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Abstract: This article investigates the robust cooperative fault-tolerant control problem of multi-agent
systems subject to mismatched uncertainties and actuator faults. During the design process of the
intermediate variable estimator, there is no need to satisfy fault estimation matching conditions,
and this overcomes a crucial constraint of traditional observers and estimators. The feedback term
of the designed estimator contains the centralized estimation errors and the distributed estimation
errors of the agent, and this further improves the design freedom of the proposed estimator. A novel
fault-tolerant control protocol is designed based on the fault estimation information. In this work,
the bounds of the fault and its derivatives are unknown, and the considered method is applicable
to both directed and undirected multi-agent systems. Furthermore, the parameters of the estimator
are determined through the resolution of a linear matrix inequality (LMI), which is decoupled by
employing coordinate transformation and Schur decomposition. Lastly, a numerical simulation result
is used to demonstrate the effectiveness of the proposed method.

Keywords: multi-agent systems; robust fault estimation; cooperative fault-tolerance control;
intermediate variable estimator

1. Introduction

Spawned by the rapid advances in networked systems and distributed cooperation,
there has been a flurry of activity on the topic of multi-agent systems (MASs). During the
past few years, MASs have found extensive application in both industrial and military
domains, such as multi-robot systems [1], satellite formation control [2], sensor networks [3],
smart grids [4], flight control systems [5], etc.

As a type of interconnected system, MASs complete control tasks by exchanging
information among neighboring agents. However, due to the system configuration and
communication topology, a fault occurring in one agent can potentially propagate through
the network, affect other agents, or even cause network disruption [6–8]. As a result, one
specific agent fault could significantly impact MASs, potentially causing agent instability
or even a system crash. Indeed, it is essential to highlight that faults may occur more
frequently as the number of agents increases and as each agent expands in size and
complexity. Furthermore, the security and reliability of MASs become increasingly crucial
when they operate in complex and adverse environments.

To ensure the reliable operation of control systems, fault diagnosis has gained widespread
attention in recent years and become a key focus of research. Fault diagnosis can be categorized
into three main themes: fault detection (FD), fault isolation (FI), and fault estimation (FE) [9,10].
FD and FI primarily serve to detect and determine the location of faults, but they cannot obtain
accurate fault information. In contrast, FE can provide detailed information about the shape
and size of faults [11]. In general, the more fault information that can be obtained, the higher
the fault-tolerant control performance [12]. Recently, a lot of fault estimation methods have
been developed, including robust estimators, adaptive observers, sliding-mode controllers,
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and others [13,14]. However, there has been relatively limited research on fault estimation
for MASs. For instance, ref. [15] addressed distributed fault estimation for interconnected
systems with actuator faults. A novel distributed FD and FI method was proposed in [16] for
heterogeneous MASs. To estimate sensor faults, a category of unknown input observers (UIO)
was introduced in [17] by incorporating the system state and fault into a new extended vector.
A robust fault estimation method using sliding-mode observers was derived in [18] for linear
MASs subject to actuator faults. For the case of nonlinear MASs, an intermediate observer
was introduced in [19] for estimating system states and actuator faults. Similar approaches
were applied in [20] to construct nonlinear fault estimation observers for nonlinear MASs
with sensor faults. In [21], timing FE observers were developed for interconnected systems
with both multiplicative and additive actuator faults.

It is noteworthy that the majority of fault estimation methods in the aforementioned
studies necessitate knowledge of the upper bound of the fault signal. However, since the
bounds of fault information are mostly unknown for most control systems, these methods
tend to be conservative in terms of fault estimation performance and applicability. Further-
more, in some existing works, the fault signal is designed as a constant, which is unrealistic
since faults occurring in dynamic systems are inevitably influenced by environmental
conditions and exhibit dynamic characteristics. Hence, these issues must be taken into
consideration in the context of fault estimation for MASs.

Additionally, the fault estimation matching condition, which states that the rank of
the product of the system output matrix and the fault distribution matrix should equal the
rank of the system output matrix, is necessary for most existing fault estimation protocols.
The aforementioned condition exhibits a higher level of conservatism when compared
to the strict positivity assumption. In response to these challenges, a pioneering fault
estimation method grounded in an intermediate observer was introduced in [22]. Notably,
this approach dispenses with the necessity for both the fault estimation matching condition
and the strictly positive real assumption.

