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Abstract: Control design for the nonlinear cascaded system is challenging due to its complicated
system dynamics and system uncertainty, both of which can be considered some kind of system
nonlinearity. In this paper, we propose a novel nonlinearity approximation scheme with a simplified
structure, where the system nonlinearity is approximated by a steady component and an alternating
component using only local tracking errors. The nonlinearity of each subsystem is estimated inde-
pendently. On this basis, a model-free adaptive control for a class of nonlinear cascaded systems is
proposed. A squared-error correction procedure is introduced to regulate the weight coefficients of
the approximation components, which makes the whole adaptive system stable even with the unmod-
eled uncertainties. The effectiveness of the proposed controller is validated on a flexible joint system
through numerical simulations and experiments. Simulation and experimental results show that the
proposed controller can achieve better control performance than the radial basis function network
control. Due to its simplicity and robustness, this method is suitable for engineering applications.

Keywords: model-free adaptive control; nonlinearity approximation; cascaded system; flexible joint

1. Introduction

The control problem of nonlinear cascaded systems commonly exists in engineering.
Mechanical joints in robot manipulators are driven by motor currents [1–3]. The path
tracking control of mobile robots is realized by adjusting wheel velocities [4–7]. Gyro-
scopic precession can be integrated into one-wheeled robots for steering control [8]. Flight
dynamics in unmanned aerial vehicles (UAVs) can be stabilized through attitude adjust-
ment [9–12]. Although these systems vary in physical assumptions, all of them can be
modeled as nonlinear systems with a cascaded structure. The control design for such
systems is challenging due to complicated system nonlinearity and uncertainty.

Disturbance rejection is a common approach to addressing the effects of unknown
system nonlinearity and uncertainty. References [13,14] apply H-infinity optimal control for
the linear system to suppress the effects of unknown disturbances. However, for systems
with strong uncertainties, linear H-infinity control may lead to conservative performance.
Hence, some researchers develop H-infinity controllers based on nonlinear system mod-
els [15–17]. Compared to the linear version, nonlinear H-infinity control allows for greater
system nonlinearity under fine-tuning conditions and can delay control degradation and
instability risks [17]. However, solving for nonlinear H-infinity controllers is usually com-
plex and time-consuming [15,17,18]. In addition, invariant ellipsoid techniques are also
introduced to optimize the robustness of control systems to unknown disturbances [19].
The invariant ellipsoid method simplifies the optimal controller to finding the smallest
invariant ellipsoid of the closed-loop dynamic system [20]. A typical way is to apply the in-
variant ellipsoid method to suppress persistent disturbances through state-feedback control
via LMI techniques [21–23]. It needs to quantitatively evaluate the effects of disturbances
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on the system output; thus, accurate system information is required. Other methods, such
as the generalized fractional equation [24], are also introduced to model complex, uncertain
systems.

Obtaining optimal control solutions for nonlinear systems with complex uncertainties
is often challenging. Hence, researchers have proposed to combine the aforementioned
disturbance rejection methods with nonlinearity estimation approaches that are free from
system models, such as artificial neural networks (ANN) [25,26], fuzzy networks [27], and
disturbance observers [18,28,29].

Artificial intelligence networks, such as fuzzy systems and neural networks, are
commonly used for nonlinearity approximation [30–37]. In [31], a fuzzy approximation-
based adaptive backstepping controller was developed to assist in the movement of an
upper-limb exoskeleton robot. References [33–35] present observer-based fuzzy neural-
network output feedback control algorithms for underactuated nonlinear systems. These
studies combine the adaptive backstepping technique with artificially intelligent networks
to achieve a high-performance approximation-based controller. Reference [38] proposes a
reinforcement learning-based method to ensure asymptotic tracking control of continuous-
time systems. However, the application of these approaches is hindered by complex
control objects with a high degree of freedom (DOF), structural uncertainty, and system
nonlinearity [36]. For artificial intelligence networks with complex topological structures,
the learning process degrades the transient performance of the system and requires high
calculation efficiency. For real-time control systems, their high computational cost is an
inevitable challenge. References [32,36,37] stated that these factors impede the development
of intelligence networks-based adaptive control, especially in real-time control applications.

High-gain disturbance observer (HGDOB) and sliding mode control (SMC) are also
effective methods to deal with systems with parametric uncertainties and unmodeled
nonlinearities. In [39], a HGDOB is designed to estimate the system disturbance caused by
friction, load force, and the parameter disturbance for electro-hydraulic systems. However,
the high gain observer is sensitive to measurement noise and delayed outputs [40]. To solve
this problem, Reference [41] designed time-varying gains relying on the generalization of
the Halanay-type inequalities. Reference [42] tried to lower the observer gain by introducing
artificial delays and Taylor’s series. Similarly, the SMC is limited by chattering and peak
phenomena in control signals [43]. In [44], a radial basis function neural network (RBFNN)-
based soft computing strategy is applied to avoid the high switching gain that leads
to chattering amplification. In [45], an adaptive sliding mode control method (ASMC)
for robot manipulators is introduced. It utilizes the Taylor expansion to achieve a less
conservative sign-function gain that enables chattering attenuation. The above approaches
reduce chattering by applying extra-complicated policies. An interesting work is presented
in [46] that presents a finite-time SMC (FT-SMC) and suppresses the peak phenomenon
and chattering with an asymptotically convergent differentiator.

As can be seen from the previous discussion, in order to deal with unknown distur-
bances while avoiding problems caused by high control gains, controllers tend to become
more and more complex and bloated. It is particularly unfriendly for engineering applica-
tions. Therefore, a simplified controller that is robust to unknown system nonlinearities
and possesses mild control input is valuable for engineering applications.

