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Abstract: Background: Driving fatigue is a significant concern in contemporary society, contributing
to a considerable number of traffic accidents annually. This study explores novel methods for fatigue
detection, aiming to enhance driving safety. Methods: This study utilizes electroencephalography
(EEG) and functional near-infrared spectroscopy (fNIRS) to monitor driver fatigue during simulated
driving experiments lasting up to 7 h. Results: Analysis reveals a significant correlation between
behavioral data and hemodynamic changes in the prefrontal lobe, particularly around the 4 h mark,
indicating a critical period for driver performance decline. Despite a small participant cohort, the
study’s outcomes align closely with established fatigue standards for drivers. Conclusions: By inte-
grating fNIRS into non-voluntary attention brain function experiments, this research demonstrates
promising efficacy in accurately detecting driving fatigue. These findings offer insights into fa-
tigue dynamics and have implications for shaping effective safety measures and policies in various
industrial settings.
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1. Introduction

In contemporary times, the proliferation of motor vehicles has escalated concerns,
elevating driving safety to a societal problem. The World Health Organization (WHO)
somberly reports an annual toll of 1.3 million lives succumbing to traffic accidents, with
driving fatigue emerging as a prominent contributory factor [1]. As the number of motor
vehicles surges, the imperative to ensure driving safety intensifies [2]. The rise in traffic
accidents, as highlighted by the WHO, underscores the urgency of addressing driving-
related challenges, with driving fatigue at the forefront. The surge in property losses due
to driver fatigue was exemplified by Zhang et al.’s findings in China, where 9.26% of
traffic accidents in China alone were caused by driver fatigue, resulting in property losses
exceeding USD 5.28 million [2].

Driving fatigue refers to the impact of physiological or psychological fatigue during
the driving process, leading to a decline in driving skills [3]. Detecting fatigue during
driving presents a complex challenge, distinct from established methods for testing intoxi-
cated driving through blood alcohol concentration [4,5]. In the initial stages of detecting
driver fatigue, researchers commonly rely on the dynamic interaction between drivers
and vehicles [6,7], encompassing factors like steering wheel grasp intensity, steering fre-
quency, and steering wheel angle [8]. However, these behavioral indicators exhibit limited
correlation with physiological conditions and can be notably influenced by the specific
vehicle model. With the swift evolution of computer vision technologies, the current trend
in fatigue monitoring revolves around assessing head movements, pupil diameter, blink
frequency, duration between blinks, the percentage of time with closed eyes surpassing
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the pupil (PERCLOS), eye aspect ratio, saccades, and various eye movement patterns [9].
Despite this, computer vision analysis is generally viewed as having an indirect connection
to physiological states, and its accuracy can be easily impacted by environmental and
lighting conditions [10]. Analytical methods based on brain information continue to be
hailed as the most direct and effective means of fatigue detection [10]. The fatigue analysis
method based on brain information has consistently been regarded as the most direct and
effective approach to detect fatigue. Currently, EEG (electroencephalography) and fNIRS
(functional near-infrared spectroscopy) are commonly employed methods for fatigue detec-
tion [11–17]. Most researchers are attempting to establish more precise real-time monitoring
models by optimizing parameters and algorithms. The longest continuous driving time
in experimental setups is 4 h. However, Meng et al. conducted an investigation into the
approximate driving time before accidents occur. The results indicate that taxi drivers
typically experience fatigue-related accidents after driving for approximately 9.3 h, while
truck drivers tend to have fatigue-related accidents after driving for around 8.2 h [18]. This
section delves into the evolving landscape of fatigue detection methods, emphasizing the
inherent limitations of early approaches rooted in interactive behavior information and
computer vision analysis. Apparently, the duration of existing studies may not be sufficient
to fully analyze the entire fatigue process. In this paper, the simulated driving experiment
was extended to 7 h to explore the changes in drivers’ behavior and the hemodynamics of
the prefrontal lobe in a more comprehensive paradigm.

Several studies have presented evidence linking fatigue with visual involuntary atten-
tion [19]. Involuntary attention, triggered by external stimuli, is crucial for threat detection
and self-preservation [20]. Therefore, studying brain function alterations during visual
involuntary attention could unveil new indicators for assessing fatigue during prolonged
driving. Many teams have investigated the fatigue status of industrial operators [21], but,
at present, questionnaires are mostly used for investigation, which lack correlation with
physiological signals. However, fNIRS combined with involuntary attention brain function
experiments, proposed by this team, could be a better way for fatigue Monitoring.

