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Abstract: Most multi-target movements are nonlinear in the process of movement. The common multi-
target tracking filtering methods directly act on the multi-target tracking system of nonlinear targets,
and the fusion effect is worse under the influence of different perspectives. Aiming to determine
the influence of different perspectives on the fusion accuracy of multi-sensor tracking in the process
of target tracking, this paper studies the multi-target tracking fusion strategy of a nonlinear system
with different perspectives. A GM-JMNS-CPHD fusion technique is introduced for random outlier
selection in multi-target tracking, leveraging sensors with limited views. By employing boundary
segmentation from distinct perspectives, the posterior intensity function undergoes decomposition
into multiple sub-intensities through SOS clustering. The distribution of target numbers within the
respective regions is then characterized by the multi-Bernoulli reconstruction cardinal distribution.
Simulation outcomes demonstrate the robustness and efficacy of this approach. In comparison
to other algorithms, this method exhibits enhanced robustness even amidst a decreased detection
probability and heightened clutter rates.

Keywords: different fields of view; GM-JMNS-CPHD; stochastic outlier selection; nonlinear
motion tracking

1. Introduction

Distributed fusion offers several advantages, including minimal bandwidth demands
for communication links, the ability of nodes to handle data from nearby nodes, decreased
system computing power requirements, and the flexibility to relocate or remove sensor
nodes for simplified management. Consequently, distributed sensor networks find exten-
sive applications across diverse research domains like military defense, smart industry, and
industrial automation. Engaging in relevant technological investigations holds significant
scientific importance. Multi-target tracking, employing random finite set (RFS) technology,
circumvents intricate data-association procedures and has emerged as a focal point in multi-
target tracking research [1–5]. The theory of RFS provides a unified and comprehensive
theoretical framework for multi-target tracking problems in complex and variable monitor-
ing environments and is widely applied in the distributed fusion of multiple sensors [6–15].
The Cardinalized Probability Hypothesis Density (CPHD) filter in random finite set theory
is widely used due to its low computational cost and ability to avoid inconsistent label
spaces [16–20].

In practical application scenarios, various sensor nodes in sensor networks have
inconsistent and limited fields of view due to their different positions and angles, and
different fields of view often correspond to different target state information. Directly
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using distributed fusion algorithms under different view conditions may not guarantee
the good tracking performance of sensor networks. In other words, throughout the multi-
sensor acquisition process, variations in perspectives among sensors may occur, including
legitimate viewpoints and overlapping perspectives. There may be common information
between these perspectives, which can lead to unknown correlations between multiple
sensors and can affect fusion accuracy. At present, most research on distributed fusion
algorithms assumes that the field of view between sensor nodes is consistent and can
cover the entire monitoring area. It can be seen that the main research direction of current
scholars is the impact of different perspectives on target tracking. Regarding the differences
in perspective in sensors, Shen, et al. [21] introduced an innovative consensus-based labeled
multi-Bernoulli (LMB) filter, which can effectively overcome the problem of label space
mismatch in different sensor perspectives. Li, et al. [22,23] proposed a distributed fusion
method for different sensor networks in different perspectives. The distributed fusion
method proposed by Li, et al. [24] in his research is called local diffusion, which performs
a neighbor communication iteration in either of two ways at each filtering step, realizing
target tracking with perspective differences. Li, et al. [25] used labeled multi-Bernoulli
(LMB) filters for multi-target tracking in different fields of view in his research. Yi, et al. [26]
employed a series of dynamically calculated fusion weights in their research to conduct
a weighted arithmetic average (WAA), enhancing robustness in the process, which is
suitable for PHD filter-distributed multi-sensor fusion in different sensor fields of view.
Da, et al. [27] proposed a novel GMP Jumping Markov CPHD (GMP-JMCPHD) filter
implementation in his research to handle highly nonlinear/non-Gaussian models and
target maneuvering. It is evident that the primary focus of current research is on optimizing
fusion algorithms to address the challenges of multi-sensor and multi-target tracking from
varying perspectives. However, the above methods are mainly applied to linear systems.
In reality, multi-targets move nonlinearly during the motion process, and most of them
move nonlinearly during the motion process, such as vehicle overspeed measurement and
ship navigation. Nonlinear systems can more accurately describe the system’s motion
state, while GM-PHD and GM-CPHD methods directly act on the multi-target tracking
system of nonlinear targets, and the fusion effect is even worse under the influence of
different perspectives.

Based on this, the focus of this study is to explore the multi-target tracking problem
of distributed sensors in sensor networks with different FoVs. From the two aspects of
moving-target state-space partitioning and fusion algorithms, the impact of different fields
of view on nonlinear systems is verified. Suggesting a novel fusion strategy, the initial step
involves decomposing the state space of fields of view (FoVs), followed by the utilization
of the SOS clustering algorithm. This approach aims to enhance the performance of fusion
criteria for tracking nonlinear motion targets observed from different perspectives.