Hence, this study aims to provide a simplified adaptive controller for a class of
nonlinear cascaded systems. We first propose a so-called non-interference nonlinearity
approximation (NINA) technique. It is based on the following system theory: For stable
closed-loop systems, a bounded and continuous system nonlinearity can always be de-
composed into steady and alternating components [47]. Furthermore, the output errors
incorporated information relating to the system nonlinearity. Therefore, the unknown
system nonlinearity can be modeled as a hierarchical form of a steady component and an
alternating component. In addition, each nonlinearity can be approximated independently,
using only local tracking errors. Thus, the proposed scheme is called non-interference non-
linearity approximation. Due to the simplified and decoupled approximation structure, the
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computational complexity of NINA is significantly reduced. Based on NINA, a model-free
adaptive control is proposed. It is convenient for engineering applications because it avoids
the fussy process of system modeling and parameter identification. In addition, it is also
robust to external disturbance and parameter perturbation due to accurate nonlinearity
approximation and compensation, which are verified by numerical simulations and ex-
periments. Finally, its control inputs are milder than those of SMC and HGDOB-based
control.

In summary, the contributions of this work are as follows:

(1) A novel NINA scheme that has a simplified hierarchical structure is proposed. Based
on only local tracking errors, the NINA technique can approximate the unknown
system nonlinearity regardless of its internal complexity. Saturation functions with
adjustable shaping factors help balance fast convergence against measurement noise,
thereby providing a mild control input.

(2) A model-free adaptive control based on the NINA technique is proposed. Its uniformly
ultimate boundedness (UUB) is proven by the Lyapnuov theory. The effectiveness and
robustness have been validated by simulations and experiments on a flexible-joint
manipulator system.

(3) Compared with the intelligence network-based control, the proposed method pos-
sesses a simplified structure and requires less computational costs. Compared with
the SMC, the proposed method can perform fast trajectory tracking with mild control
inputs. Hence, it is convenient for engineering applications.

Reference [48] introduces an adaptive weighted saturation function to suppress system
uncertainty in a stabilization problem. The approach was applied to flexible manipulator
control by [49,50]. Different from previous work, this paper approximates the nonlinearity
of the closed-loop system using trajectory tracking errors instead of relying on system
states. Furthermore, a hierarchical approximation structure is introduced in this paper.
The steady component aims to achieve fast tracking for the major part of the nonlinearity,
while the alternating component is designed to supplementarily track its high-frequency
fluctuations. In addition, this paper conducted an elaborate theoretical analysis that not
only proves the effectiveness of the proposed approximation method but also provided the
upper bound of the approximation error. The convergence of the weighted parameters was
also analyzed. Hence, this work can be viewed as an extension of the approach in [48] to
some degree.

The remainder of this paper is organized as follows: Section 2 formulates the dynamic
model for a class of nonlinear cascaded systems. Section 3 presents a decoupled control
framework. Section 4 describes the NINA technique. On this basis, Section 5 proposes
NINA-based adaptive control. Numerical simulations and experiments on the flexible
joint system are presented in Sections 6 and 7, respectively. Conclusions are provided in
Section 8.

2. Preliminaries
Mathematical Description of the Generalized Dynamics

First, we consider a class of nonlinear cascaded systems with n-DOF whose dynamics
are given by:

[
mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

][ ..
α
..
β

]
+

nα

(
α,

.
α, β,

.
β
)

nβ

(
α,

.
α, β,

.
β
) =

[
0
τβ

]
(1)

where α, β ∈ Rn represent the coordinates. mα, mαβ, mβα, mβ ∈ Rn×n form the system
inertia matrix. nα, nβ ∈ Rn, represent the system nonlinearity that captures centrifugal
and Coriolis forces, viscous and frictions, gravitation, unmodeled system dynamics, and
external disturbances. τβ ∈ Rn represents the control inputs. The first and second rows in
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(1) represent the unactuated and actuated subsystems, respectively. For the convenience of
distinguishing, they are denoted as the α-system and β-system.

For cascaded systems [1–12], the nonlinearity of the α-system nα usually contains
a dynamic coupling term that coordinates the behavior of the actuated and unactuated
subsystems. Hence, nα can be modeled as the combination of a known dynamic coupling
term and a residual term, i.e.,

nα

(
α,

.
α, β,

.
β
)
= δα

(
α,

.
α, β,

.
β
)
− uα

(
α,

.
α, β,

.
β
)

(2)

where uα is the known dynamic coupling term and δα is the unmolded system nonlinearity.
Substituting (2) into (1), the dynamic model can be represented as

[
mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

][ ..
α
..
β

]
+

δα

(
α,

.
α, β,

.
β
)

nβ

(
α,

.
α, β,

.
β
) =

[
uα

(
α,

.
α, β,

.
β
)

τβ

]
(3)

where the behavior of the α-system is indirectly regulated by the dynamic coupling term
uα. Given the states of the α-system, the value of uα depends on the states of the β-system.
Therefore, the control objective is to perform trajectory tracking control of the α-system by
regulating the behavior of the β system.

Assumption 1. Let x =
(
α,

.
α
)
, y =

(
β,

.
β
)

. For any given y1, y2 ∈ Rn, uα satisfies the following
Lipschitz condition:

∥uα(x, y2)− uα(x, y1)∥ ≤ γ∥y2 − y1∥, (4)

where γ > 0 is a finite constant.

Assumption 2. Let S1, S2, and S3 be the ranges of x, y, and uα, respectively. We have
uα : (S1 × S2) → S3 . Given x ∈ S1, for any desired uα ∈ S3, there exists yr ∈ S2 satisfying the
following inverse mapping:

u−1
α : (uαr × x) → yr, (5)

where uαr is the desired value of uα, and yr is the desired value of y. This assumption is summarized
from real systems [1–12].

Remark 1. Assumptions 1 and 2 guarantee the maneuverability of the α-system. If we take
uα ∈ S3 as the virtual control and using (4) and (5), the error between uαr and uα is bounded by

∥uα(x, yr)− uα(x, y)∥ ≤ γ∥y − yr∥. (6)

We have uα(x, y) → uα(x, yr) as y → yr . It indicates that the α-system can be indirectly regu-
lated by the β-system via the dynamic coupling term uα.