Fault-tolerance control is the follow-up work of fault estimation. In the study of fault-
tolerant control for MASs, there has been significant attention placed on observer-based
active fault-tolerant control algorithms. In the process of designing fault-tolerant controllers,
understanding the magnitude of the fault is crucial, and this information must be estimated
by the constructed observers. For a class of MASs under a directed fixed topology, ref. [23]
sidestepped the restriction of the requirement of zero initial conditions in most existing
works and pioneered a novel delay-dependent fault-tolerant controller that solves the
fault-tolerant constrained consensus problem of MASs in the presence of communication
delays and actuator faults. Similarly, in order to sidestep the limitation of zero initial
conditions in the H∞ control method, by using disturbance estimation information and
a new performance function, ref. [24] designed a disturbance rejection adaptive fault-
tolerant constrained consensus algorithm and solved the constraint consensus problem of
perturbation-resilient adaptive fault-tolerant multi-agent systems under actuator failures.
For linear and Lipschitz non-linear systems, an adaptive fault-tolerant controller utilizing
the compensated actuator fault estimation information was proposed in [25] to mitigate
adverse effects on consensus tracking. The problem of distributed fault-tolerant control
for linear systems was explored in [26]. This approach utilized fuzzy logic systems to
approximate unknown non-linear functions and implemented local observers to estimate
the system states. In [27], a form of distributed adaptive fault-tolerant control strategy was
proposed for linear MASs. This strategy aimed to alleviate the adverse impacts of actuator
failures and losses in actuator effectiveness.

However, precise system models are necessary in the aforementioned works. Ac-
tually, model uncertainties are inevitable for practical systems and can stem from un-
known internal or external noise, environmental influences, poor plant knowledge, and
uncertain/slowly varying parameters. For multi-area power systems with actuator fail-
ures, ref. [28] considered the influence of uncertainty factors in the fault-tolerant controller
and designed a fault-tolerant control scheme considering both multiplicative perturbation
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and additive perturbations. In [29], radial basis function neural networks (RBFNNs) were
used to estimate dynamic uncertainties in the system model to ensure the accuracy of
formation control. Similarly, the fuzzy logic method was used in [30] to address the prob-
lem of dynamic uncertainty estimation and further improve the accuracy of the proposed
formation control algorithm. In [31], a distributed fault diagnosis method was created for a
category of uncertain MASs with actuator faults. There was a need to design a state feed-
back controller ahead of the observer, suggesting the assumption that the full-dimensional
state of the system can be measured. This does not align with the conditions observed
in practical systems. A fault diagnosis algorithm based on an unknown input observer
(UIO) was proposed in [32] for linear uncertain MASs. This work is only applicable to
undirected MASs.

Unfortunately, most existing works have paid limited attention to fault estimation
for MASs with uncertainties. Moreover, in the majority of these works, especially in the
context of SMOs and UIOs, it is essential to fulfill the fault estimation matching condition
and determine the bounds of the fault signal. Undoubtedly, these constraints greatly
reduce the practicality and generality of traditional fault estimation and fault-tolerant
control approaches.

Inspired by the above discussions, in this paper, the fault estimation and fault-tolerant
control problem is addressed for a class of MASs with uncertainties. The innovations of
this paper are as follows:

(1) A type of intermediate variable observer has been designed for each agent to estimate
the fault and system state information. The fault estimation matching condition is not
necessary for this approach, which is also applicable to time-varying faults.

(2) In the observer design process, both the centralized and distributed estimation errors
of the agents are considered, which has the advantages of centralized and distributed
structures and can enhance design flexibility and improve estimation performance.

(3) In the current work, it is not necessary to obtain the bounds of faults and their
derivatives. Consequently, the distributed fault estimation method proposed in this
paper has great generality and practicality.

(4) Compared with most existing results, this FE and FTC scheme is suitable for both
directed and undirected MASs.

The structure of the paper is as follows. Section 2 gives some basic assumptions and
describes the problem considered in this paper. Sections 3 and 4 present the main theoretical
results of this paper, including the construction of the intermediate variable observers
and the convergence analysis. Section 5 presents a simulation example to demonstrate
the effectiveness of the proposed method. Finally, the concluding remarks are given in
Section 6.

