 mm is connected below the rubber film, and the steel
needle is linked to a high-voltage electrode. The tip is inserted into the film to a depth
of approximately 1 mm.

2. Surface discharge model: In this model, the insulating medium consists of an EPDM
rubber film with a diameter of 60 mm, structured as a double layer, and has a total
thickness of 6 mm. Below this, a ground electrode with a diameter of 80 mm is
connected, and a copper disk with a diameter of 30 mm is positioned between the
insulating medium and the high-voltage electrode.

3. Air gap discharge model: In this model, the insulating medium is again EPDM
rubber film, with a diameter of 60 mm and a thickness of 3 mm. To simulate an
air gap discharge, a circular hole with a diameter of 1 mm is created within the
insulating medium. A copper disk is placed between the high-voltage electrode and
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the insulating medium. To avoid surface discharge interference, the high-voltage
electrode in the air gap discharge model is sealed with epoxy resin.

4. Suspension discharge model: In this model, the insulating medium is EPDM rubber
with a diameter of 120 mm and a thickness of 3 mm, and the high electric electrode
is a copper disk with a diameter of 30 mm. There is a certain gap between the high
electrode and the insulating medium, and a copper sheet with a thickness of 1 mm is
placed in the gap as a suspended metal particle to simulate the suspended electrode.
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Figure 3. Electrode model of typical PD defect: (a) tip discharge, (b) surface discharge, (c) air gap
discharge, and (d) suspension discharge.

2.3. High-Frequency Pulse Signals of PD with Four Typical Defects

The PD test platform shown in Figure 1 was used to carry out systematic pressure tests
on four defect models mentioned above. The test protocol involved gradually increasing
the voltage in 1 kV increments, maintaining each level for 1 min after pressurization to
ensure test stability. High-frequency pulse current signals from the four defect models were
collected within two power frequency cycles under a 12 kV test voltage. The time-domain
waveforms of these signals are presented in Figure 4.
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Figure 4. Time domain waveforms of discharge high-frequency pulse current signal of four defect 
models: (a) tip discharge, (b) surface discharge, (c) air gap discharge, and (d) suspended discharge. 
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model is employed to categorize the discharge signals from four typical defects in high-
speed EMU cables. This model is constructed using two convolutional layers, two activa-
tion layers, two maximum pooling layers, and one fully connected layer; its block diagram 
is illustrated in Figure 5. 

Input: Four kinds 
of local discharge 

signals

Fully 
connected 

layer

Output signal 
classification 

results

Convolutional 
layer 1

（3×1,32）

Activation 
layer 1

Maximum 
pooling layer 1

（3×1）

Convolutional 
layer 2

（4×1,64）

Activation 
layer 2

Maximum 
pooling layer 2

（3×1）  
Figure 5. CNN-based cable terminal discharge classification model of high-speed EMU. 

In this study, the discharge signal from the terminal of the high-speed EMU cable 
serves as the input to the model. The convolutional and pooling layers extract features 
and compress this information into a feature map form. For the first convolutional layer, 
the kernel size is set to 3 × 1 with 32 kernels, and the step size is 1. For the second convo-
lutional layer, the kernel size is adjusted to 4 × 1 with 64 kernels, maintaining the step size 
at 1. The first maximum pooling layer has a kernel size of 3 × 1 and a step size of 1, mir-
roring the settings of the second maximum pooling layer, which also adopts a kernel size 
of 3 × 1 and a step size of 1. 

Figure 4. Time domain waveforms of discharge high-frequency pulse current signal of four defect
models: (a) tip discharge, (b) surface discharge, (c) air gap discharge, and (d) suspended discharge.