Remark 2. Equations (1) and (2) with assumptions 1 and 2 represent a class of nonlinear cascaded
systems where the unactuated subsystems are indirectly regulated by the behaviors of the actuated
subsystems through dynamic coupling. Some examples are provided as follows: For the flexible
joint manipulator, the flexibility torque connects the dynamic behavior of the load and motor
sides [3]. The gyro moment is used to maintain the lateral balance of the gyroscopic pendulum
robot [7]. Dynamic coupling between attitude regulation torque and thrust force is widely utilized
for the path tracking control of UAVs [9–12]. In the above examples, flexibility torque, the gyro
moment, and aerodynamics can be viewed as the known dynamic coupling terms that can be used
for controller design.

3. Decoupled Control Framework

Considering system (1), there are two types of dynamic coupling: first, the dynamic
coupling between the actuated and unactuated subsystems; and second, the dynamic
coupling between different degrees of freedom (DOFs). To address the problem mentioned
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above, a decoupled control framework is proposed in this paper, as shown in Figure 1.
To deal with the dynamic coupling between the actuated and unactuated subsystems, we
introduce a cascaded control framework where an α-controller is placed in the outer layer
to stabilize the unactuated subsystem and a β-controller is positioned in the inner layer to
regulate the actuated subsystem. The two sub-controllers are linked through the inverse
mapping of the dynamic coupling term ⊓α. In addition, the dynamic coupling between
different DOFs is considered to be an unknown disturbance and is compensated by the
proposed NINA technique presented in the next section.
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The control framework is derived below. Let αr(t) and βr(t) be the reference trajectory
of the α- and β-systems, which are assumed to be bounded and to have finite first- and
second-order time derivatives. Let eα = αr − α and eβ = βr − β be the position tracking
errors. Then, the following synthetic tracking errors are introduced:

ξα = Λαeα +
.
eα

ξβ = Λβeβ +
.
eβ

. (7)

where Λα, Λβ > 0 are diagonal positive gain matrices. Substituting (7) into model (3) and
applying τα = uαr as the virtual control, the error dynamics can be expressed as[

mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

][ .
ξα.
ξβ

]
=

[
mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

][
Λα

.
eα +

..
αr

Λβ
.
eβ +

..
βr

]
+

[
vα − τα

nβ − τβ

]
, (8)

where vα = δα +
∼
uα represents a lumped nonlinearity.

∼
uα = uαr − uα is the distortion

between the desired control input and its actual value. Such a distortion is mainly caused
by state tracking errors, parameter perturbations, and the model uncertainty of uα.

Let us analyze (8) by choosing the following Lyapunov function:

V1 =
1
2

ξT Mξ, (9)

with

ξ =

[
ξα

ξβ

]
, M =

[
mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

]
.
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Considering the time derivative of (9) and substituting (8), we obtain

.
V1 = ξT(F − τ), (10)

with

τ =

[
τα

τβ

]
,

F =

[
Fα

Fβ

]
=

1
2

[ .
mα(α, β)

.
mαβ(α, β)

.
mβα(α, β)

.
mβ(α, β)

][
ξα

ξβ

]
+

[
mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

][
Λα

.
eα +

..
αr

Λβ
.
eβ +

..
βr

]
+

[
vα

nβ

]
(11)

where F is an integrated system nonlinearity. Considering F as an unknown disturbance and
compensating via nonlinearity estimation, a simplified control law can then be designed as

τ = Kξ + F̂, (12)

where K is a positive, definite diagonal gain matrix. F̂ is the estimation of F applied for
nonlinearity compensation.

Substituting (12) into (10),
.

V1 becomes

.
V1 = −ξTKξ + ξT(F − F̂

)
. (13)

Ideally, if F̂ = F, ξ is asymptotically convergent to zero. If
∼
F = F − F̂ is bounded, ξ

will be ultimately bounded. It can be seen that the stability of the closed-loop system is
determined by the nonlinearity approximation process. In the next section, a simplified
NINA technique is proposed for the nonlinearity approximation.

Remark 3. As shown in Figure 1, the reference of the α-system
(
αr,

.
αr
)

is given by users,

while the reference of the β-system
(

βr,
.
βr

)
is generated to guide the tracking of the virtual

control uα → uαr = τα .
Given the states of the α-system ( α,

.
α
)

and the desired value of virtual control, uαr, we have

uα

(
α,

.
α, β,

.
β
)
→ uαr

(
α,

.
α, βr,

.
βr

)
as
(

β,
.
β
)
→
(

βr,
.
βr

)
. (14)

Hence,
(

βr,
.
βr

)
can be obtained by solving the inverse mapping of uα

(
α,

.
α, βr,

.
βr

)
with respect

to
(

βr,
.
βr

)
, i.e., (

βr,
.
βr

)
= u−1

α

(
α,

.
α, uαr

)
. (15)

An example of such inverse mapping about the elastic torque of the flexible joint manipulator is
given in Equation (51).

4. Principles of NINA

In this section, a simplified nonlinearity approximation scheme is presented. The
nonlinearity of each subsystem can be estimated independently by simply utilizing the
local tracking error.

Declaration 1. Considering the nonlinearity approximation by each subsystem, we adopt the
following symbolic notation: for a vector V or a diagonal matrix V, the j-th element is marked by Vj,
where j = 1, 2, . . ., 2n.

Let Fj represents the system nonlinearity and is assumed to be a bounded continuous
time function. In real-world applications, most of the plants are controlled by digital
controllers. Therefore, Fj can be viewed as a piecewise time-varying function within
successive control cycles. Mathematically, such a piecewise time-varying function can
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always be expressed as the synthetic form of steady and alternating components [47].
Hence, the system nonlinearity can be modeled in the time-domain as

Fj(t) ≡ Fsj + ∆j(t), (tI ≤ t ≤ tI + µTc) (16)

where µ > 1 is a positive integer. tI is the initial moment, and Tc is the control cycle.
Fsj and ∆j denote a bounded steady component and a bounded alternating component,
respectively.