Notations: In this article, Rn is the n-dimensional Euclidean spaces and IN is an
identity matrix of size N × N. For a vector s ∈ Rn, ∥s∥ is the Euclidean norm. For a
matrix D, He[D] = D +DT , λmax(D) and λmin(D) represent the maximum and minimum
eigenvalues of a matrix D, respectively.

2. Problem Statement

In this section, the problem formulation is presented. Consider the following linear
MASs with unknown mismatched uncertainties{

ẋi(t) = (A + ∆A(t))xi(t) + Bui(t) + E fi(t)
yi(t) = Cxi(t)

(1)

where xi(t) ∈ Rn is the state information of agent i, and ui(t) ∈ Rm and yi(t) ∈ Rq

are the control input and measured output of the system. fi(t) ∈ Rr is the fault signal
and represents actuator faults when E = B. ∆A(t) is the perturbed matrix that satisfies
∆A(t) = MF(t)N, where FT(t)F(t) ≤ I. A, B, E, and C are the known constant matrices of
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the system, which have appropriate dimensions. Without loss of generality, in this paper,
we assume that (A, C) is observable and (A, B) is stabilizable.

Assumption 1. In this paper, the fault fi(t) satisfies
∥∥ ḟi(t)

∥∥ ⩽ θ with θ ⩾ 0.

Assumption 2. rank(E) = r.

Assumption 3. The following equation holds with respect to every complex number s

Rank
[

A − sI E
C 0

]
= n + rank(E)

Assumption 4. Rank(B, E) = rank(B).

Remark 1. Assumption 1 gives the L-2 norm bounds of the fault and its derivative, which implies
that the fault and its derivative are energy-bounded. This assumption is common in the field of FD
and FTC [22,33] for estimating time-varying signals. In this paper, it is not necessary to know
the specific information about the fault and its derivative bounds, i.e., θ is unknown, making the
proposed approach more general than most traditional observers [13,14,17], in which the bounds of
faults and their first derivatives must be known.

Remark 2. It is important to note that Assumption 2 is more common than the fault estimation
matching conditions proposed in many existing works. Assumption 3 is natural and pervasive in
the majority of published articles that investigate fault detection, isolation, and estimation. This
assumption implies that the system (A, C, E) has a constant amount of zeros in the left half-plane.
Such a condition finds frequent application in the realms of system control and fault diagnosis.

Remark 3. Assumption 4 is very common in the existing results of fault-tolerant control, implying
that the fault is situated within the channel responsible for controlling the system’s input, and there
is a likelihood that it can be mitigated through compensation via the control input.

The following lemma is used for the subsequent work:

Lemma 1 ((Young’s Inequality) [19]). For any two vectors, a ∈ Rn and b ∈ Rn, we have

aTb ⩽
1
p

αp∥a∥p +
1
q

α−q∥a∥q

where α > 0, p > 0, q > 0, and pq = p + q.

In this paper, we design a fault estimator to acquire state information and fault
information in real time and use the acquired information to design a fault-tolerant control
protocol to compensate for the adverse effects of fault signals on MASs for the purpose of
robust fault-tolerant cooperative control for MASs.

3. Intermediate Observer Design

In this subsection, an observer is designed for each agent i. To start with, the following
intermediate variable ξi(t) is denoted:

ξi(t) = fi(t)− ωETxi(t) (2)

where ω is an intermediate constant selected based on experience.
From Equations (1) and (2), we have the dynamics of the intermediate variable:

ξ̇i(t) = ḟi(t)− ωET((A + ∆A)xi(t) + Bui(t) + Eξi(t) + ωEETxi(t)) (3)
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Based on Equations (1)–(3), the following intermediate variable estimator is designed:
˙̂xi(t) = Ax̂i(t) + Bui(t) + E f̂i(t) + ρ1L1∆1i + ρ2L2∆2i
˙̂ξi(t) = −ωETEξ̂i(t)−ωET(Ax̂i(t)+Bui(t)+ωEET x̂i(t))
f̂i(t) = ξ̂i(t) + ωET x̂i(t)
ŷi(t) = Cx̂i(t)

(4)

where x̂i(t), ξ̂i(t), f̂i(t), and ŷi(t) are the estimations of xi(t), ξi(t), fi(t), and yi(t), respectively.
In addition, ∆1i and ∆2i are defined as