3. Design of Cable Discharge Classification Model
3.1. CNN

The CNN primarily consists of three fundamental components: convolutional layers,
pooling layers, and fully connected layers [51]. In this study, a CNN-based classification
model is employed to categorize the discharge signals from four typical defects in high-
speed EMU cables. This model is constructed using two convolutional layers, two activation
layers, two maximum pooling layers, and one fully connected layer; its block diagram is
illustrated in Figure 5.
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Figure 4. Time domain waveforms of discharge high-frequency pulse current signal of four defect 
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the kernel size is set to 3 × 1 with 32 kernels, and the step size is 1. For the second convo-
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Figure 5. CNN-based cable terminal discharge classification model of high-speed EMU.

In this study, the discharge signal from the terminal of the high-speed EMU cable
serves as the input to the model. The convolutional and pooling layers extract features and
compress this information into a feature map form. For the first convolutional layer, the
kernel size is set to 3 × 1 with 32 kernels, and the step size is 1. For the second convolutional
layer, the kernel size is adjusted to 4 × 1 with 64 kernels, maintaining the step size at 1. The
first maximum pooling layer has a kernel size of 3 × 1 and a step size of 1, mirroring the
settings of the second maximum pooling layer, which also adopts a kernel size of 3 × 1 and
a step size of 1.
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Convolution Layer: This layer applies the convolution operation across local regions
of the input using the convolution kernel of the filter, aiming to extract local features
effectively. The convolution layer employs weight sharing, significantly reducing the
number of learning parameters and thereby mitigating the risk of overfitting [52]. Each
convolutional layer in the network comprises multiple convolutional kernels, with the
parameters of each kernel being optimized through the backpropagation algorithm [53].
Each convolution can be performed on the input sequence by convolving the equation
as follows:

yk
m(t) = w(k) ∗ xm =

L

∑
i=1

w(k)(i)xm(t − i + 1) (1)

where xm is the input sequence, w(k) is the weight of the k th convolution kernel, and the
size is L.

Activation Layer: The output from the convolutional layer serves as the input to
the activation function. The role of the activation function is to transform the output of
the convolutional layer in a nonlinear manner. This transformation enhances the linear
separability of data that was originally scattered. Commonly used activation functions in
CNNs include the sigmoid function, the tanh function, and the rectified linear unit (ReLU)
function [54]. The expressions for these three functions are given as (2)–(4), respectively.
Compared with the other two activation functions, the ReLU function can effectively
reduce the amount of computation and improve the expression ability of the network by
debugging the activity of neurons in the network [54]. Therefore, the ReLU function is used
as the activation function of the activation layer in this study.

y =
1

1 + e−x (2)

y =
ex − e−x

ex + e−x (3)

y = max{0, x} (4)

where x is the output data of the convolution layer.
Pooling Layer: Following the convolution operation, the quantity of extracted feature

sequences increases, leading to an expansion in data dimensions and a rise in computational
complexity. The pooling layer serves to reduce the data width and the number of network
parameters, thus lowering computational costs and helping to prevent overfitting [55].
There are two common pooling functions: average pooling and max pooling. The average
pooling computes the mean of the input data to serve as the output of the layer, while
the max pooling selects the maximum value from the input data as the output [56]. The
expressions of average pooling and max pooling are given as (5) and (6), respectively.
The max pooling is particularly effective in capturing important local features of the data,
thereby improving the recognition accuracy of the model. Consequently, the max pooling
function is adopted in this study.

yh+1
c (i) =

1
w

iw

∑
(i−1)w

xh
c (t) (5)

yh+1
c (i) = max

(i−1)p≤t≤ip
xh

c (t) (6)

where w is the width of pooling layer, xh
c (t) is the value of the tth neuron in the c eigenvalue

of the hth layer, and yh+1
c is the value of neurons in layer h + 1.

Fully Connected Layer: The role of this layer is to integrate and refine the features
extracted by the alternating convolution and pooling layers. This is achieved by flattening
the output feature map from the final convolution or pooling layer into a one-dimensional
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feature vector, which allows for further feature extraction [57]. Then, the fully connected
layer maps these extracted feature vectors to the sample label space and classifies them by
constructing a classifier. For the classification, the softmax function is usually selected as
the activation function of the fully connected layer, which converts the output vector into a
set of probability distributions, according to which the model makes category prediction
and selects the category with the highest probability as the output [58].