The section arrangement of this article is as follows: Section 1, Introduction, intro-
duces the research background of the article; Section 2, Research Background, introduces
the impact of different fields of view on nonlinear systems and the GM-JMNS-CPHD
filter and introduces the stochastic outlier selection algorithm; Section 3, Application of
SOS-GM-JMNS-CPHD Algorithm to Nonlinear Systems, introduces the steps and pro-
cesses of splitting, fusion, and merging; Section 4, Simulation Results, presents the appli-
cation and analysis of SOS-GM-CPHD in nonlinear systems, a comparative analysis of
SOS-GM-JMNS-CPHD and other algorithms, and algorithm complexity validation.

2. Research Background
2.1. Analysis of the Influence of Different Fields of View on Nonlinear Systems

Most multi-target movements are nonlinear in the process of movement. There is
little existing research on non-uniform-field-of-view sensors, and there is even less research
on multi-sensor tracking for non-uniform-field-of-view, nonlinear systems. In order to
analyze the influence of non-uniform-field-of-view multi-sensors on nonlinear systems, the
influence of different-diameter sensors in a nonlinear motion model on the multi-target
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tracking of nonlinear systems and the influence of different-angle sensors on the multi-
target tracking of nonlinear systems is analyzed; as shown in Figure 1, the trajectory of
a moving target in a nonlinear motion model and the birth time and death time of each
trajectory are different.
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Figure 1. Generation time of moving object in nonlinear motion model.

Based on the motion trajectory of the above nonlinear motion model, sensors with
different detection diameters and different detection angles are placed. Figures 2 and 3
illustrate the influence of sensors with varying detection diameters and different detection
perspectives on multi-target tracking in nonlinear systems. The effect of non-uniform
fields of view on linear systems is comparable, as depicted in the figure. The trajectories
of moving targets captured by sensors with different diameters and perspectives exhibit
significant variations, thereby directly influencing the efficacy of moving-target acquisition.
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Figure 2. Influence of sensors with different detection diameters on multi-target tracking in nonlinear systems.

As shown in Figure 4a, the FoV center angles are all 90◦, and the sensor FoV is 60◦. At
this point, the sensors used to collect moving targets will be affected by their position and
direction, resulting in differences in the acquisition perspective. Therefore, it is necessary
to partition the state of nonlinear moving targets.
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Figure 3. Influence of sensors with different detection angles on multi-target tracking in nonlinear systems.
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Figure 4. Results of partitioning the state space for multi-view multi-sensor detection of nonlinear
moving targets.

As shown in Figure 4b, the state-space division for nonlinear moving targets detected
by multi-sensors also encounters challenges such as underestimating and overestimating
the number of targets.

2.2. GM-JMNS-CPHD Filter

Regarding the CPHD (Cardinalized Probability Hypothesis Density) filter [28,29],
the fusion method integrates the propagation intensity function and cardinality distribu-
tion, considering the clutter RFS (random finite set) as an Independent and Identically
Distributed (IID) process. B.N. Vo, et al. [30] and R. Mahler, et al. [31,32] proposed the
JM-CPHD filter in their study, which can be viewed as an extension of the state x integral
in traditional CPHD filters to a double integral

..
x = (x, o) of mode and state.

When a JMNS (Jumping Markov Nonlinear System) is applied to CPHD filters, the
model lacks a target-generation model, and both the target-generation and clutter models
must incorporate the probability distributions pB

(k+1|k)(n) and pκ
(k+1)(m) for the number of
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new targets and clutter measurements, respectively. These distributions must adhere to the
following requirements [33–37]:

∑
m≥0

n · pB
(k+1)(n) = ∑

o

∫
b(k+1|k(x,o))dx (1)

∑
m≥0

m · pκ
(k+1)(n) = λ(k+1) (2)

For the probability distribution p(n) on a positive integer n, if n is negative, then
p(n) = 0. For the combination coefficient Cn,i, if i > n, then Cn,i = 0. At this point,

..
x can be

used instead of x.