∆1i = yi(t)− ŷi(t) (5)

∆2i =
N

∑
j=1

aij[(yi(t)− ŷi(t))− (yj(t)− ŷj(t))] (6)

which represent the centralized and distributed output estimation errors. L1 ∈ Rn and
L2 ∈ Rn are the observer gain matrices, which are designed later. The non-negative
constants ρ1 and ρ2 are the corresponding weight values that satisfy 0 ⩽ ρ1 ⩽ 1, 0 ⩽ ρ2 ⩽ 1,
and ρ1 + ρ2 = 0.

Remark 4. According to the designed intermediate variable estimator, it can be observed that both
the centralized output estimation errors, ∆1i, and distributed output estimation errors, ∆2i, are
taken into account. Here, ρ1 and ρ2 represent the weights assigned to the centralized and distributed
output estimation errors, respectively. The magnitude of these values signifies the extent to which
neighboring nodes influence the observer: a smaller ρ1 (resulting in a larger ρ2) amplifies the
impact of neighboring nodes, whereas a larger ρ1 (resulting in a smaller ρ2) reduces the influence of
neighboring nodes. In practice, the choice of ρ1 and ρ2 could increase the flexibility in designing the
observers, and their specific selection should be tailored to the actual operating conditions.

4. Estimation Error Analysis

Denote exi (t) = xi(t)− x̂i(t), eξi (t) = ξi(t)− ξ̂i(t), and e fi
(t) = fi(t)− f̂i(t). Since

e fi
(t) = eξi (t) + ωETexi (t), we can obtain the dynamics of the estimation error system

as follows:

ėxi (t) = (A − ρ1LC)exi (t) + Eeξi (t) + ωEETexi (t) + ∆Axi(t)− ρ2L2∆2i (7)

ėξi (t) =−ωETEeξi (t)−ωET Aexi (t)−ω2EETEexi (t)− ωET∆Axi(t) + ḟi(t) (8)

According to Assumption 4, there exists a matrix B∗ satisfying (I − BB∗)E = 0. Based
on the fault estimation information, the control protocol proposed in this paper is presented
as follows:

ui(t) = −Kx̂i(t)− B∗E f̂i(t) (9)

where K is designed to guarantee that A − BK is Hurwitz. Substituting Equation (9) into
Equation (1), we can obtain

ẋi(t) =(A − BK)xi(t) + ∆Axi(t) + BKex i (t) + Eeξ
i
(t) + ωEETex i (t) (10)

From Equations (7), (8) and (10), the global error dynamic is

ẋ(t) =(IN ⊗ (A − BK))x(t) + (IN ⊗ ∆A)x(t) + (IN ⊗ BK)ex(t)

+ (IN ⊗ E)eξ(t) + (IN ⊗ ωEET)ex(t)
(11)

ėx(t) =(IN ⊗ (A − ρ1L1C))ex(t) + (IN ⊗ E)eξ(t) + (IN ⊗ ωEET)ex(t)

+ (IN ⊗ ∆A)x(t)− (L ⊗ ρ2L2C)ex(t)
(12)
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ėξ(t) =− (IN ⊗ ωETE)eξ(t)− (IN ⊗ ωET A)ex(t)− (IN ⊗ ω2EETE)ex(t)

− (IN ⊗ ωET∆A)x(t) + ḟ (t)
(13)

where x(t) = [x1(t), x2(t), . . . , xN(t)]T, ex(t) = [ex1(t), ex2(t), . . . , exN(t)]
T, eξ(t) = [eξ1(t), eξ2(t),

. . . , eξN(t)]
T, f (t) = [ f1(t), f2(t), . . . , fN(t)]T.