Pj = softmax(ri) =
erj

k
∑

i=1
eri

(7)

where Pj is the probability of belonging to the correct class, rj is the node value of the jth
neuron, and k is the total number of classes.

3.2. PD Data for Training and Verification

Through the PD test platform shown in Figure 1, the PD signals from high-speed
EMUs with various defect models are collected; from these collected PD signals, single-
wave time-domain signals for four types of PD signals associated with the defect models
are extracted, as illustrated in Figure 6.
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Figure 6. Time-domain diagram of discharge high-frequency pulse current signals of four defect 
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Figure 6. Time-domain diagram of discharge high-frequency pulse current signals of four defect
models: (a) tip discharge, (b) surface discharge, (c) air gap discharge, and (d) suspension discharge.

To ensure the richness and representativeness of the data, 400 sets of four kinds of PD
signals are extracted from the collected signals. Out of the 1600 total sets of data, 1200 sets
are randomly selected to train the model. The remaining 400 sets are used to verify the
model’s accuracy in identifying different types of defects.
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3.3. Classification Steps

The classification process of the proposed CNN-based model is illustrated in Figure 7
and can be summarized in the following steps:

1. Signal acquisition: A test platform is built, and cable terminal models with four
types of defects are created. The HFCT is used to measure the PD signals of the
cable terminals.

2. Dataset construction: Four different types of discharge signals are collected, and
a single signal is extracted. For each of the four signals, 251 sampling points are
selected, resulting in 400 sets of data for each type. Out of these 1600 datasets, 1200
are randomly chosen to construct the training dataset, while the remaining 400 sets
are designated as the test dataset.

3. Data normalization: To simplify the data complexity, disparate data in the set are
processed. This step facilitates faster gradient descent, aiding in finding the optimal
solution and enhancing the model’s accuracy and convergence speed. The dataset
from step 2 is normalized using the following expression.

Yi =
yi − ymin

ymax − ymin
(8)

where yi is the sample value before normalization, Yi is the normalized sample
value. ymin is the minimum value of the sample, and ymax is the maximum value of
the sample.

4. CNN training and classification: The normalized dataset from step 3 serves as the
input to the constructed CNN-based model. After processing through two convo-
lutional layers, two pooling layers, and one fully connected layer, the classification
results are produced.
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4. Results Analysis

The models discussed in this paper are implemented using the MATLAB 2021a soft-
ware, installed on a personal computer equipped with an Intel i5-10210U CPU (1.6 GHz
clock frequency) and 8 GB of RAM.

In this study, training loss and accuracy are used to evaluate the recognition effective-
ness of CNN. Loss quantifies the discrepancy between the predicted value and the true
value. Cross entropy is used as the loss function to describe the gap between the probability
distribution of the predicted values and the actual values. This measure reflects the model’s
degree of fit [59]. The expression for cross entropy is written as

Loss = − 1
N

N

∑
n=1

k

∑
i=1

y(n)i log(p(n)i ) (9)

where yi is the label value of sample i, pi is the probability of correctly predicting the sample,
and N is the total number of samples.

Four performance indices, namely accuracy, precision, recall, and F1-score, are utilized
to evaluate the effectiveness of classification. Taking binary classification as an example,
accuracy measures the proportion of correctly predicted classes, precision assesses the
percentage of actual positives among all samples predicted as positive, recall calculates the
proportion of actual positive samples correctly identified relative to all actual positives, and
F1-score reflects the balance between precision and recall. The formulas for these indices
are provided in (10)–(13), and Table 2 illustrates the meanings of each term used in the
formulas. Regarding the learning rate reduction strategy, the adaptive moment estimation
(Adam) optimizer [59] is employed to decrease the learning rate to one-tenth of its value
every 10 training iterations.