In addition, for closed-loop control systems, the tracking error reflects the combined
effect of system nonlinearities. Therefore, we introduce the following structure to approxi-
mate system nonlinearities with the synthetic tracking error ξ j:

FAj
(
ξ j
)
= Fsj + Wsjσ

(
ξ j
)
,
(∣∣∆j

∣∣ < Wsj < ∞
)
, (17)

where FAj is the approximation of Fj. Fsj is the steady component in (16), and Wsjσ
(
ξ j
)

is introduced to approximate the alternating component ∆j, where Wsj is a dynamically
adjusted weight coefficient and σ

(
ξ j
)

is a saturation function expressed as

σ
(
ξ j
)
= ξ j/

(
ϑsj +

∣∣ξ j
∣∣), (0 < ϑsj < ∞

)
, (18)

where ϑsj is a shaping factor. When ϑsj → 0 , σ
(
ξ j
)

acts as a signed switching function that
is highly sensitive to the variation of ξ j around zero. By contrast, when ϑsj → ∞ , σ

(
ξ j
)

tends to zero and becomes insensitive to the changes of ξ j. Compared with the linear or
polynomial approximation, the introduced saturation function enables a wide range of
sensitivity adjustment w.r.t. ξ j via only one parameter. It is more convenient and adaptable.

From (16) and (17), the approximation error between Fj(t) and FAj can be calculated as

E
(
∆j, ξ j

)
= Fj(t)− FAj

(
ξ j
)
= ∆j(t)− Wsjσ

(
ξ j
)
. (19)

Theorem 1. For a bounded continuous nonlinearity Fj(t), there exist optimized parameters Fsj, Wsj,
and ϑsj for the approximation structure (17), (18) that satisfy the identity E

(
∆j, ξ j

)
= 0 and the

synthetic tracking error is ultimately bounded by∣∣ξ j
∣∣ ≤ ϑsj

(∣∣∆j/Wsj
∣∣)/[1 + ∣∣∆j/Wsj

∣∣], (20)

where
∣∣ξ j
∣∣→ 0 , as ϑsj → 0 and Wsj >

∣∣∆j
∣∣. It illustrates that the proposed structure can

effectively approximate the system nonlinearity while maintaining a small synthetic tracking error.

Proof . Let F̂j(t) = FA
(
ξ j
)

and substitute (19) into (13). The first derivative of the Lyapunov
function in (13) becomes

.
V1 = −∑

j
Kjξ

2
j + ∑

j
E
(
∆j, ξ j

)
ξ j, (21)

where −Kjξ
2
j ≤ 0. The property of E

(
∆j, ξ j

)
ξ j is discussed below.

Step 1: The second derivatives of E
(
∆j, ξ j

)
ξ j with respect to ξ j is presented as

∂2E
(
∆j, ξ j

)
ξ j

∂2ξ j
= 2Wsj

(
σ
(
ξ j
)
− 1
)
σ′(ξ j

)
, (22)

where σ′(ξ j
)

is the first derivatives of σ
(
ξ j
)

with respect to ξ j. It can be verified segmentally

that
∂2E(∆j ,ξ j)ξ j

∂2ξ j
< 0 for any ξ j ∈ R and Wsj > 0. Hence, E

(
∆j, ξ j

)
ξ j is an open downward

convex function with respect to ξ j. This can be further verified by the profile diagram
shown in Figure 2.
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(
∆j, ξ j

)
ξ j caused by parameter drifts.

Step 2: Given that E
(
∆j, ξ j

)
ξ j is an open downward convex function with respect to

ξ j, its sign will vary around the nonzero solution ξ j = ξz

(
∆j
)

of equation E
(
∆j, ξ j

)
ξ j = 0.

With (19), the value of ξz
(
∆j
)

can be calculated as

ξz
(
∆j
)
=

{
ξ+z = ϑsj

(
∆j/Wsj

)
/
[
1 −

(
∆j/Wsj

)]
,
(
∆j ≥ 0

)
ξ−z = ϑsj

(
∆j/Wsj

)
/
[
1 +

(
∆j/Wsj

)]
,
(
∆j ≤ 0

) , (23)

Step 3: The following two compact sets are defined accordingly:

S+
zj

def
=
{(

ξ j, ∆j
)
∈ R2∣∣0 < ξ j < ξ+z , ∆j > 0

}
,

S−
zj

def
=
{(

ξ j, ∆j
)
∈ R2∣∣ξ−z < ξ j < 0, ∆j < 0

}
.

Step 4: Substituting E
(
∆j, ξ j

)
ξ j around the domain S+

zj ∪ S−
zj , we can verify that, for(

ξ j, ∆j
)

/∈ S+
zj ∪ S−

zj , there is
E
(
∆j, ξ j

)
ξ j < 0, (24)

and for
(
ξ j, ∆j

)
∈ S+

zj ∪ S−
zj , there is

E
(
∆j, ξ j

)
ξ j > 0. (25)

Using (21) and considering the extreme case when Kj → 0 , if
(
ξ j, ∆j

)
∈ S+

zj ∪ S−
zj ,

.
V1

tends to be positive and ξ j diverges from S+
zj ∪ S−

zj . By contrast, if
(
ξ j, ∆j

)
/∈ S+

zj ∪ S−
zj ,

.
V1 < 0 and ξ j converges back to S+

zj ∪ S−
zj . This variation proves that ξ j is ultimately

restricted within S+
zj ∪ S−

zj , which provides∣∣ξ j
∣∣ ≤ ϑsj

∣∣∆j/Wsj
∣∣/[1 + ∣∣∆j/Wsj

∣∣]. (26)

According to (23) and (26), if the candidates are chosen as ϑsj ≪ 1 and Wsj ≫
∣∣∆j
∣∣,

there exists ξz
(
∆j
)

that tends to zero and satisfies the identity: E
(
∆j, ξz

(
∆j
))

≡ 0. It
illustrates that FAj

(
ξ j
)

in (17) can effectively approximate the system nonlinearity Fj(t)
around the domain S+

zj ∪ S−
zj , while maintaining a small synthetic tracking error. □

5. Adaptive Control Based on NINA

In this section, an adaptive control utilizing NINA is fulfilled, and the stability analysis
is carried out.