Theorem 1. Under Assumptions 1–3, the intermediate variable estimator in Equation (4) guar-
antees that the global error dynamic in Equations (11)–(13) is uniformly ultimately bounded
for the given intermediate constant ω > 0, εi > 0 (i = 1, 2, 3, 4), and there exists matrix
Pj > 0 (j = 1, 2, 3), Q, and a constant δ > 0 satisfying the following inequality:

Πi =

[
Π̃i

11 Π̃i
12

∗ Π̃i
22

]
< 0, i = 1, 2, . . . , N (14)

where Π̃i
11 =

Πi
11 Πi

12 Πi
13

∗ Πi
22 Πi

23
∗ ∗ Πi

33

, with Πi
11 = He[P1A−P1BK] + 1

ε1
NT N + 1

ε2
NT N + 1

ε3
NT N,

Πi
12 = P1BK + ωP1EET, Πi

13 = P1E, Πi
22 = He[(P2A − ρ1QC) + (ωP2EET)] + δρ2λ̄iCTC,

Πi
23 = P2E−ωATEP3 −ω2EETEP3, Πi

33 = −He[ωP3ETE], Π̃i
22 = diag

{
− 1

ε1
,− 1

ε2
,− 1

ε3
,− 1

ε4

}
,

Π̃i
12 =

P1M 0 0 0
0 P2M 0 0
0 0 ωP3ET M P3

. The observer gain matrices can be designed as L1 = P−1
2 Q,

L2 = δP−1
2 CT.

Proof of Theorem 1. Choose a Lyapunov function as follows:

V(t) =xT(t)(IN ⊗ P1)x(t) + eT
x (t)(IN ⊗ P2)ex(t) + eT

ξ (t)(IN ⊗ P3)eξ(t) (15)

According to Equations (11)–(13) and ∆A(t) = MF(t)N, one has

V̇(t) =xT(t)He[IN ⊗ (P1 A − P1BK)]x(t) + 2xT(IN ⊗ P1MF(t)N)x(t)

+ 2xT(IN ⊗ P1BK)ex(t) + 2xT(t)(IN ⊗ P1E)eξ(t)

+ 2xT(t)(IN ⊗ ωP1EET)ex(t)− 2eT
ξ (t)(IN ⊗ ωP3ET A)ex(t)

+ eT
x (t)He[IN ⊗ (P2 A − ρ1P2L1C)]ex(t) + eT

x (t)He[L ⊗ (P2 A − ρ2P2L2C)]ex(t)

+ 2eT
x (t)(IN ⊗ P2E)eξ(t) + 2eT

x (t)(IN ⊗ ωP2EET)ex(t)

− 2ωeT
ξ (t)(IN ⊗ P3ET MF(t)N)x(t) + 2eT

x (t)(IN ⊗ P2MF(t)N)x(t)

− 2eT
ξ (t)(IN ⊗ ωP3ETE)eξ(t)− 2eT

ξ (t)(IN ⊗ ω2P3ETEET)ex(t)

+ 2eT
ξ (t)(IN ⊗ P3) ḟ (t)

(16)

From Lemma 1 and F(t)FT(t) ⩽ I, the following inequalities hold for the positive
constants ε1 > 0, ε2 > 0, ε3 > 0, and ε4 > 0:

2xT(t)(IN ⊗ P1MF(t)N)x(t)

≤ε1xT(IN ⊗ P1M)(IN ⊗ P1M)Tx(t) +
1
ε1

xT(IN ⊗ NT N)x(t)

2eT
x (t)(IN ⊗ P2M1F1(t)N1)x(t)

≤ε2eT
x (t)(IN ⊗ P2M)(IN ⊗ MT P2)ex(t) +

1
ε2

xT(t)(IN ⊗ NT N)x(t)

−2eT
ξ (t)(IN ⊗ ωP3ET MF(t)N)x(t)

≤ε3eT
ξ (t)(IN ⊗ ωP3ET M)(IN ⊗ ωMTEP3)eξ(t) +

1
ε3

xT(t)(IN ⊗ NT N)x(t)

(17)
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Based on Assumption 1, it can be inferred that there exists a scalar θN > 0 such that
the following inequality consistently holds:

2eT
ξ (t)(IN ⊗ P3) ḟ (t) ≤ 1

ε4
eT

ξ (t)(IN ⊗ P3)(IN ⊗ P3)eξ(t) + ε4θN (18)

Furthermore, based on Equations (17) and (18), we have

V̇(t) ≤xT(t)[He[IN ⊗ (P1 A − P1BK)]]x(t) + ε1xT(t)(IN ⊗ P1MMT P1)x(t)

+
1
ε1

xT(t)(IN ⊗ NT N)x(t) + 2xT(t)(IN ⊗ ωP1EET)ex(t)