Accuracy =
TN + TP

TN + FN + TP + FP
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

FN + TP
(12)

F1-score =
2 × Precision × Recall

Precision + Recall
(13)

Table 2. Confusion matrix.

Actual
Predicted

1

0 TN FP

1 FN TP

4.1. Influence of Different Optimizers

By calculating network parameters that influence model training and output, opti-
mizers aim to minimize the loss function, guiding it toward an optimal value [42]. This
study discusses the effects of the Adam optimizer, the stochastic gradient descent with
momentum (SGDM), and the root mean square propagation (RMSprop) optimizers on the
CNN-based classification model to identify the most suitable optimizer. In total, 75% of the
data is randomly selected from the PD dataset to construct the training dataset, with the
remaining data serving as the test dataset.

The evaluation focuses on the impacts of three optimizers on the model performance
and accuracy. The training accuracy and loss curves of the CNN-based classification model,



Sensors 2024, 24, 2660 11 of 18

utilizing these three optimizers through the iterative process, are depicted in Figure 8. In
the training process, the recognition accuracy and classification accuracy of the model based
on three different optimizers for the four discharge signals are shown in Figures 9 and 10,
showing the classification results of the three optimizers for the four signals in the test set.
Table 3 shows the classification accuracy of the CNN-based classification model, using the
three different optimizers, for the four discharge signals.
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Table 3. Classification accuracy of cable terminal discharge by different optimizers.

Discharge Type
Adam RMSprop SGDM

Precision
(%)

Accuracy
(%)

Precision
(%)

Accuracy
(%)

Precision
(%)

Accuracy
(%)

Surface Discharge 100

95.8

100

94.5

100

95
Tip Discharge 92.5 84.4 90.1

Suspended
Discharge 100 98.1 100

Air Gap Discharge 91.2 96.3 90.1

As shown in Figure 8, the CNN-based classification model employing the Adam
optimizer converges fastest and exhibits a smooth curve, indicating efficient learning. In
contrast, the model using the SGDM optimizer shows the slowest convergence, whereas the
RMSprop optimizer achieves better convergence than SGDM but with more considerable
curve fluctuation, indicating less stability in the trained model. According to Figure 9, all
three optimizer-based models achieve 100% signal classification accuracy during training.
Combining the results from Figure 10 and Table 3, the average accuracy of the CNN-based
classification model, based on the three optimizers for identifying the four defects, ranks as
follows: Adam > SGDM > RMSprop. This suggests that the CNN-based classification model
using the Adam optimizer demonstrates superior learning performance and classification
effectiveness. Consequently, the Adam optimizer is selected as the optimizer for the cable
terminal discharge classification model in high-speed EMUs for this study.

4.2. Influence of Different Training Data Amounts

The first 20%, 40%, 60%, 80%, and 90% of the PD data of high-speed EMU cable
terminals are used as training datasets, and the rest are used as validation datasets. The
CNN-based classification model proposed in this paper was used to test the five datasets,
and the influence of different amounts of training data on the accuracy of the model was
studied. Each case was verified 100 times, and the classification accuracy and training
time of 100 times were obtained. Figure 11 shows the box diagram drawn according to
the classification accuracy of the model under 100 tests, and Figure 12 shows the box
diagram drawn according to the training time of the model. Table 4 shows the average
precision of the model’s recognition of each discharge signal under 100 tests, and the
average accuracy of the model under 100 tests, which corresponds to the mean value of the
box chart in Figure 11.
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Table 4. Classification results of terminal discharge of high-speed EMU cables based on different
training data.