5.1. Adaptive Law

Given that Fj and Wsj are optimal candidates for the approximation structure in (17),
the integrated error

s
E2(∆j, ξ j

)
d∆jdξ j is minimized. The estimation of Fj(t) is defined as

F̂j(t) = F̂Aj
(
ξ j
)
= F̂sj + Ŵsjσ

(
ξ j
)
. (27)
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where F̂sj and Ŵsj are the estimations of Fj and Wsj, respectively. Subtracting (27) from (16),
the error between Fj(t) and F̂j(t) is represented as

∼
F j(t) =

∼
Fsj +

∼
Wsjσ

(
ξ j
)
+ E

(
∆j, ξ j

)
, (28)

with
∼
Fsj = Fsj − F̂sj and

∼
Wsj = Wsj − Ŵsj. The adaptive law of F̂sj and Ŵsj is given by the

following squared-error correction procedures:

.
Ŵsj = −Ajξ

2
j Ŵsj + Bjσ

(
ξ j
)
ξ j (29)

.
F̂sj = −Ajξ

2
j F̂sj + Bjξ j (30)

where Aj, Bj > 0 are the adaptive gains. The term Ajξ
2
j plays a role in preventing the

divergences of Ŵsj and F̂sj.

Using (29) and (30), the transient performance of
∼
Fsj and

∼
Wsj is analyzed next. Apply-

ing
.
∼
Wsj = −

.
Ŵsj and

.
∼
Fsj = −

.
F̂sj, (29) and (30) can then be represented as

.
∼
Wsj = −Ajξ

2
j

∼
Wsj + ρ

(
ξ j
)
, (31)

.
∼
Fsj = −Ajξ

2
j

∼
Fsj + ϱ

(
ξ j
)
, (32)

where
ρ =

(
Ajξ jWsj − Bjσ

(
ξ j
))

ξ j, ϱ =
(

Ajξ jFsj − Bj
)
ξ j.

The solutions of (31) and (32) are represented as

∼
Wsj(t) = ϕ(t, tI)

∼
Wsj(tI) +

∫ t

tI

ϕ(t, τ)ρ(τ)dτ, (33)

∼
Fsj(t) = ϕ(t, tI)

∼
Fsj(tI) +

∫ t

tI

ϕ(t, τ)ϱ(τ)dτ, (34)

where

ϕ(t, tI) = exp
(
−Aj

∫ t

tI

ξ2
j (τ)dτ

)
. (35)

Supposing that the persistent excitation condition holds for ξ j, ϕ(t, tI) asymptotically
converges to zero with the increase in t, proving that (31) and (32) are bounded-input-
bounded-output stable. The expressions of ρ and ϱ show that ξ j is a unique source that

changes
∼
Wsj and

∼
Fsj in the steady state. Therefore,

∼
Wsj and

∼
Fsj can be restricted within

a small area along with the convergence of ξ j. We can also conclude from (35) that
∼
Wsj

and
∼
Fsj obtain fast convergence as long as Aj is set to make the steady-state time of ϕ(t, tI)

much smaller than µTc.

5.2. Adaptive Controller and Stability Analysis

Combining the control structure in (12), and approximating the system nonlinearity
using (27), (29), and (30), the NINA-based adaptive control law is presented as

τj = Kjξ j + F̂sj + Ŵsjσ
(
ξ j
)

.
Ŵsj = −Ajξ

2
j Ŵsj + Bjσ

(
ξ j
)
ξ j

.
F̂sj = −Ajξ

2
j F̂sj + Bjξ j

. (36)
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Theorem 2. Consider the nonlinear system represented by (3) and use the control law in (36). If
control gainKj is selected in accordance with the following inequality

Kj >
1
4

[
Aj

(
W2

sj + F2
sj

)
/Bj

]
, (37)

the synthetic tracking ξ jis uniformly and ultimately bounded by∣∣ξ j
∣∣2 ≤ Wsjϑsj/Gj

with
Gj = Kj −

1
4

[
Aj

(
W2

sj + F2
sj

)
/Bj

]
Moreover, the synthetic tracking error ξ jcan be restricted to a small area around zero as

0 < (ϑ sj, Aj

)
≪ 1 and

(
Kj , Bj

)
≫ 1.

Proof. A Lyapunov function candidate is selected as

V2 = V1 +
1

2Bj
∑

j

( ∼
W

2

sj +
∼
F

2

sj

)
, (38)

Using (13) and differentiating (38) with respect to time, we have

.
V2 = ∑

j

[
ξ j

∼
F j(t) +

(
∼
Wsj

.
∼
Wsj +

∼
Fsj

.
∼
Fsj

)
/Bj − Kjξ

2
j

]
, (39)

Applying
.
∼
Wsj = −

.
Ŵsj and

.
∼
Fsj = −

.
F̂sj with (29) and (30),

.
V2 becomes

.
V2 = ∑

j

Ajξ
2
j

( ∼
WsjŴsj +

∼
Fsj F̂sj

)
/Bj

+Ej
(
∆j, ξ j

)
ξ j − Kjξ

2
j

. (40)

where
∼
WsjŴsj and

∼
Fsj F̂sj are bounded by

∼
WsjŴsj ≡

∼
Wsj

(
Wsj −

∼
Wsj

)
≤ W2

sj/4, (41)

∼
Fsj F̂sj ≡

∼
Fsj

(
Fsj −

∼
Fsj

)
≤ F2

sj/4. (42)

Substituting (41) and (42) into (40), we can obtain the following inequality:

.
V2 ≤ −∑

j
Gjξ

2
j + ∑

j
E
(
∆j, ξ j

)
ξ j, (43)

where Gj = Kj − 1
4

[
Aj

(
W2

sj + F2
sj

)
/Bj

]
.

According to the conclusion in (22) that E
(
∆j, ξ j

)
ξ j is an open-downward convex

function with respect to ξ j, E
(
∆j, ξ j

)
ξ j will reach its maximum value as

∂E
(
∆j, ξ j

)
ξ j

∂ξ j
= 0. (44)
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Substituting the solution of (44), the maximum value of E
(
∆j, ξ j

)
ξ j can be calculated

as
E
(
∆j, ξ j

)
ξ j ≤ Wsjσ

2(ξ j
)
ϑsj = Wsjϑsjξ

2
j /
(
ϑsj +

∣∣ξ j
∣∣)2. (45)

Applying (45), (43) becomes

.
V2 ≤ −∑

j
Gjξ

2
j + ∑

j

[
Wsjϑsj/

(
ϑsj +

∣∣ξ j
∣∣)2
]
ξ2

j . (46)

If
∣∣ξ j
∣∣2 >

Wsjϑsj
Gj

, we have
.