To delve deeper into physiological brain changes during fatigue, we employed func-
tional near-infrared spectroscopy (fNIRS) to monitor hemodynamic shifts in the forehead
during extended driving. Previous research has explored various physiological signals
for fatigue monitoring, including heart-based and eye-based signals [9,22–24], yet their
correlation with driving fatigue remains weak. Brain-based signals, such as electroen-
cephalography (EEG) and fNIRS, offer direct insights into brain function related to fatigue.
While EEG requires participants to wear electrode caps and minimize movements for signal
quality, fNIRS offers a less intrusive alternative. Participants only need to wear a flexible
film electrode on their forehead for fNIRS data collection.

Despite the modest participant cohort of eight, the study’s outcomes align closely
with established fatigue standards for drivers. The paper concludes by highlighting the
groundbreaking efficacy demonstrated in combining fNIRS with non-voluntary attention
brain function experiments, not only in accurately detecting driving fatigue but also in
offering prospective applications in industrial production settings. These findings pave the
way for a nuanced understanding of fatigue dynamics, which is imperative for shaping
effective safety measures and policies.

2. Materials and Methods
2.1. Participants

This study recruited 17 healthy right-handed volunteers with valid driver’s licenses;
unfortunately, only 11 volunteers (7 males and 4 females) completed the experiment. The
average age of the volunteers was 22.0 years (ranging from 21 to 25 years), and their average
years of education were 16.1 years (ranging from 15 to 17 years). All participants had no
history of sleep disorders, neurological disorders, mental disorders, or substance abuse.
Participants had normal vision or corrected-to-normal vision to meet driving requirements.
All volunteers signed an informed consent form to participate in the experiment. Three
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participants (two males, one female) engaged in excessive activities such as drinking water,
using the restroom, and eating snacks too much during the data collection process, affecting
data quality. Therefore, even though they completed the experiment, their data were
excluded from the data analysis. This study was carried out at room temperature with
no external light source in the room; only the indoor light source provided lighting. The
location did not change during the experiment, and the period from the initial experiment
to the final experiment was one month, so there was no significant difference in humidity.

Participants were instructed to carry out their daily activities during the day and get
adequate sleep (8 h) the night before the experiment. Participants were not allowed to
take naps during the experiment. Additionally, within the 24 h preceding the experiment,
participants were restricted from consuming alcohol, tea, nicotine, and caffeine.

2.2. Experimental Setup

Presentation, developed by Neurobehavioral Systems Inc. in the United States, is
an innovative platform tailored for conducting psychology experiments and delving into
cognitive science research. Utilizing Presentation (New Brunswick Scient Inc., Edison, NJ,
USA), this study harnessed its capabilities to regulate the visual stimuli in the experiment
and focused on involuntary attention brain function, concurrently capturing the visual stim-
uli and behavioral responses throughout the duration of the experiment. The experimental
framework for exploring involuntary attention brain function opted for the traditional
visual Oddball paradigm, incorporating both voluntary and involuntary components.

Traffic scenes were utilized as stimuli to replicate the experimental paradigm for traffic
signals [25]. The visual stimulation of the traffic road (Figure 1) included braking situations
that required deceleration or other adjustments in driving. Safe scenarios presented visuals
of traffic situations that could be navigated at the current speed. Sub-scenarios with a low
probability were introduced based on the aforementioned situations, featuring either a red
light or green light in predetermined proportions, necessitating participants’ judgment. In
this experiment, 30 stimuli with a red light, 30 stimuli with a green light, and 140 stimuli
for braking and safe scenarios were presented in a pseudo-random manner, ensuring
there were no consecutive red or green light scenes during the experiment. Each stimulus
was displayed for a duration of 900 to 1100 milliseconds. Throughout the experiment,
participants were instructed to engage the left mouse button upon the appearance of a red
light, the right mouse button for a green light, and to refrain from any operation during
other scenes. Simultaneously, Presentation recorded participants’ responses and reaction
time data. All participants adhered to simulated driving instructions within the simulation
environment throughout the stimulation process.
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Figure 1. Testing paradigm of visual involuntary attention.