(1) Prediction of JMNS-CPHD Filter

The prediction of the JMNS-CPHD filter can be expressed as follows:

D(k+1|k)(
..
x) = b(k+1|k)(

..
x) +

∫
ps(

..
x’
) · f(k+1|k)(

..
x
∣∣∣ ..x’

) · D(k+1|k)(
..
x)d

..
x (3)

Among them, b(k+1|k)(
..
x) is the intensity function during the appearance of the tar-

get, ps(
..
x’
) is the probability of target survival, and f(k+1|k)(

..
x
∣∣∣ ..x’

) is the Jumping Markov
transition density.

p(k+1|k)(n) = ∑
n′≥0

p(k+1|k)(n
∣∣n′ ) · p(k|k)(n′) (4)

The Markov transition probability p(k+1|k)(n|n′ ) is as follows:

p(k+1|k)(n
∣∣n′ ) = ∞

∑
l=j

Cl
j p(l)

〈
p(s,k), D

〉j〈
1− p(s,k), D

〉j

〈1, D〉l
(5)

This can be rewritten using Jumping Markov notation as follows:

D(k+1|k)(x, o) = b(k+1|k)(x, o) + ∑
o′
X(o,o′)

∫
ps(x’, o′) · f(k+1|k)(x

’
∣∣∣x’, o′ ) · D(k+1|k)(x

’, o′)dx’ (6)

(2) Update of JMNS-CPHD filter

The update function of the PHD at time k, given the distribution of prediction cardi-
nality p(k+1|k)(n) and D(k+1|k)(x, o), can be expressed as follows:

p(k|k)(n) =
b0

k

[
D(k+1|k), Zk

]
(n)p(k+1|k)(n)〈

b0
k

[
D(k+1|k), Zk

]
, p(k+1|k)

〉 (7)

D(k|k)(x, o) = (1− p(k|k)(x, o)) 〈b
1
k [D(k+1|k),Zk],p(k+1|k)〉
〈b0

k [D(k+1|k),Zk],p(k+1|k)〉
D(k+1|k)(x, o)

+ ∑
z∈Zk

〈
b1

k

[
D(k+1|k),

Zk
{z}

]
,p(k+1|k)

〉
〈b0

k [D(k+1|k),Zk],p(k+1|k)〉
〈1,κk〉gk(z|x,o )p(D,k)(x,o)

κk(z)
D(k+1|k)(x, o)

(8)

Among them,

bu
k [D, Z](n) =

min(|Z|,n)
∑

j=0
(|Z| − j)!pκ

k(|Z| − j)Pn
j+u

×〈1−pD,k ,D〉n−(j+u)

〈1,D〉n ej
{〈

D, ϕk,z
〉

: z ∈ Z
} (9)
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ej(Z) represents an elementary symmetric function as follows:

ej(Z) = ∑
S⊆Z,|S|=j

∏
i=Si

i, e0(Z) = 1 (10)

(3) Prediction of GM-JMNS-CPHD Filter

Da in reference [27] proposed a new Gaussian Mixture Particle (GMP) and imple-
mented Jumping Markov CPHD filter in his research to handle highly
nonlinear/non-Gaussian models and target maneuvering. The principle is that parti-
cles achieve local filtering propagation and updates, while Gaussian distribution achieves
communication and fusion. Assuming independence between target-survival probability
and sensor-detection probability with respect to the state, they can be segregated into two
distinct phases: prediction and update. The Gaussian distribution form of b(k+1|k)(x, o) and
D(k−1|k)(x, o) for newly born goals is as follows:

b(k+1|k)(x, o) =
JB,o

∑
j=1

bj
k(o)N (x; mj

(B,k)(o), Pj
(B,k)(o)) (11)

D(k−1|k)(x, o) =
J(o,k−1)

∑
i=1

D′(k−1|k)(o)N (x; mi
(k−1)(o), Pi

(k−1)(o)) (12)

At this point, according to Formulas (31) and (32), it can be expressed as follows:

p(k+1|k)(n) = ∑
n′≥0

p(k+1|k)(n
∣∣n′ ) · p(k|k)(n′) (13)

The Markov transition probability p(k+1|k)(n|n′ ) is

p(k+1|k)(n
∣∣n′ ) = ∞

∑
l=j

Cl
j p(l)

Γj
〈

p(s,k), D
〉

Γj
〈

1− p(s,k), D
〉

Γl〈1, D〉
(14)

Among them,

Γ
〈

p(s,k), D
〉
= ∑

o
ps(o)

Jo,k−1

∑
i=1

D′ i(k−1|k)(o) (15)

This can be rewritten using Jumping Markov notation as follows:

D(k+1|k)(x, o) = b(k+1|k)(x, o) + ∑
o′

J(o,k−1)

∑
i=1
Xo,o′ ps(x’, o′)Di′

(k−1)(x
’, o′)

N (x;

M
∑

j=1
xi,j
+

M ,

M
∑

j=1

[
mi
(S,+)

(o′)−xi,j
+

][
mi
(S,+)

(o′)−xi,j
+

]T

M )

(16)

At this time,
xi,j
+ ∼ f+(x

∣∣∣xi,j
(k−1), o′ ) (17)

xi,j
(k−1) ∼ N (x; mi

(k−1)(o
′), pi

(k−1)(o
′)) (18)