V2 < 0. Hence, the synthetic tracking error ξ j is uniformly
and ultimately bounded by ∣∣ξ j

∣∣2 ≤ Wsjϑsj/Gj. (47)

The synthetic tracking error ξ j will be restricted into a small area around zero as

0 < (ϑ sj, Aj

)
≪ 1 and

(
Kj , Bj

)
≫ 1. This completes the proof. □

6. Numerical Simulation

In this section, the proposed method is verified by the trajectory tacking control of a
two-link flexible-joint manipulator. The simulations of the manipulator under step change,
different link lengths, and joint stiffness are performed to evaluate the robustness of the
proposed method. The simulations are conducted utilizing the fourth-order Runge–Kutta
method.

The finite-time sliding mode control (FT-SMC) in [46] and the RBFN-based control
in [51] are also simulated for comparison. These two controllers are selected as represen-
tatives of sliding mode control and RBFN-based control methods. They exhibit relatively
simple yet representative architectures and are also model-free methods, which makes
them suitable as benchmarks for comparison.

6.1. Simulation Setup

The configuration of the manipulator is depicted in Figure 3, and its parameters are
listed in Table 1. Referring to [52], the system dynamics can be modeled as[

m11(α1, α2) m12(α1, α2)
m21(α1, α2) m22(α1, α2)

][ ..
α1..
α2

]
+

[
h1
h2

]
+

[
G1
G2

]
=

[
u1
u2

]
(48)

[
J1(β1) 0

0 J2(β2)

][ ..
β1..
β2

]
+

[
fd1
fd2

]
−
[

u1
u2

]
=

[
τ3
τ4

]
(49)

with u1 = ks1(α1 − β1) + kd1

( .
α1 −

.
β1

)
u2 = ks2(α2 − β2) + kd2

( .
α2 −

.
β2

) (50)

where α = (α1, α2)
T and β = (β1, β2)

T are the position vectors of the load and motor
sides, respectively; m11, m12, m21, m22 are the elements of the load side inertial matrix, J1
and J2 are the elements of the motor side inertial matrix; h1 and h2 consist of Coriolis
and centrifugal terms; G1 and G2 contain gravitational terms; u1 and u2 are the elastic
torque terms; fd1 and fd2 are the damping terms of the motor side; and τ3 and τ4 are the
motor torques.
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Table 1. Parameters of the two-link robot manipulator system.

Parameters Value Parameters Value Unit Means

m1 6.0 m2 4.0 kg mass of the link
l1 0.6 l2 0.4 m length of the link
d1 0.3 d2 0.2 m length of the mass center
J1 2.2 × 10−3 J2 6.4 × 10−4 kg.m2 motor inertia
fd1 0.088 fd2 0.057 N.m/rad/s motor damping
ks1 120.0 ks2 100.0 N.m/rad joint stiffness
kd1 6.79 × 10−2 kd2 3.69 × 10−2 N.m/rad/s elasticity damping

The control law presented in Theorem 2 is applied. The reference trajectory of the
load-side is given by the user command. The reference trajectory of the motor side is
generated by solving the following differential equation:{ .

βr1 = −ks1βr1/kd1 +
[
(τα1 + ks1α1)/kd1 +

.
α1
]

.
βr2 = −ks2βr2/kd2 +

[
(τα2 + ks2α2)/kd2 +

.
α2
] , (51)

where
(

βr1, βr2,
.
βr1,

.
βr2

)
represent the command trajectory of the motor side, and τα1 and

τα2 are the desired values of u1 and u2, respectively. This formula is an inverse mapping of
u1

(
α1,

.
α1, β1r,

.
β1r

)
and u2

(
α2,

.
α2, β2r,

.
β2r

)
in (50). The parameters of the proposed adaptive

controller used in the simulation are listed in Table 2.

Table 2. Parameters of the proposed NINA-based adaptive control.

Parameters Value Parameters Value

ϑs1, ϑs2 0.3 ϑs3, ϑs4 6
K1 ∼ K2 10 K3 ∼ K4 5
A1 ∼ A2 0.3 A3 ∼ A4 1
B1 ∼ B2 1000 B3 ∼ B4 1000
Λ1 ∼ Λ2 5 Λ3 ∼ Λ4 5

Note that subscripts 1 and 2 represent the motor-side control parameters of joints 1 and 2, respectively. Subscripts
3 and 4 represent the load-side control parameters of joints 1 and 2, respectively.

Remark 4. For the flexible joint system mentioned above, the motor side is the actuated subsystem,
and the link side is the unactuated subsystem. The elastic torque (u1, u2) helps coordinate the
behavior of the motor and load sides. It can be verified that Assumptions 1 and 2 hold for (u1, u2)
by examining the expression in (50).
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6.2. Trajectory Tracking Performance Validation

We compared the trajectory tracking performance of the three control methods: the
proposed method, the RBFN-based method, and FT-SMC. The robot arm starts from the
horizontal position and tracks sinusoidal trajectories as shown below:{

αr =
π
6 (1 + sin(2t)), load side

βr =
π
6 (1 + cos(2t)), motor side

.

To evaluate the tracking performance of the controllers, we introduce the following
evaluation index, and the results are listed in Tables 3 and 4:

Table 3. Tracking performance of the three methods.

SSP CTP

Joint 1 Joint 2 Joint 1 Joint 2 Average

Link
Side

NINA −0.07◦~0.08◦ −0.03◦~0.03◦ 1.75 s 1.78 s 1.77 s
FT-SMC −0.05◦~0.09◦ −0.07◦~0.10◦ 1.88 s 1.24 s 1.56 s
RBFN −0.17◦~0.16◦ 0.20◦~0.20◦ 2.73 s 1.74 s 2.24 s

Motor
Side

NINA −0.11◦~0.12◦ −0.13◦~0.13◦ 0.50 s 0.20 s 0.35 s
FT-SMC −0.21◦~0.09◦ −0.07◦~0.10◦ 0.82 s 0.90 s 0.86 s
RBFN −0.29◦~0.17◦ −0.18◦~0.19◦ 1.24 s 1.09 s 1.17 s

Table 4. Nonlinearity estimation performance of the three methods.