Training
Data Volume

Surface
Discharge

Tip
Discharge

Suspended
Discharge

Air Gap
Discharge Accuracy

20% 74.2% 63.4% 85.6% 71.4% 73.6%
40% 95.4% 79.9% 96.7% 81.8% 88.5%
60% 99.2% 90.2% 99.6% 89.8% 94.7%
80% 100% 95.8% 100% 93.8% 97.4%
90% 100% 97.9% 100% 96.8% 98.7%

Table 4 reveals that the classification accuracy for the four types of discharge in the
cable terminal discharge signal classification model of high-speed EMUs improves with an
increase in training data volume. Furthermore, Figure 11 demonstrates that as the training
data volume expands, the range of recognition accuracy for the CNN-based classification
model narrows, and the average accuracy rate approaches nearly 100%. More training
data introduce greater data diversity, enhancing the model’s robustness and minimizing
performance variances across different data subsets. This leads to a more concentrated
range of high accuracy.

Moreover, as can be seen from Figure 12, the model’s training time also escalates with
larger training data volumes. The average training time for 100 sessions across the five data
groups was recorded as 18.91 s, 46.78 s, 66.84 s, 92.03 s, and 102.38 s, respectively.

More training data require more forward-propagation and back-propagation calcula-
tions so that the model can better understand and fit the distribution of the data, which
helps to improve the algorithm, improve the generalization ability and performance of the
model, and will also require more running time.

4.3. Comparison of CNN with Other Classification Models

The proposed CNN-based classification model is compared with the BPNN-based
and RBFNN-based classification models. In total, 75% of the PD dataset is utilized to train
these three models, and the remaining data are employed to assess the models’ recognition
capabilities. For the BPNN, the number of nodes in the input layer is set to 251, the number
of nodes in the hidden layer is set to 6, and the number of nodes in the output layer is set
to 4. In addition, the target error of the model is set to 1 × 10−6, and the learning rate is
0.01. For the RBFNN, the Gaussian kernel is used. The RBF can be adaptively determined
according to the training data, and the expansion speed of the RBF is set to 100.

The comparison results are depicted in Figure 13, while Tables 5 and 6 show the
accuracy, precision, recall rate, and F1-score of the three models under different types
of discharge signals. It can be seen from Tables 5 and 6 that the CNN model has higher
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recognition precision, recall rate, and F1-score for the four discharge signals. Although the
recognition effect of the discharge at the tip and the discharge at the air gap is relatively
poor, the accuracy rate of the CNN model is higher than that of the other two models,
indicating that the model has a more accurate overall prediction of the four discharge
signals, better classification effect, and more stable model.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 18 
 

 

number of nodes in the hidden layer is set to 6, and the number of nodes in the output 
layer is set to 4. In addition, the target error of the model is set to 1 × 10−6, and the learning 
rate is 0.01. For the RBFNN, the Gaussian kernel is used. The RBF can be adaptively de-
termined according to the training data, and the expansion speed of the RBF is set to 100. 

The comparison results are depicted in Figure 13, while Tables 5 and 6 show the ac-
curacy, precision, recall rate, and F1-score of the three models under different types of 
discharge signals. It can be seen from Tables 5 and 6 that the CNN model has higher recog-
nition precision, recall rate, and F1-score for the four discharge signals. Although the 
recognition effect of the discharge at the tip and the discharge at the air gap is relatively 
poor, the accuracy rate of the CNN model is higher than that of the other two models, 
indicating that the model has a more accurate overall prediction of the four discharge sig-
nals, better classification effect, and more stable model. 

Table 5. Classification results of terminal discharge of high-speed EMU cables with different models: 
accuracy and precision. 

Discharge Type 
CNN RBFNN BPNN 

Precision (%) Accuracy$$(%) Precision (%) Accuracy$$(%) Precision (%) Accuracy$$(%) 
Surface Discharge 100 

95.8 

80.2 

91.2 

91.6 

94.8 Tip Discharge 92.5 89.7 97 
Suspended $$Discharge 100 96.8 93 

Air Gap Discharge 91.2 98.2 97.8 

Table 6. Classification results of terminal discharge of high-speed EMU cables with different models: 
recall and F1-score. 