+ 2xT(IN ⊗ P1BK)ex(t) + 2xT(t)(IN ⊗ P1E)eξ(t)

+ eT
x (t)[He[IN ⊗ (P2 A − ρ1QC)]]ex(t) + eT

x (t)
[
(L + LT)⊗ (δρ2CTC)

]
ex(t)

+ 2eT
x (t)(IN ⊗ P2E)eξ(t) + 2eT

x (t)(IN ⊗ ωP2EET)ex(t)

+ ε2eT
x (t)(IN ⊗ P2MMT P2)ex(t) +

1
ε2

xT(t)(IN ⊗ NT N)x(t)

− 2eT
ξ (t)(IN ⊗ ωP3ETE)eξ(t)− 2eT

ξ (t)(IN ⊗ ωP3ET A)ex(t)

− 2eT
ξ (t)(IN ⊗ ω2P3ETEET)ex(t) + ε3eT

ξ (t)(IN ⊗ ω2P3ET MMTEP3)eξ(t)

+
1
ε3

xT(t)(IN ⊗ NT N)x(t) +
1
ε4

eT
ξ (t)(IN ⊗ P3P3)eξ(t) + ε4θN

(19)

where Q = P2L1, L2 = δP−1
2 CT .

Obviously, Equation (19) is equivalent to

V̇(t) ≤ x̃T(t)Φx̃(t) + ε4θN (20)

where

x̃(t) =

 x(t)
ex(t)
eξ(t)

, Φ =

Φ11 Φ12 Φ13
∗ Φ22 Φ23
∗ ∗ Φ33

 (21)

and Φ11 = He[IN ⊗ (P1 A − P1BK)] + ε1(IN ⊗ P1MMT P1) +
1
ε1
(IN ⊗ NT N) + 1

ε2
(IN ⊗

NT N) + 1
ε3
(IN ⊗ NT N), Φ12 = (IN ⊗ P1BK)+ (IN ⊗ ωP1EET), Φ13 = (IN ⊗ P1E),

Φ22 = He[(IN ⊗ (P2A− ρ1QC))+(IN ⊗ωP2EET)]+(L+ LT)⊗ (δρ2CTC)+(IN⊗P2MMTP2),
Φ23 = (IN ⊗ P2E)−(IN⊗ ωATEP3)−(IN ⊗ ω2EETEP3), Φ33 = −He[(IN ⊗ ωP3ETE)] +
ε3(IN ⊗ ω2P3ET MMTEP3) + ε4(IN ⊗ P3P3).

From Equation (15), we can be obtain

V(t) ≤ max[λmax(P1), λmax(P2), λmax(P3)](∥ x(t) ∥2 +∥ex(t)∥2 +
∥∥eξ(t)

∥∥2
)

= max[λmax(P1), λmax(P2), λmax(P3)]∥ex̃(t)∥2
(22)

It follows that

∥ex̃(t)∥2 ≥ V(t)
max[λmax(P1), λmax(P2), λmax(P3)]

(23)

From Equation (20), we can obtain

V̇(t) ≤ λmax(Φ)∥ex̃(t)∥2 + ε4θN (24)

It is obvious that λmax(Φ) < 0, and then we have

V̇(t) ≤ κV(t) + α (25)
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where κ = λmax(Φ)
max[λmax(P1)λmax(P2),λmax(P3)]

< 0 , α = ε4θN .

Denote a set Ω satisfying the following condition:

Ω = {
(
x(t), ex(t), eξ(t)

)
| λmin(P1)∥x(t) ∥2+λmin(P2)∥ex(t)∥2+ λmin(P3)∥eξ(t)∥2 ≤ −α

κ
} (26)

Let Ω̄ be the supplementary set of Ω, and then the following inequality holds:

V(t) ≥ λmin(P1)∥x(t) ∥2 +λmin(P2)∥ex(t)∥2 + λmin(P3)
∥∥eξ(t)

∥∥2 ≥ −α

κ
(27)

if
(
x(t), ex(t), eξ(t)

)
∈ Ω̄. From Equations (25) and (27), it is obvious that for

(
x(t), ex(t), eξ(t)

)
∈ Ω̄,

we have
V̇(t) ≤ 0 (28)

which means that
(

x(t), ex(t), eξ(t)
)

is uniformly ultimately bounded and converges to Ω
exponentially with a rate greater than eαt from the Lyapunov stability theory.