This study utilized a driving simulator manufactured by Keteng, equipped with a
force feedback steering wheel, brakes, accelerator, clutch, and gear shifter, mirroring those
found in conventional automobiles. The DASS simulation software (developed by Stowood
Scientific Instruments, Oxford, UK) was employed to project road traffic driving scenarios
onto a computer screen. These simulated driving environments encompassed authentic
roads, pedestrians, diverse vehicle types, traffic lights, signal signs, and various structures.

Upon arrival at the laboratory at 11:00 a.m. (Figure 2), participants were instructed
to have lunch and then rest until the experiment commenced at 11:55 a.m. The duration
of the experiment totaled 7 h. The experiment commenced with the involuntary attention
paradigm, where participants experienced a completely non-fatigued state for approxi-
mately 5 min. Subsequently, the driving simulation was initiated and lasted for about
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55 min. Following the completion of the first driving simulation, the non-voluntary brain
function experiment was conducted after a brief 5 min interval. The experiment comprised
a total of seven simulated driving sessions and eight non-voluntary attention experiments.
During the non-voluntary attention brain function experiment, participants’ foreheads
were fitted with flexible near-infrared probes to capture hemodynamic signals from the
prefrontal cortex. Participant responses and reaction times were automatically recorded
based on keyboard inputs. Throughout the non-voluntary attention brain function exper-
iment, participants’ eyes maintained a distance of 120 cm from the screen center, with a
vertical viewing angle of 3.0◦ and a horizontal viewing angle of 3.2◦. Participants were
instructed to respond promptly and accurately to stimuli requiring a reaction by pressing
the designated key.
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Flexible film probes were employed in this study, covering the foreheads of participants
(Figure 3). These probes were equipped with two continuous-wave (CW) LED light sources
at wavelengths of 735/805/850 nm and six near-infrared light sensors. Positioned around
the light sources, the sensors formed a rectangle measuring 4 cm × 10 cm, encompassing
the area between the forehead, eyebrows, and hairline. The distances between LED1 to
D3 and D6, and LED2 to D1 and D4 were too extensive to yield reliable near-infrared
spectroscopy data. Consequently, data from these channels were excluded from analysis.
Subsequently, eight source–detector (SD) pairs, or fNIRS signal channels, were established.
These pairs maintained a consistent distance of 3.2 cm and enabled penetration depths
of >2 cm from the skin to brain tissue. The two light sources operated alternately, with
detailed channel positions depicted in Figure 3b.

In this investigation, the alteration in the level of oxygenated hemoglobin concen-
tration (∆[HbO2]) in comparison to the start of the fNIRS data recording is represented
by ∆[HbO2], whereas the change in the level of deoxygenated hemoglobin concentra-
tion (∆[Hb]) relative to the initiation of the fNIRS data recording is indicated by ∆[Hb].
Furthermore, ∆[tHb] denotes the modification in the level of total hemoglobin concen-
tration compared to the state of the fNIRS data recording. By applying the modified
Beer–Lambert law, alterations in the concentrations of oxyhemoglobin (∆[HbO2]) and
deoxyhemoglobin (∆[Hb]) were calculated based on light intensity The total hemoglobin
(∆[tHb], ∆[tHb] = ∆[Hb] + ∆[HbO2]) was obtained by ∆[Hb] + ∆[HbO2].
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2.3. Data Process and Analysis

This study collected behavioral data from non-voluntary attention brain function
experiments, including task accuracy and reaction time (RT). A composite parameter that
simultaneously responds to both parameters was derived by calculating accuracy/RT [25].
The data were fitted using Fourier second-order analytical equations, fourth-order poly-
nomial equations, and sine analytical equations. The goodness of fit (R-square) and sum
of squared errors (SSE) between the actual data and corresponding predicted values were
used to evaluate the performance of the three fitting methods. For each participant, each
method yielded an R-square and an SSE, resulting in eight R-squares and eight SSEs for
each method. Subsequently, one-way analysis of variance (ANOVA) was conducted to de-
termine whether there were significant differences in R and SSE among the three methods.
The optimal method was selected for fitting, and the slope of the fitted curve was analyzed
to obtain trends in behavioral performance changes.