(4) Update of GM-JMNS-CPHD filter

The update of the GM-JMNS-CPHD filter can be expressed as follows:
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Given the distribution of prediction cardinality p(k+1|k)(n) and D(k+1|k)(x, o), the
update function of PHD at time k can be expressed as follows:

p(k|k)(n) =
b0

k

[
D(k+1|k), Zk

]
(n)p(k+1|k)(n)〈

b0
k

[
D(k+1|k), Zk

]
, p(k+1|k)

〉 (19)

D(k|k)(x, o) = (1− p(k|k)(x, o))

〈
b1

k

[
D(k+1|k), Zk

]
, p(k+1|k)

〉
〈

b0
k

[
D(k+1|k), Zk

]
, p(k+1|k)

〉D(k+1|k)(x, o) + ∑
z∈Zk

J0,+

∑
i=1

Ai
k(z, o)Bz(o)Ci

z(x, o) (20)

Ai
k(z, o) =

1
M′

M′

∑
j=1

gk(z
∣∣∣x(i,j)k , o )N(x(i,j)k ; mi

+(o), Pi
+(o))

πi
k(x(i,j)k |Z1:k−1, z, o )

(21)

Bz(o) = p(k|k)(x, o)
〈1, κk〉

〈
b1

k

[
D(k+1|k), Zk

]
, p(k+1|k)

〉
κk(z)

〈
b0

k

[
D(k+1|k), Zk

]
, p(k+1|k)

〉 (22)

Ci
z(x, o) = Di

(k+1|k)(o)N(x; mi
k(z, o), Pi

k(z, o) (23)

Pi
K(z, o) =

M′

∑
j=1

gk(z
∣∣∣x(i,j)k ,o )N(x(i,j)k ;mi

+(o),P
i
+(o))

πi
k(xi,j

k |Z1:k−1 ,z,o)
[mi

k(z, o)− x(i,j)k ][mi
k(z, o)− x(i,j)k ]

T

M′

∑
j=1

gk(z
∣∣∣x(i,j)k ,o )N(x(i,j)k ;mi

+(o),P
i
+(o))

πi
k(x(i,j)k |Z1:k−1 ,z,o)

(24)

At this time, xi,j
k ∼ πi

k(·||Z1:k−1 , z, o ).

2.3. Stochastic Outlier Selection

In the application field of data clustering and dimensionality reduction, data affinity
is often used as a research tool. The essence of the SOS algorithm is to apply the concept of
affinity to outlier selection to realize clustering [38–40].

The difference between the SOS algorithm and other methods is that this method is
an unsupervised and unbounded outlier selection problem, which directly divides the
data into “outlier” or “internal” values to realize the selection of outlier data [41–43]. The
schematic diagram of the SOS algorithm is shown in Figure 5.

Illustrated in Figure 4, the process begins with inputting the matrix X containing the
eigenvalues of data points. Initially, the dissimilarity matrix A is computed, representing the
Euclidean distance between each feature point. Then, the affinity matrix B is independently
calculated and combined with the probability matrix C to establish the joint distribution
of various sequence row numbers. This amalgamation enables the estimation of the
probability that a data point belongs to the outlier category. Subsequently, this probability
serves as the outlier score within the SOS algorithm.
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3. Application of SOS-GM-JMNS-CPHD Algorithm to Nonlinear Systems

Suppose the local strength of the sensor section is expressed as follows:

D̂i
(x) =

Ji

∑
i=1

αi
pN (x; mi

p, Pi
p) (25)

Among them, i represents the number of sensors, and αi
p ∈ (0, 1) and N (x; m, P)

represent Gaussian probability density functions (PDFs) with mean m and covariance p.
From the perspective of difference, different GCs may belong to different clusters

Cg, g ∈ {1, 2, · · · , G}, which can be divided into two clusters, i and j. When in a cluster,

Di,j
g (x, o) = D̂i,j

g (x, o) (26)

The target number can be estimated according to the map standard. At this time, the
cardinality distribution represented by g clusters is as follows:

pi,j
g (n) = p̂i,j

g (n) =
Mi,j

∏
p=1

(1− α
i,j
(g,p))σMi,j ,n(

α
i,j
(g,1)

1− α
i,j
(g,1)

, · · · ,
α

i,j
(g,Mi,j)

1− α
i,j
(g,Mi,j)

) (27)

The three steps of splitting, fusion, and merging are discussed below.

3.1. Splitting
3.1.1. Boundary Segmentation from Different Perspectives

Figure 6 shows the view scene division in two cases of sensor difference views and
three cases of sensor difference views.