Obviously, the inequality Φ < 0 is a preliminary condition to ensure the stability of the
global error dynamic in Equations (11)–(13). However, it is not hard to find that Φ < 0 is
still a high-dimensional and nonlinear characteristic. Therefore, in order to further ensure
the solvability of the inequality Φ < 0 , this condition needs to be further transformed.
Note that the term L + LT in Equation (21) is real symmetric, which means that it must
have N real eigenvalues. By spectral decomposition of the real symmetric matrix L + LT ,
we obtain

L + LT = V̄Λ̄V̄T (29)

where V̄ is constructed from the eigenvectors of L + LT , and Λ̄ = diag
{

λ̄1, λ̄2, . . . , λ̄N
}

and
λ̄i(i = 1, 2, . . . , N) are the corresponding eigenvalues of L + LT . Certainly, the matrix V̄ is
orthogonal. Then, an orthogonal transformation matrix is defined as follows:

H =

V̄T ⊗ In 0 0
0 V̄T ⊗ In 0
0 0 V̄T ⊗ Ir

 (30)

By pre-multiplying and post-multiplying Φ < 0 with H and its transpose, we can obtain

Φ̃ =

Φ11 Φ12 Φ13
∗ Φ̃22 Φ23
∗ ∗ Φ33

 < 0 (31)

where Φ̃22 = He[(IN ⊗ (P2A− ρ1Q2C))+ (IN ⊗ωP2EET)] + Λ̄⊗ (δρ2CTC)+ IN ⊗ P2M1MT
1

P2, and it can be found that the other terms are the same as in Equation (21). Finally, based on
the Schur complement lemma, it can be found that Φ̃ < 0 is equivalent to Equation (14) for
i = 1, 2, . . . , N. The proof of the theorem is complete.

Remark 5. In fact, excessively high dimensionality can negatively affect the accuracy of the LMI
solution and may even result in no feasible solution for the LMI. Therefore, decoupling and dimension
reduction for the preliminary condition Φ < 0 is very necessary.

Remark 6. According to Equations (11)–(13), it can be found that there is a coupling between x(t),
ex(t), and eξ(t). In order to prove the convergence of the system state and the observation error at
the same time, it is necessary to choose a Lyapunov function containing x(t), ex(t), and eξ(t).

Remark 7. In the proof of Theorem 1, by considering the term eT
x (t)

[
(L + LT)⊗ (δρ2CTC)

]
ex(t)

in Equation (20), it is found that L + LT is a real symmetric matrix, that is, the Laplacian matrix
L of MASs can be asymmetric. In other words, the topology of MASs can be either undirected
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or directed in this paper. Therefore, the method proposed in this paper has better universality and
practicability compared with most existing results.

Remark 8. In this paper, the system state and the estimation error are analyzed strictly for
convergence, and the explicit boundary, − α

κ , is obtained. Obviously, by adjusting the gain matrix
K, parameters ω, and ε j (j = 1, 2, 3, 4), parameter α is sufficiently large, and thus a relatively small
bound is obtained. In addition, it is not difficult to find the convergence rate of the system state, and
the global error dynamic in Equations (11)–(13) can be quantified by directly selecting the proper
matrix K and parameter ω. Once the matrix K and parameter ω are determined, the observer gain
matrices, L1 and L2, can be obtained by solving the LMI in Equation (14). At the same time, the
feasibility of the LMI in Equation (14) can be enhanced by adjusting parameters ε j (j = 1, 2, 3, 4).
On the other hand, if the LMI in Equation (14) has a feasible solution, the estimation and control
performance can be enhanced by adjusting the matrix K and parameter ω. Therefore, this paper
makes full use of the design freedom of parameters to ensure feasibility and effectiveness.

5. Numerical Simulation

In this section, a numerical simulation is used to demonstrate the effectiveness of the
method proposed in this paper.

In this numerical simulation, a MAS with four agents is considered. The topology of
the MAS is shown in Figure 1.

Figure 1. Topology of the MAS.

According to Figure 1, the adjacency matrix A and the Laplacian matrix L of the MAS
are as follows.