SSE CTE

Joint 1 Joint 2 Joint 1 Joint 2 Average

Link
Side

NINA −0.078~0.16 Nm −0.12~0.11 Nm 0.7 s 0.4 s 0.55 s
FT-SMC −0.28~0.50 Nm −0.19~019 Nm 1.9 s 1.7 s 1.8 s
RBFN −1.60~1.60 Nm −0.8~0.8 Nm 2.76 s 1.9 s 2.33 s

Motor
Side

NINA −0.27~0.52 Nm −0.064~0.006 Nm 0.24 s 0.19 s 0.22 s
FT-SMC −1.05~0.75 Nm −0.14~0.14 Nm 0.9 s 1.3 s 1.10 s
RBFN −2.14~0.55 Nm −0.66~064 Nm 1.2 s 1.4 s 1.30 s

(a) SSP (steady-state tracking error in position):

SSP =
[
minej(t) maxej(t)

]
, f or t > tM1, j = α or β

where minej(t) and max ej(t) represent the lower and upper bounds of the position
tracking error, respectively. tM1 represents the time since the tracking error varied
periodically and steadily. In this simulation, it is set tM1 = 4 s.

(b) CTP (convergence time of trajectory tracking): It is defined as the time when the
tracking error is free from initial oscillation, shown in Figure 4c, and first comes into
the range of steady-state, i.e., SSP.

(c) SSE (steady-state estimation error in system nonlinearity):

SSE =

[
min

∼
F j(t) max

∼
F j(t)

]
, f or t > tM2, j = α or β

where min
∼
F j(t) and max

∼
F j(t) represent the low and up bounds of the nonlinearity

estimation error, respectively. tM2 is defined similarly to tM1 and is set as tM2 = 4 s.
(d) CTE (convergence time of nonlinearity estimation): It is similar to the definition

of CTP.
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Figure 4. Link-side tracking performance of (a) the proposed method, (b) FT-SMC, and (c) RBFN.

The tracking performance of the three controllers is illustrated in Figures 4 and 5.
The steady-state tracking accuracy and convergence time are listed in Table 3. All three
controllers can effectively track sinusoidal trajectories. Among them, the proposed algo-
rithm exhibits smooth and fast convergence during the transient phase, while the other
two methods show more pronounced oscillations. This is due to excessive control gain. As
shown in Table 3, the tracking errors of the proposed control algorithm on the load side
for joints 1 and 2 are, respectively −0.07◦~0.08◦ and −0.03◦~0.03◦; on the motor side, the
tracking errors are −0.11◦~0.12◦ and −0.13◦~0.13◦, respectively. The overall steady-state
tracking accuracy of the proposed algorithm is superior to the other two control algorithms.
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Figure 6. Approximation errors of the unknown system nonlinearity using (a) the proposed method, 
(b) the FT-SMC, and (c) the RBFN method. 
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Figure 5. Motor-side tracking performance of (a) the proposed method, (b) FT-SMC, and (c) RBFN.

It can be seen from Figure 6 and Table 4 that the proposed algorithm achieves faster
convergence of the nonlinear approximation error than the other two methods. This verifies
its ability to track unknown disturbances with high dynamics. In addition, the proposed
method also illustrates the high estimation accuracy of system nonlinearity.
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Figure 6. Approximation errors of the unknown system nonlinearity using (a) the proposed method,
(b) the FT-SMC, and (c) the RBFN method.
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Finally, the control signals of the three controllers are depicted in Figure 7. The control
inputs of the proposed method and the RBFN-based method are milder, while the one
of the FT-SMC shows significant chattering, especially on the motor side. It is a typical
problem for sliding mode control. Compared with the traditional SMC method, the FT-SMC
presented in [46] solved the peak phenomenon and suppressed the control chattering by
asymptotical convergence, which is a considerable contribution. However, for nonlinear
cascaded systems such as the flexible-joint manipulator, the control input of the outer loop
(the load side) is usually mapped as the command of the inner loop (the motor side). This
mapping process transmits the small chattering on the load side into the command layer
of the motor side. The suppressed chattering is then amplified again by the motor-side
control loop. As verified in Figure 7, the control input of the motor side contains obvious
chattering, while the control input of the load side is milder.
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Figure 7. Control efforts of the proposed method (top row), the FT-SMC (middle column), and the
RBFN method (bottom row).

In summary, the FT-SMC control shows good trajectory tracking accuracy and nonlin-
ear estimation accuracy, but significant chattering occurs, which can lead to the failure of
precision sensors and actuators in practical applications. Neural network-based control
such as the RBFN-based method shows relatively lower convergence speed for nonlinearity
approximation due to its comparably complex topology. In contrast, the proposed algo-
rithm adopts a simple and effective estimation structure, which not only shows the ability
for fast and accurate nonlinearity approximation but also maintains mild control input.
This is also the major motivation for our research on this algorithm.

6.3. Robustness Validation

As shown in Figure 8, to further verify the stability and robustness of the proposed
control, we examined the step response of the proposed method and its ability to recover
from sudden disturbances. It can be observed that when encountering step changes, each
joint can quickly track the new reference signal. The settling times for joints 1 and 2 are
0.618 s and 0.60 s, respectively. A 10 Nm impulse disturbance is introduced at 4 s and
revoked at 6 s. It can be seen that the system can recover tracking of the original position
within 2 s and has the ability to maintain a fixed point position with high precision (position
tracking error < 1 × 10−5 degree).