Sensors 2024, 24, 3176 9 of 17

Sensors 2024, 24, x FOR PEER REVIEW 8 of 16 
 

 

Illustrated in Figure 4, the process begins with inputting the matrix X containing the 
eigenvalues of data points. Initially, the dissimilarity matrix A is computed, representing 
the Euclidean distance between each feature point. Then, the affinity matrix B is inde-
pendently calculated and combined with the probability matrix C to establish the joint 
distribution of various sequence row numbers. This amalgamation enables the estimation 
of the probability that a data point belongs to the outlier category. Subsequently, this prob-
ability serves as the outlier score within the SOS algorithm. 

3. Application of SOS-GM-JMNS-CPHD Algorithm to Nonlinear Systems 
Suppose the local strength of the sensor section is expressed as follows: 

( )
1

ˆ ( ; , )
iJ

i i i i
p p p

i
D m Pα

=

= ∑x x  (25) 

Among them, i represents the number of sensors, and (0,1)i
pα ∈   and ( ; , )m Px  

represent Gaussian probability density functions (PDFs) with mean m and covariance p. 
From the perspective of difference, different GCs may belong to different clusters 
{ }, 1, 2, ,g g G∈  , which can be divided into two clusters, i and j. When in a cluster, 

, ,ˆ( , ) ( , )i j i j
g gD o D o=x x  (26) 

The target number can be estimated according to the map standard. At this time, the 
cardinality distribution represented by g clusters is as follows: 

,
,

,

,

,,
( ,1) ( , ), , ,

( , ) , ,,
1 ( ,1) ( , )

ˆ( ) ( ) (1 ) ( , , )
1 1

i j
i j

i j

i j

i ji jM
g g Mi j i j i j

g g g p i j i jM n
p g g M

p n p n 

αα
α σ

α α=

= = −
− −∏  (27) 

The three steps of splitting, fusion, and merging are discussed below. 

3.1. Splitting 
3.1.1. Boundary Segmentation from Different Perspectives 

Figure 6 shows the view scene division in two cases of sensor difference views and 
three cases of sensor difference views. 

  
(a) (b) 

Figure 6. Different perspective scene division with different numbers of sensors. (a) Two sensor 
differential perspectives; (b) three sensor differential perspectives. 

As shown in Figure 5, the SOS-GM-JMNS-CPHD algorithm can divide the GCS near 
the boundary in the difference perspective, avoiding the problems of missing detection 
and the repeated calculation of GCs. 

Among them, 

1: 1:
( , ) 1 ( ) (, ) ( , ) 1 ( ) ( , )LJ LJ

i i j i
g g g gF X

j N j N
D o D o D o D o

= =

= = =∑ ∑x x x x x  (28) 

At this time, the number of targets and the density of spatial targets segmented ac-
cording to the perspective are as follows: 

Figure 6. Different perspective scene division with different numbers of sensors. (a) Two sensor
differential perspectives; (b) three sensor differential perspectives.

As shown in Figure 5, the SOS-GM-JMNS-CPHD algorithm can divide the GCS near
the boundary in the difference perspective, avoiding the problems of missing detection and
the repeated calculation of GCs.

Among them,

Di
g(x, o) = 1FLJ (x)Di

g(, o) = ∑
j=1:N

Dj
g(x, o) = ∑

j=1:N
1XLJ (x)Di

g(x, o) (28)

At this time, the number of targets and the density of spatial targets segmented
according to the perspective are as follows:

M(i,j)
g (x) = ∑

o

∫
xj

Di
g(x)dx (29)

s(i,j)g (x) =
Di

g(x)

M(i,j)
g (x)

(30)

3.1.2. SOS Clustering of GCs

G i
p,G j

q are GCs with different motion trajectories. According to the above SOS calcula-

tion process, it is determined that ϕSOS(G(i,j)
(p,q)) < β is divided into the same category. At

this time, GCs are in the same cluster, and the node strength is as follows:

D̂(i,j)
g (x) =

G

∑
g=1

D̂(i,j)
g (x) (31)

M(i,j)
g indicates the number of GCs. Once M(i,j)

g > 0, it needs to be classified. The
corresponding sub strengths are as follows:

D̂(i,j)
g (x) =

M(i,j)
g

∑
p=1

αi
(g,p)N (x; mi

(g,p), Pi
(g,p)) (32)

Under the joint action of the classification method and the SOS clustering algorithm,
boundary segmentation is performed to generate the number of targets M′(i,j)g (x) as follows:

M′(i,j)g (x) = ∑
o

∫
xj

D̂i
g(x)dx (33)
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The corresponding spatial target density and sub intensity can be expressed as follows:

s(i,j)g (x) =
D̂i

g(x)