Applying the modified Beer–Lambert law to fNIRS data enables the derivation of
∆[HbO2], ∆[Hb], and ∆[tHb] for eight distinct channels. These datasets facilitate the vi-
sualization of alterations in prefrontal hemodynamic parameters throughout the driving
task. This analysis permits the identification of the channel exhibiting the most substantial
fluctuations in hemodynamic parameters over time, thus allowing for subsequent correla-
tion analyses with behavioral metrics. By examining the association between individual
hemodynamic parameters and behavioral metrics, one can discern the parameters most
responsive to variations in behavioral data.

3. Results
3.1. Behavior Result

By monitoring task accuracy and RT associated with visual involuntary attention,
participants’ performance can be tracked, and these metrics are subsequently utilized to
compute accuracy/RT ratios.

Given that the task accuracy and RT data collected in this experiment consist of
discrete data points, a mathematical model was constructed to analyze the data trend.
Three equations were employed for this purpose: the Fourier second-order analytical
equation (Equation (1)), fourth-order polynomial equation (Equation (2)), and sinusoidal
analytical equation (Equation (3)). These equations, denoted by various parameters such as
a0, a1, a2, b0, b1, and w (for Fourier), p0, p1, p2, p4, and p5 (for polynomial), and a, b, and c
(for sinusoidal), were fitted to the data using variable x.

f (x) = a0 + a1 cos(xw) + b1 sin(xw) + a2 cos(2xw) + b2 sin(2xw) (1)

f (x) = p1x4 + p2x3 + p3x2 + p4x + p5 (2)

f (x) = a sin(bx + c) (3)
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The R-square and SSE analyses indicated that each dataset adhered to a normal
distribution, as confirmed by the Shapiro–Wilk normality test. Specifically, the Fourier
second-order analytical equation exhibited an R-square (p = 0.748, n = 7) and SSE (p = 0.891,
n = 7), the fourth-order polynomial equation showcased an R-square (p = 0.943, n = 7)
and SSE (p = 0.886, n = 7), while the sinusoidal analytical equation displayed an R-square
(p = 0.868, n = 7) and SSE (p = 0.917, n = 7). Subsequent one-way ANOVA revealed
significant differences in R-square among the three models (F = 64.693, p < 0.001, partial
η2 = 0.902).

Post hoc comparisons demonstrated that both the Fourier second-order analytical
equation and the fourth-order polynomial equation significantly outperformed the sinu-
soidal analytical equation (Fourier: t = 9.791, p < 0.001, Cohen’s d = 3.638; fourth-order
polynomial: t = 9.909, p < 0.001, Cohen’s d = 3.682) in terms of R-square. Moreover, the
SSE analysis revealed significant differences among the three models (F = 29.704, p < 0.001,
partial η2 = 0.809), with both the Fourier and fourth-order polynomial equations yielding
significantly lower SSE values than the sinusoidal equation (Fourier: t = −6.682, p < 0.001,
Cohen’s d = −2.032; fourth-order polynomial: t = −6.668, p < 0.001, Cohen’s d = −2.028).

Although no significant disparity was observed between the R-square and SSE of
the Fourier second-order analytical equation and the fourth-order polynomial equation,
the SSE of the former (mean = 0.052 × 10−6) was marginally lower than that of the latter
(mean = 0.0526 × 10−6). Therefore, subsequent analyses were conducted using the Fourier
second-order analytical equation for data fitting.

The results of the fitting are depicted in Figure 4. By integrating the preceding analysis
of discrete data, the entire 7 h driving session can be segmented into three phases, compris-
ing two rapid decline phases and one gradual decline phase. Upon commencing the driving
simulation, the majority of participants experienced a continuous decrease in behavioral
performance until the 2 h mark, followed by a period of stability lasting approximately 2 h,
after which another decline ensued. The steepness of the fitting curve’s slope illustrates the
trend in performance variation. As delineated in these findings, it becomes evident that,
for most participants, the slope during the second rapid decline phase was steeper than
that observed during the first phase. By the 4 h mark of the driving session, a significant
deterioration in driving performance was observed among most drivers.
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Figure 4. Changes in accuracy/RT ratio for 8 participants.