Figure 9 compares the tracking performance of the proposed control method under
different link lengths. Although the load environment has changed, the proposed adaptive
control maintains high tracking performance. Figure 10 illustrates the dynamic behavior
of the whole system under different joint stiffnesses. It is illustrated that all the synthetic
tracking errors and nonlinearity estimation errors uniformly and asymptotically converge
toward zero, regardless of the variation of the joint stiffness. These results verify the
effectiveness and robustness of the proposed method.
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Figure 8. Tracking performance of the proposed method under step change and impulse disturbance.
The first row shows the position of the load and motor sides, and the second row shows their tracking
errors.
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Figure 9. Results of tracking control under different link lengths using the proposed control method.
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Figure 10. Dynamic behavior of the manipulator under different joint stiffness using the proposed
control method.

7. Experiments

In this section, the proposed control method is further validated on a flexible-joint
platform. The RBFN-based adaptive control method in [51] is introduced for comparison.
Trajectory tracking experiments under different end loads are conducted.

7.1. Experiment Setup

Figure 11 shows a typical flexible-joint platform. From the left to right sides, there are
a servo motor, a harmonic drive (with a 50:1 gear ratio), a flexible body, a torque sensor,
and an output link with an end load. The flexible body here is a series of elastic actuators.
The angular positions of load side α and motor side β are measured by optical encoders.
The generated torque command τβ is implemented through a servo driver. The torque
sensor and signal detection-conversion card are employed to measure the output torque of
load side τl and motor side τm, respectively. The nominal parameters of the platform are
obtained via parameter identification and measurement, which are listed in Table 5.
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Table 5. Parameters of the flexible joint system.

Measured Values of Mechanical Parameters Control Parameters

Jα
1.090, under 2 kg end load kg.m2 ϑs1 1.125000 ϑs2 0.030000
1.840, under 4 kg end load kg.m2 K1 0.135000 K2 0.010000

gα
15.12, under 2 kg end load N.m Λ1 26.50000 Λ2 200.0000
24.08, under 4 kg end load N.m A1 0.000180 A2 0.000001

Jβ 4.65×10−4 kg.m2 λ1 125000.0 λ2 100000.0
ks 927.0 N.m/rad
kd 1.54 N.m/rad/sec
η 50.0 —

Note that subscripts α and β represent the load and motor sides of the flexible-joint platform, respectively.

7.2. Experimental Results

Figures 12 and 13 show the tracking performance, nonlinearity approximations, and
control inputs of the flexible joint using the proposed control method under 2 kg and 4 kg
load conditions, respectively. The link action is set as follows: The initial posture of the link
is vertically downward. It first rotates at a constant speed of 18◦/s toward the horizontal
level, then swings around the horizontal position. The swing amplitude and frequency
are 21.6◦ and 0.8 Hz, respectively. The black dotted lines in the left column of Figure 12
indicate the horizontal position. The experimental results verify the tracking performance
of the control system under both ramp and harmonic trajectories. The entire process is
divided into three phases, i.e., the ramping phase, the switching phase, and the waving
phase. The system exhibits transient responses in the switching phase (8 s to 10 s), due to
the discontinuity of the velocity command

.
αr.
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Figure 12. Performance of NINA-based adaptive control under a 2 kg end load.
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Figure 13. Performance of NINA-based adaptive control under a 4 kg end load.

As shown in the first rows of Figures 12 and 13, the control system stabilizes within 1 s
during the switching phase. Tracking errors are limited within 0.5◦ and 10◦ on the load and
motor sides (with a 50:1 gear ratio) during the ramping and waving phases, respectively.
Although the flexible joint waves vertically under an end load, the tracking errors do not
contain obvious biases.

The second rows of Figures 12 and 13 show accurate nonlinearity approximations,
which validate the effectiveness of the NINA technique. The third rows of Figures 12 and 13
indicate that the above control performances are achieved under relatively clean control
inputs. It is noteworthy that the tracking errors under different end loads are nearly
identical. This verifies the robustness of the proposed control method.

A classical RBFN-based adaptive control presented in [51] is compared with the
proposed control method. On the load side, Λ1eα +

.
αr, Λ1

.
eα +

..
αr, α, and

.
α are supplied to

the input layer of RBFN. On the motor side, Λ2eβ +
.
βr, Λ2

.
eβ +

..
βr, β, and

.
β are supplied

to the input layer of RBFN. Five neurons are set in hidden layers on the load side and the
motor side. The control torques are obtained from the output layer of the RBFN. For more
details, please refer to [51].

The performance of RBFN control is shown in Figure 14. In the switching phase, the
tracking error of the proposed method converges faster than the RBFN-based method. In
the swing phase, the load- and motor-side tracking errors of the RBFN control are bounded
by |eα| < 1.75◦ and

∣∣eβ

∣∣ < 3◦, respectively. The tracking errors of the proposed NINA-based
control method are bounded by |eα| < 0.25◦ and

∣∣eβ

∣∣ < 3◦. In addition, the nonlinearity
approximation of the RBFN control (F̂α, F̂β) shows obvious lags behind their nominal
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values (Fα, Fβ), thereby resulting in relatively large estimation errors (
∼
Fα,

∼
Fβ). The above

comparison indicates that the proposed NINA-based adaptive control can realize better
control performance than the RBFN-based adaptive control on the flexible joint system.
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Figure 14. Performance of the RBFN adaptive controller under a 2 kg end load.

8. Conclusions

This study proposed a simplified adaptive control based on NINA for a class of
nonlinear cascaded systems. The uniformity and ultimate stability of the proposed control
were proven. The nonlinearities of each subsystem were approximated using the synthetic
form of a steady component and an alternating component based only on local tracking
errors. The proposed control method was validated through applications on the flexible
joint system involving numerical simulations and experiments. The simulation results
illustrated that the proposed method can achieve similar control accuracy as FT-SMC but
uses milder control inputs. It was also indicated that the proposed method is insensitive to
external loads and parametric perturbations. The proposed method was compared with an
RBFN-based method. The experimental results demonstrated that the proposed method
could achieve better control performance than an RBFN-based method.

Future work could be extended to flexible manipulators with variable stiffness. Future
interests lie in two main areas: The first is optimizing the mapping process from the control
input of the unactuated subsystem to the command layer of the actuated subsystem, which
could improve the stability and noise level of the control system. The second is augmenting
the adaptive law with a priori information on the system, to accelerate the convergence of
the nonlinearity approximation.
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