M′(i,j)g (x)
(34)

D̂′
(i,j)
g (x, o) = ∑

p:(i,p)∈cg

D̂(i,j)
g (x, o) = ∑

p:(i,p)∈cg

αi
g,pG(x, mi

(g,p), Pi
(g,p)) (35)

Under the joint action of Fj and C,C ′, the following is generated:({
Cg
}G

g=1

)′
/∈ FT

s (F
T
s = ∪

M=1:N
FLM) (36)

C ′= (
{
Cg
}G

g=1)
′ (37)

The above target RFS corresponding to C ′ is approximately Bernoulli, with a prob-
ability distribution of G i

p(x) and a probability of existence of αi
p ∈ [0, 1]. The cardinality

distribution formula for sensor i in Fj is as follows:

p′(i,j)g (n) = p̂(i,j)g (n) =
Mi,j

∏
p=1

(1− α
(i,j)
(g,p))σM(i,j),n(

α
(i,j)
(g,1)

1− α
(i,j)
(g,1)

, · · · ,
α
(i,j)
(g,Mi,j)

1− α
(i,j)
(g,Mi,j)

) (38)

At this point, σ(M(i,j),n)(·) is an N-th-order elementary symmetric function of M(i,j), n.
According to the multi-Bernoulli MPD property, the cardinal number distribution of

different regions is calculated as follows [44,45]:

∞

∑
n=0

npj
i(n) =

M(i,j)

∑
m=1

αi
p = M′(i,j)g (39)

∑
n1+n2+···nN=n

[p1
i (n1) · · · pN

i (nN)] = pi(n) (40)

3.2. Fusion

The GA fusion strategy is used to fuse N sensor networks.

s(i.l+1)
g (X) =

∏
j∈N i

[s(i.l+1)
g (X)]

ω(i,j)

∫
∏

j∈N i
[s(i.l+1)

g (X)]
ω(i,j)

dX
(41)

p(i,l+1)
g (n) =

∏j∈N i [p
(i,l)
g (n)]

ω(i,j)

(
∫

∏j∈N i [s
(j,l)
g (X)]

ω(i,j)

dX)
n

∞
∑

m=0
∏j∈N i [p

(j,l)
g (m)]

ω(i,j)

(
∫

∏j∈N i [s
(j,l)
g (X)]

ω(i,j)

dX)
m (42)

For each area, the cardinal distribution given by different sensors pj
i(n)Dj

i (x, o) is
calculated, and the application of GA fusion strategy in CPHD is as follows:

DGA(x, o) = sGA(x, o)
∞

∑
n=0

npGA(n) (43)
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Among them,

sGA(x, o) =

∞
∑

m=0
∏i∈N j [si(x, o)]ωi

∑
o

∫
X

∏i∈N j [si(x, o)]ωi dx
(44)

pGA(n) =
∏i∈N j [pi(n)]

ωi [∑
o

∫
X

∏i∈N j [si(x, o)]ωi dx]n

∞
∑

m=0
∏i∈N j [pi(m)]ωi [∑

o

∫
X

∏i∈N j [si(x, o)]ωi dx]m
(45)

3.3. Merging

The fusion algorithm process of SOS-GM-JMNS-CPHD in multi-sensor and multi-
perspective situations is shown in Algorithm 1.

Algorithm 1: SOS-GM-JMNS-CPHD fusion algorithm for multi-sensor and multi-perspective situations.

Input:
{
G p

1,k

}Mi
g

p=1
,
{
G p

2,k

}Mj
g

p=1
, β, C1 = {(1, p)}Mi

g
p=1, C2 = {(1, p)}Mi

g
p=1, pj

i(n), Fi

Implementing filtering using GM-JMNS-CPHD
for i ∈ N do

for j = 1 : N do
for Mi,j,k

g = 1 :g do
Locate the particles situated within the region of Fj.
for (i′, p′) ∈ C and (i′, p′) 6= (i, p) do

Calculate C =
{
Cg
}G

g=1 by Algorithm 1

Calculate,
({
Cg
}G

g=1)
′ /∈ FT

s (FT
s = ∪

M=1:N
FLM)Nk,g =

{
i : Mi,j

g > 0
}
→Nk,g C′= (

{
Cg
}G

g=1)
′

end for
end for
Calculate D̂′

i,j
g (x) by (35), Calculate p′ i,jg (n) by (38)

end for
end for

Calculate GA fusion strategy by 43–45

Calculate cardinality distribution pj
i(n) and fusion target state density Di,j

g (x)
after merging by 46–47

Output: pj
i(n), Di,j

g (x)