Discharge Type 
CNN RBFNN BPNN 

Recall (%) F1-Score$$(%) Recall (%) F1-Score$$(%) Recall (%) F1-Score$$(%) 
Surface Discharge 100 100 100 89 93.3 92.4 

Tip Discharge 90.8 91.6 85 87.3 97 97 
Suspended $$Discharge 100 100 95.6 96.2 91.1 92 

Air Gap Discharge 92.7 92 86.7 92.1 97.3 97.5 

 

   

(a) (b) (c) 

Figure 13. Identification results of the three NN-based classification models: (a) CNN, (b) RBFNN, 
and (c) BPNN. 

Although the proposed CNN-based classification model demonstrates higher accu-
racy than the other two NN-based classification models, it also requires a longer runtime. 
This is attributed to CNN’s convolution layer, which enhances the model’s local feature 
extraction capability by using convolution kernels to capture specific signal features, 
thereby effectively differentiating between different signal types. The increased sensitivity 

Figure 13. Identification results of the three NN-based classification models: (a) CNN, (b) RBFNN,
and (c) BPNN.

Table 5. Classification results of terminal discharge of high-speed EMU cables with different models:
accuracy and precision.

Discharge Type
CNN RBFNN BPNN

Precision
(%)

Accuracy
(%)

Precision
(%)

Accuracy
(%)

Precision
(%)

Accuracy
(%)

Surface Discharge 100

95.8

80.2

91.2

91.6

94.8
Tip Discharge 92.5 89.7 97

Suspended
Discharge 100 96.8 93

Air Gap Discharge 91.2 98.2 97.8

Table 6. Classification results of terminal discharge of high-speed EMU cables with different models:
recall and F1-score.

Discharge Type
CNN RBFNN BPNN

Recall
(%)

F1-Score
(%)

Recall
(%)

F1-Score
(%)

Recall
(%)

F1-Score
(%)

Surface Discharge 100 100 100 89 93.3 92.4
Tip Discharge 90.8 91.6 85 87.3 97 97

Suspended
Discharge 100 100 95.6 96.2 91.1 92

Air Gap Discharge 92.7 92 86.7 92.1 97.3 97.5

Although the proposed CNN-based classification model demonstrates higher accuracy
than the other two NN-based classification models, it also requires a longer runtime.
This is attributed to CNN’s convolution layer, which enhances the model’s local feature
extraction capability by using convolution kernels to capture specific signal features, thereby
effectively differentiating between different signal types. The increased sensitivity and
accuracy of signal recognition comes at the cost of increased computational complexity,
resulting in higher time costs.
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5. Conclusions

In this paper, a CNN-based classification method for distinguishing different defect
discharge signals in high-speed EMU cable terminals is presented. Within a laboratory
environment, a PD test platform using the HFCT was established for the collection of
PD signals from various defects, and these signals were classified using the proposed
CNN-based classification model. Furthermore, the effects of three different optimizers and
varying amounts of training data on the classification accuracy of the high-speed EMU cable
terminal PD model were investigated, and the proposed CNN-based classification model
was compared with two existing NN-based classification models. The main conclusions
are drawn as follows:

1. Compared with SGDM and RMSprop optimizers, the Adam optimizer shows lower
loss and higher classification accuracy in CNN-based classification model training,
and the training effect is more stable.

2. It is found that increasing the amount of training data can enhance the robustness of
the model and improve the classification accuracy but at the cost of increasing the
training time.

3. Compared with the BPNN-based and RBFNN-based classification models, the CNN-
based classification model proposed in this paper shows higher classification accuracy
and can identify four different types of defects more accurately.

The method proposed in this paper can avoid the process of learning manual feature
extraction in traditional machine learning and can effectively identify the discharge signals
of four different defect types and achieve a high classification accuracy. In future research,
we will focus more on artificial intelligence technology to optimize and perfect our classifi-
cation model by learning and exploring new methods so that we can build a model with
better classification effect and more stable performance.
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