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Abstract: Waste management is one of the many major challenges faced by all urban cities around
the world. With the increase in population, the current mechanisms for waste collection and disposal
are under strain. The waste management problem is a global challenge that requires a collaborative
effort from different stakeholders. Moreover, there is a need to develop technology-based solutions
besides engaging the communities and establishing novel policies. While there are several challenges
in waste management, the collection of waste using the current infrastructure is among the top
challenges. Waste management suffers from issues such as a limited number of collection trucks,
different types of household and industrial waste, and a low number of dumping points. The focus of
this paper is on utilizing the available waste collection transportation capacity to efficiently dispose
of the waste in a time-efficient manner while maximizing toxic waste disposal. A novel knapsack-
based technique is proposed that fills the collection trucks with waste bins from different geographic
locations by taking into account the amount of waste and toxicity in the bins using IoT sensors. Using
the Knapsack technique, the collection trucks are loaded with waste bins up to their carrying capacity
while maximizing their toxicity. The proposed model was implemented in MATLAB, and detailed
simulation results show that the proposed technique outperforms other waste collection approaches.
In particular, the amount of high-priority toxic waste collection was improved up to 47% using the
proposed technique. Furthermore, the number of waste collection visits is reduced in the proposed
scheme as compared to the conventional method, resulting in the recovery of the equipment cost in
less than a year.

Keywords: waste collection; waste management; smart city; IoT

1. Introduction

As the urban population is increasing, there are several challenges faced by large
metropolitan cities. Some of these challenges include vehicle route guidance to avoid
traffic jams [1,2], the effective utilization of the health care system [3,4], and efficient waste
management [5,6]. The advancement in technology has provided several techniques and
tools that can assist in solving these challenges, thus making way for smarter and cleaner
cities [7,8].

Waste management is an important component of future smart cities [9,10]. The
improper management of waste materials can be detrimental to the environment in many
ways. This can significantly enhance land pollution and damage the soil, thus hurting
human health and the ecosystem. Similarly, toxic materials can damage soil fertility leading
to lower agricultural output. Waste mismanagement is also dangerous for marine animals
and disrupts the supply of clean water to humans.

Waste materials are also a source of air pollution [11]. In particular, through burning
waste materials, the respiratory health of humans can be badly affected [12]. Similarly, waste
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dumping can cause the release of methane-based greenhouse gas emissions [13,14]. This is
one of the leading causes of climate change and global warming [15,16]. Other harmful
effects of improper waste management include difficulty in extracting raw materials and
damage to the animal habitat. Lastly, if the waste materials are not properly disposed of, it
can lead to infectious diseases and other health issues.

Owing to the above issues, it is thus critical to design mechanisms for the efficient col-
lection and disposal of waste materials [17–19]. Sustainable, eco-friendly, and technology-
assisted strategies are needed to develop waste dumping systems. With the increase in
population as well as the amount of waste generated from households and industries, it is
also pertinent to design methods for time-efficient and effective waste collection [20–24].

The collection of waste relies on effectively using waste pickup trucks. Since the
number of such waste pickup trucks is limited in number and the amount of waste is
increasing day by day, managing the routes of these waste trucks and their pickup capacity
are two critical issues. It is important to optimize the routes of waste pickup trucks so that
cost-effectiveness and sustainability are achieved. For this purpose, technologies like the
Internet of Things (IoT), Global Positioning System (GPS), and routing algorithms can be
combined to formulate the best routes for waste pickup. The factors to be considered for
waste vehicle routing include vehicle densities on the road and waste-related data. The
goal is to select routes that reduce fuel consumption and maximize the disposal of waste.

The second issue is the management of the loading capacity of trucks that are used
for picking up the waste. For better load management, the waste material type, waste
priority, and truck capacity must be considered. Moreover, sensors can be installed, and
regular waste fill-up data can be monitored to optimize the collection of waste. The efficient
filling of waste pickup trucks is necessary to avoid extra trips and reduce fuel consumption.
Moreover, it is vital to pick up waste of a critical nature and dump it in a time-efficient
manner. Thus, the problem of waste pickup is essentially a resource management and
allocation problem.

This paper focuses on the efficient allocation of waste material to waste pickup trucks.
In this regard, a novel technique is proposed that uses the 0/1 knapsack algorithm to
fill the waste pickup truck up to its loading capacity. The proposed algorithm takes into
account factors such as waste volume, waste toxicity, and truck loading capacity, which are
monitored using IoT sensors, and allocates waste to the trucks that maximize the waste
utility while taking into account the truck’s loading capacity. The proposed technique
was implemented in MATLAB software (version 2021) and compared against two other
recent techniques from the literature. Simulation results show that the proposed technique
improves the highly toxic waste collection by 47%.

The paper’s organization is as follows. Section 2 provides a review of related tech-
niques and mechanisms. Section 3 describes the system model. The proposed technique is
presented in Section 4. The implementation of the proposed work and evaluation of results
is provided in Section 5. The conclusion is presented in Section 6.

2. Related Works

In this section, we describe the urban waste management system and its associated
blocks. Moreover, we also present a review of recent work carried out related to urban
waste collection. We also describe the novelty of the proposed technique compared to other
available techniques.

2.1. Urban Waste Management System

The urban waste management system operates through a well-structured framework
consisting of four pivotal blocks, as shown in Figure 1. Each block plays a crucial role in
ensuring the efficient and responsible handling of waste throughout the city.
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Figure 1. Urban waste management system.

2.1.1. Household Waste Bins

The first block is the waste bins at the houses. There are several types of bins installed
in front of homes where citizens place their waste materials daily. There are separate bins
for collecting general waste, glass materials, and recycled items.