To obtain the multi-target probability density distribution of GCs across various
sensors and diverse perspectives, it is crucial to integrate the multi-target probability
density distributions from the segmented regions discussed earlier. This involves con-
solidating all combined sub-IID cluster processes into a unified IID cluster process. This
consolidation is accomplished by aggregating all sub-strength functions and convolving
the corresponding cardinality distributions; the merged cardinality distributions pj

i(n) and

GM-JMNS-CPHD Di,j
g (x) are as follows:

Di,j
g (x) =

G

∑
g=1

D′
i,j
g (x) (46)

pj
i(n) = (p1 ∗ p2 · · ·pG)(n) = ∑

n1+n2+···+nG=n
p1(n1)p2(n2) · · ·pG(nG) (47)
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4. Simulation Results

Using the CV model for simulation verification, the following is obtained:

Fk =

[
I2 ∆I2

O2 I2

]
(48)

QK = σ2
v

[
∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2 I2

]
(49)

Hk = [I2 O2], Rk = σ2
ε I2 (50)

This section will employ a GM-JMNS-CPHD filter to evaluate the tracking perfor-
mance of the SOS-GM-JMNS-CPHD algorithm proposed in the study and to validate its
effectiveness. A nonlinear CT model will be used. The CT model assumes that the target un-
dergoes a uniform turning motion in a two-dimensional plane, CT(x) = (xk yk vx,k vy,k)

>

It can be described as the following matrix form:
The target status is as follows:

X(k + 1) = F(k)X(k) + Γ(k)w(k) (51)

Among them,

F =


1 0 sin ωT

ω −( 1−cos ωT
ω )

0 1 1−cos ωT
ω

sin ωT
ω

0 0 cos ωT − sin ωT
0 0 sin ωT cos ωT

, Γ(k) =


0.5T2

0
T
0

0
0.5T2

0
T

, w(k) =
[

wx
wy

]
(52)

4.1. Application of SOS-GM-CPHD in Nonlinear System Result Analysis

To assess the algorithm’s performance, it was evaluated across various scenarios
through simulation and comparative analysis. This study employed a GA fusion strategy to
evaluate the tracking performance of the SOS-GM-JMNS-CPHD algorithm.
Specifically, the algorithm was tested using 15 motion trajectories across two sensors
to analyze the detection probabilities of different objects pD, along with the Poisson av-
erage velocity value λc of uniform clutter, across different scenarios. The goal was to
evaluate their respective impacts on the algorithm’s performance. λc= 5, 10, 20, 30 and
pD= 0.50, 0.65, 0.85, 0.95 were set, and 120 Monte Carlo runs were performed. The ap-
plication of SOS-GM-JMNS-CPHD in the multi-target tracking of linear systems is shown
in Figure 7.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 16 
 

 

4.1. Application of SOS-GM-CPHD in Nonlinear System Result Analysis 
To assess the algorithm’s performance, it was evaluated across various scenarios 

through simulation and comparative analysis. This study employed a GA fusion strat-
egy to evaluate the tracking performance of the SOS-GM-JMNS-CPHD algorithm. Spe-
cifically, the algorithm was tested using 15 motion trajectories across two sensors to ana-
lyze the detection probabilities of different objects Dp , along with the Poisson average 
velocity value cλ  of uniform clutter, across different scenarios. The goal was to evaluate 
their respective impacts on the algorithm’s performance. =5, 10, 20, 30cλ  and 

=0.50, 0.65, 0.85, 0.95Dp  were set, and 120 Monte Carlo runs were performed. The appli-
cation of SOS-GM-JMNS-CPHD in the multi-target tracking of linear systems is shown 
in Figure 7. 

 
Figure 7. Application of SOS−GM−JMNS−CPHD in multi−target tracking of nonlinear systems. 

Similarly, in order to test the application of the algorithm to tracking moving targets 
in nonlinear systems, we assess the impact of the SOS-GM-JMNS-CPHD algorithm’s per-
formance across 20 motion tracks involving 16 sensors at  = 10cλ   and 

= 0.50, 0.65, 0.85, 0.95Dp . The results are shown in Figures 8 and 9. It can be seen from the 
figures that the algorithm has a certain degree of robustness. 

  
(a) (b) 

Figure 8. Comparison results of different SOS-GM-JMNS-CPHD cλ . 

10 20 30 40 50 60 70 80 90 100 110 120

Time[s]

0

10

20

30

40

50

60

70

80

90

100

O
SP

A
 D

ist

c
=5

c
=8

c
=10

c
=20

10 20 30 40 50 60 70 80 90 100 110 120

Time[s]

0

5

10

15

Ca
rd

in
al

ity

True

c
=5

c
=8

c
=10

c
=20

Figure 7. Application of SOS−GM−JMNS−CPHD in multi−target tracking of nonlinear systems.