3.2. fNIRS Results

Prefrontal activation mapping was derived from the hemodynamic data collected from
eight channels positioned on the forehead. Figure 5 illustrates the average ∆[HbO2], ∆[tHb],
and ∆[Hb] values for eight participants, with the region exhibiting the most pronounced
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changes in hemodynamic parameters highlighted by a black rectangle. It is evident from
Figure 5 that as the experimental duration progresses, there is a noticeable increase in
∆[HbO2], ∆[tHb], and ∆[Hb] within this highlighted area. Notably, ∆[tHb] exhibited the
highest sensitivity (maximum value) to the experimental duration. Moreover, significant
alterations in activation patterns were observed during the initial 2 h in ∆[HbO2], ∆[tHb],
and ∆[Hb]. Throughout the experiment, there was marked spatial variation in activation
patterns during the first 2 h, which gradually diminished as the driving duration reached
4 h, accompanied by a continuous rise in the concentrations of ∆[HbO2], ∆[tHb], and ∆[Hb]
within the highlighted region.
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During most of the experimental process, channel 7 demonstrated the most pro-
nounced activation. Table 1 presents the concentration changes of ∆[HbO2], ∆[tHb], and
∆[Hb] for channel 7. It is apparent that, for the majority of participants, ∆[HbO2] and
∆[tHb] for channel 7 exhibited an upward trend during prolonged driving, while ∆[Hb] for
channel 7 displayed some fluctuations with a sinusoidal pattern. Spearman correlation co-
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efficients were then computed between accuracy/RT and the hemodynamic parameters of
channel 7 (Table 2). Significant negative correlations were observed between ∆[HbO2] and
accuracy/RT in seven out of eight participants. Additionally, four participants exhibited a
significant negative correlation between their ∆[tHb] data and accuracy/RT, while three
participants demonstrated a significant negative correlation between their ∆[Hb] data and
accuracy/RT.

Table 1. The concentration changes of ∆[HbO2], ∆[tHb], and ∆[Hb] for channel 7 (mean ± std).

Time Length ∆[HbO2] (mM) ∆[tHb] (mM) ∆[Hb] (mM)

0 h −0.0001 ± 0.001 −0.0002 ± 0.0013 0 ± 0.0011
1 h 0.0052 ± 0.0061 0.0022 ± 0.0129 −0.0064 ± 0.0206
2 h 0.0059 ± 0.0081 −0.0015 ± 0.0192 −0.0132 ± 0.0310
3 h 0.0113 ± 0.0070 0.0094 ± 0.0229 −0.0067 ± 0.3410
4 h 0.0125 ± 0.0077 0.0105 ± 0.0146 −0.0046 ± 0.0248
5 h 0.0185 ± 0.0060 0.0219 ± 0.0281 −0.0019 ± 0.0359
6 h 0.0211 ± 0.0072 0.0287 ± 0.0408 0.0028 ± 0.0460
7 h 0.0164 ± 0.0087 0.0153 ± 0.0259 −0.0048 ± 0.0364

Table 2. Correlation coefficient between accuracy/RT and ∆[HbO2], ∆[tHb], and ∆[Hb] of channel 7.

Participant
∆[HbO2] ∆[tHb] ∆[Hb]

rho p rho p rho p

#.1 −0.95 <0.01 ** −0.95 <0.01 ** −0.95 <0.01 **
#.2 −0.31 0.46 −0.21 0.61 −0.24 0.58
#.3 −0.74 <0.05 * −0.88 <0.01 ** −0.9 <0.01 **
#.4 −0.9 <0.01 ** −0.98 <0.01 ** −0.95 <0.01 **
#.5 −0.81 <0.05 * −0.86 <0.05 * 0.1 0.84
#.6 −1 <0.001 ** −1 <0.001 *** −0.62 0.11
#.7 −0.74 <0.05 * −0.12 0.79 0.45 0.27
#.8 −0.9 <0.01 ** 0.12 0.79 0.6 0.13

Note: * represents significant difference (* p < 0.05; ** p < 0.01; *** p < 0.001).