A =


0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

,L =


1 0 0 −1
−1 1 0 0
−1 −1 2 0
0 0 −1 1


Obviously, since we consider a directed graph, the Laplacian matrix L is not symmetric.
In this paper, the actuator fault is considered. The system parameters of the ith (i = 1, 2, 3, 4)

agent are given as

A =

−1 −2 −3
−2 −2 1
−3 1 1

, B = E =

 0
0
−2

, C =

[
1 0 0
0 1 0

]

M =

1 0 0
0 1 0
0 0 1

, N =

0.5 0 0
0 0.2 0
0 0 0.1

, F(t) = sin(t)

Obviously, it is not hard to find that rank(CE) ̸= rank(E), that is, the fault estimation
matching condition is not satisfied. In order to make the matrices (A − BK) Hurwitz, the
gain matrix K is chosen as K =

[
7.1153 −4.6538 −7.50

]
.
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Without loss of generality, we make the following assumptions about the fault of each
of the four agents, respectively:

f1(t) =
{

0 0s ⩽ t ⩽ 10s
sin(0.5t) + cos(0.2t) 10s < t ⩽ 100s

f2(t) =


0 0s ⩽ t ⩽ 20s

0.1t − 2 20s < t ⩽ 60s
0.1t − 5 60s < t ⩽ 100s

f3(t) =


0 0s ⩽ t ⩽ 30s

2
(

1 − e−(t−30)
)

30s < t ⩽ 60s

1 − 2
(

1 − e−(t−60)
)

60s < t ⩽ 100s

f4(t) = 0 0s ⩽ t ⩽ 100s

Based on the fault estimator given in the previous section, we choose the weight
values as ρ1 = 0.3 and ρ2 = 0.7, respectively. The intermediate constant ω in Equation (2)
is selected as ω = 0.2. Based on Theorem 1, the gain matrices of the intermediate variable
estimator in Equation (4) can be expressed as follows:

L1 =

 17.5310 −3.9315
−32.1705 2.0079
69.3836 −66.3622

, L2 =

−0.0261 −0.3609
0.0088 0.4167
−0.9831 −2.3536


The simulation results are shown in Figures 2–8. Figures 2–5 show the effectiveness of

fault estimation for the actuators of the four agents, respectively, where the red dashed line
represents the result of the proposed method and the blue dashed line represents the result
of the method proposed in [32]. As can be seen in Figures 2–5, the fault estimation results
of all agents are more satisfactory. Figures 6–8 validate the efficacy of the fault-tolerant
control protocol presented in this paper, and the results are better than those of the method
proposed in [32]. Obviously, the state component of each agent converges to a small enough
range under the designed fault-tolerant control protocol, and the influence of the actuator
fault on the convergence process is greatly reduced. In addition, it is found that the fault
estimation matching condition of fault estimation is not satisfied, and the bounds of the
fault and its derivatives are not required. Therefore, the distributed fault estimation method
based on the intermediate variable observer and the fault-tolerant control protocol based
on fault estimation proposed in this paper are validated on a MAS with uncertainty.

0 10 20 30 40 50 60 70 80 90 100

Time(s)

-3

-2

-1

0

1

2

3

f 1
(t

) 
a
n
d
 i
ts

 e
s
ti
m

a
ti
o
n
s

the fault f
1
(t)

the estimation of f
1
(t) by the proposed method

the estimation of f
1
(t) by the method in [32]

Figure 2. f1(t) and its estimations in agent 1.
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Figure 6. The first component of xi(t).
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Figure 8. The third component of xi(t).

6. Conclusions

In this paper, a novel robust distributed cooperative fault-tolerant control protocol is
designed for a class of MASs with uncertainty and actuator faults. Unlike most existing
approaches, in our method, the fault estimation matching condition is not necessary, and
the bounds of the fault and its derivative are unknown. By introducing an intermediate
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variable and using both the centralized estimation errors and distributed estimation errors,
the actuator fault is estimated, providing the basis for the fault-tolerance control scheme.
Coordinate transformation and Schur decomposition are used to further reduce and decouple
the LMI with high dimension and interference coupling, based on which the gain matrix of
the estimator can be guaranteed. In future work, distributed cooperative fault-tolerant control
for MASs with uncertainties in output and control input channels will be further considered.
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