Similarly, in order to test the application of the algorithm to tracking moving targets in
nonlinear systems, we assess the impact of the SOS-GM-JMNS-CPHD algorithm’s perfor-
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mance across 20 motion tracks involving 16 sensors at λc= 10 and pD= 0.50, 0.65, 0.85, 0.95.
The results are shown in Figures 8 and 9. It can be seen from the figures that the algorithm
has a certain degree of robustness.
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Figure 8. Comparison results of different SOS-GM-JMNS-CPHD λc.
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Figure 9. Comparison results of different SOS-GM-JMNS-CPHD pD.

4.2. Comparative Analysis of SOS-GM-JMNS-CPHD and Other Algorithms

To evaluate the performance of this algorithm against others, this study implements
and compares the filtering performance across several scenarios. The effectiveness of
SOS-GM-JMNS-CPHD and GM-JMNS-CPHD and EKF-GM-CPHD and UKF-GM-CPHD
is compared in references. We set up 15 motion trajectories for pD= 0.95, λc= 10, and
two sensors for research and analysis. Different algorithms’ OSPA (Optimal Sub-Pattern
Assignment) metrics over time and different algorithms’ cardinality estimates over time
are shown in Figure 10. The comparison results between SOS-GM-JMNS-CPHD and
different algorithms show that the SOS-GM-JMNS-CPHD algorithm proposed in this study
is significantly better than other algorithms due to its effectiveness. The research results are
similar to GMP-JMCPHD and are more effective compared to other methods.
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4.3. Algorithm Complexity

In general, the computation of the cardinal distribution is model-independent [46,47],
as the calculation demand remains unaffected by the increase in the number of targets in the
scenario. However, the computational complexity of the CPHD and SOS-GM-JMNS-CPHD
algorithms is a factor to consider. The CPHD algorithm can be seen as evaluating an ele-
mentary pair production function m + 1 times, with a complexity of O(m3) ∼ O|Z|3nmax),
where m is the number of evaluations and nmax is the maximum number of targets. When
nmax > m, CPHD can be considered as (m3 + nmaxm2 − m2

2 ) ∼ O(nmaxm2). As mentioned
earlier, the computational complexity of JMNS-CPHD increases linearly with the num-
ber of patterns, from O(|Z|3nmax) to O(|Z|3nmaxO), where nmax is the maximum number
of targets.

SOS-GM-JMNS-CPHD does not have any impact on the cardinality distribution of
CPHD during use, but rather changes the maximum number of targets.

nmax → nmax through clustering algorithms. Although clustering algorithms may
increase algorithm difficulty, they also have an impact on the maximum number of
targets. The complexity of the SOS-GM-JMNS-CPHD algorithm can be considered as
O(|Z|3nmaxO+O) ∼ O(|Z|3nmaxO), and the complexity of the algorithm will not occur lin-
early with the increase in the number of targets. Compared with CPHD,
GM-JMNS-CPHD, and SOS-GM-JMNS-CPHD, the complexity of the three algorithms
is OCPHD < OGM−JMNS−CPHD = OSOS−GM−JMNS−CPHD.

5. Conclusions

This paper presents a novel approach for random anomaly selection in distributed
multi-sensor fusion, tailored for nonlinear systems with varying view angles. The method
combines the SOS clustering algorithm with the GM-JMNS-CPHD filtering technique. By
delineating boundaries based on different perspectives, the approach divides them into dis-
joint segmentation regions. SOS is then employed to identify outliers, ensuring that the split
cardinal distribution accurately reflects the target distribution in each corresponding region,
while preserving the original cardinal distribution. The implementation of a distributed
multi-sensor fusion method for nonlinear systems with diverse perspectives is realized.
This method addresses issues such as repeated detection and local density loss due to
fields of view (FOVs) in distributed fusion setups, which often lead to the overestimation
or underestimation of target numbers. Consequently, it enhances the accuracy of local
density acquisition within FOVs. The robustness and effectiveness of this approach are
confirmed through simulation results, showcasing its superiority over alternative methods.
Additionally, an analysis of algorithm complexity reveals that it does not increase linearly
with the number of targets.
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This paper proposes a distributed fusion random outlier selection method for sensor
networks with different fields of view. The research and practice in this field is only
a guide. There are many directions worthy of in-depth research in the future, such as
technological breakthroughs in complex scenes; in the actual distributed fusion technology
of sensor networks, there are many complex scenes, such as the sensor node acquisition
clock not being synchronized, the sensor position being unknown, or the angle of view
being unknown, and there are time and angle differences, as well as heterogeneous sensor
configuration, and the sensor network itself is subject to strong interference and instability,
and so on. In the follow-up study, we can break through the above practical and challenging
technical problems one by one.
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