4. Discussion

To explore the impact of prolonged driving on both performance and brain function,
we conducted a visual involuntary brain function experiment to evaluate changes in visual
involuntary attention, as indicated by accuracy/RT, throughout a seven-hour driving simu-
lation. Simultaneously, fNIRS was employed to capture hemodynamic alterations during
the experimental session. The findings reveal a distinctive nonlinear decline in accuracy/RT
values over the course of the seven-hour experiment, delineated into two rapid decrease
phases and one gradual decrease phase based on the fitting outcomes. The hemodynamic
findings illustrate an upward trend in ∆[HbO2] and ∆[tHb], evident in the activation area
and signals obtained from channel 7. Furthermore, a robust negative association was noted
between ∆[HbO2] and accuracy/RT among the majority of participants (seven out of eight).

In earlier investigations, scholars primarily focused on the initial three hours of fa-
tigued driving, which typically revealed only a single rapid decline phase. Ting et al., for
instance, conducted a two-hour driving test and proposed that 80 min represented the
maximum safe driving duration for highway driving, as drivers reported experiencing
fatigue beyond this timeframe [26]. Nilsson et al. reached a comparable conclusion [27].
Nevertheless, the restricted duration of experiments in these studies may have led to po-
tentially misleading findings. In our research, we extended the driving test to 7 h, allowing
for an examination of behavioral changes beyond the initial three hours. Our analysis of
behavioral data unveiled two rapid decline phases and one gradual decline phase during
the experiment. Performance deterioration commenced within the first 2 h, followed by a
period of relative stability lasting approximately 2 h, after which a substantial decline in
performance ensued.
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Our research findings indicate that participants’ performance varies across different
stages. The study involved a total of eight participants (five males and three females), with
six participants demonstrating performance across three stages, and two participants (one
male and one female) across two stages. Regardless of the number of stages, there is always
a rapid decline stage, beginning around 4 h, where participants’ performance sharply
decreases. According to current national standards, drivers should take a rest after driving
continuously for 4 h, which aligns with our research results. It is worth emphasizing
that our study utilized only eight participants, yet the results suggest that combining
fNIRS with non-voluntary attention brain function experiments allows for relatively precise
conclusions to be drawn with a relatively small sample size.

Combining Figure 5 with Figure 4, it can be observed that the rapid decline phase in
RT/accuracy aligns with the rapid accumulation phase of ∆HBO2, both occurring around
4 h. This indicates consistency between the behavioral and hemodynamic results obtained
in this study. Therefore, 4 h appears to be a crucial time point for both behavioral and
hemodynamic outcomes. Additionally, the strong negative correlation between ∆[HbO2]
of the seventh channel and the behavioral results of most participants (seven out of eight)
supports the feasibility of establishing a fatigue monitoring system through fNIRS and
non-voluntary attention brain function experiments.

Due to the limited scope of the scenarios used in the study and the dataset only
including eight people, the results presented in this paper are preliminary. Therefore, future
research should focus on expanding the dataset to ensure the validity of the results and
conclusions. Additionally, as the experiments were conducted in a driving simulation
environment, it is necessary to test the current research results in more advanced driving
simulators to confirm the consistency of the conclusions and maintain participant safety.

Furthermore, it is necessary to identify user-friendly electroencephalogram (EEG)
acquisition methods suitable for long-term data collection to monitor brain activity during
prolonged driving, in conjunction with near-infrared spectroscopy (NIRS). The methodol-
ogy proposed in this study can be integrated with other research topics, such as investi-
gating intervention measures to alleviate fatigue and reduce its impact. Previous studies
have investigated methods such as music [28], odors [29], and temperature [30] to mitigate
fatigue. Therefore, combining the approach outlined in this paper with fatigue mitigation
techniques holds great promise.

5. Conclusions

In conclusion, this study proposes a novel approach to assess prolonged fatigue.
fNIRS data analysis reveals a significant negative correlation between behavioral data and
∆[HbO2], indicating a strong association between driver performance and hemodynamic
changes. Based on behavioral outcomes, it is suggested that there is always a rapid phase,
starting at approximately 4 h, leading to a sharp decline in performance. According to
current national standards, drivers should take a break after driving continuously for 4 h,
which aligns with our research findings. The conclusion drawn in this paper, based on the
combination of fNIRS and non-voluntary attention brain function experiments, was derived
from a sample size of only eight participants, demonstrating the potential application value
of this method in the field of prolonged fatigue detection.
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