2.1.2. Sector-Based Bins

The second block of the waste management system is the sector-based bins placed
at various geographical locations around the city. They are placed to cover small areas so
that citizens can dump their waste in them at convenience. Sector-based bins serve as an
intermediate collection point between the household bins and final disposal areas.

2.1.3. Waste Pickup Transportation

The third block is the waste pickup trucks and transportation. These are assigned the
duty of collecting city-wide waste from household bins and sector bins. The route of a pickup
trucks is designed to maximize the collection of waste and reduce greenhouse emissions.

2.1.4. City-Wide Dumping Centers

The last block of the waste system is the city-wide dumping centers where the waste is
disposed of. These centers ensure the proper dumping of the waste and also use different
methods based on the type of waste material. The dumping centers also manage if the
waste is to be destroyed or recycled.

2.2. Literature Review

The work conducted related to waste collection focuses on classifying types of waste
for better collection, the routing of pickup transportation for achieving efficient collection,
and waste collection management. A summary of the literature review is presented in
Table 1.
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Table 1. Literature review summary.

Reference Goal Technique Results

[25] Waste classification

Image processing
Electronic waste

User image capturing
CNN

R-CNN

97% accuracy

[26] Waste vehicle routing

Cost optimization
MILP problem
Fixed routing

Variable routing

Reduced travel distance
Reduced carbon emissions

[27] Waste collection

Practical parameters
Waste truck capacity

Disposal center capacity
Shift duration

Shift closing times

Scheduling of waste trucks
Number of trucks

[28] Waste collection

Textile waste considered
Sensor-based bins

Arduino-based solution
Real-time data collection
Dynamic route selection

Increased waste collection
Reduced carbon emissions

[29] Waste vehicle routing

IoT-based solution
TOPSIS-based routing

Waste toxicity
Waste volume

Waste generation time

Increased waste collection
Reduced travel distance

The work in [25] utilized pictures of waste to develop a method for identifying the
type of material. The focus of the paper was on electronic equipment-type waste. The
proposed framework requires users to upload images of the waste material to a central
server. Two different types of neural networks are used for classification purposes using
the images. The first algorithm is the convolution neural network that only identifies the
type of electronic waste material. The second algorithm is the region-based convolution
neural network that can further identify the size and category of electronic waste. The
proposed technique achieves an accuracy of up to 97%.

In [26], a mechanism for the efficient routing of waste transport is proposed. The goal of
the technique is to reduce the carbon emissions and associated costs of waste collection. The
above problem was formulated as a mixed linear integer programming. Two optimization
techniques, namely, fixed routing and variable routing, are used to achieve this task. For the
fixed routing solution, the status of the waste bins is not known, and the route is planned
according to the developed mathematical model. For the variable routing, the route is
planned based on the updated status of the waste bins, which is communicated regularly
to the server. Using the proposed mathematical model, the algorithm achieves reduced
costs in terms of the waste transport travel distance and reduced toxic waste materials.

The work in [27] proposes a time and transportation capacity-based waste collection
mechanism. The focus of the paper was to consider several practical parameters for waste
collection. These include the capacities of both the waste trucks and waste disposal centers.
Moreover, parameters such as the duration of collection shifts and closing times of shifts
are also considered while making waste collection decisions. The proposed method also
evaluates the number of waste trucks required for efficient collection. In addition, a
method for efficient collection scheduling has also been proposed. The results highlighted
the number of waste trucks required to meet all the objectives and related schedules
of collection.

In [28], the work focused on textile-based waste collection. The textile waste is referred
to as thrown-away clothing items. The key idea is to utilize sensors installed on the bins
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to regularly monitor the textile waste. The system was developed using an Arduino
microcontroller and cheap sensors. The developed system was used to obtain real-time
data on the waste bins. Based on the collected data, a dynamic selection of routes was
proposed by the authors. The results showed reduced costs of waste collection in terms of
high amounts of collected waste and reduced carbon emissions.

The work in [29] proposed an IoT-based system for efficient waste collection. The
major idea in the work was to optimize the route of waste collection vehicles. Since the
waste collection involves a variety of parameters, a Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS)-based solution was proposed. The proposed work
considered factors such as waste toxicity, waste volume, and waste generation time. The
proposed technique improves the amount of collected waste while minimizing the distance
traveled by the waste vehicles.

3. System Model

In this work, we considered multiple waste points located in different metropolitan
locations, where different types of waste are collected. There are three waste bins in
each of the waste locations carrying three different toxicity levels of waste material: high,
medium, and normal toxicity levels. The bins will be filled by users based on their toxicity
category; for example, if the waste is hazardous, it will be placed in the most toxic category
bin. Similarly, general waste can be placed in the medium-toxic category bin. Lastly, the
recyclable material can be placed in the least toxic category bin. It should be noted that
classifying toxic category was not part of this study, and we rely on users to place the
trash in the different bins. For classification purposes, IoT-based gas sensors can be used to
measure the toxicity level of waste [30] to measure the hazard level of the waste for human
health [31,32].

The waste bins located throughout the metropolitan area were of the same size and
differentiated with different colors. Bins in each location were equipped with IoT sensors
to monitor the filled capacity of the bin and the time since the bin had been emptied or
replaced. IoT-based ultrasonic sensors were placed to measure the volume of waste in each
bin [33]. All of the waste from different locations was collected by a dumper and dumped
in a main garbage area. The dumper had a limited bin-carrying capacity and space to place
a specific number of complete bins in it. It was supposed that the bins will be replaced with
empty bins. All bins were supposed to be of the same size. A system model of the garbage
collection is shown in Figure 2.

Figure 2. Waste collection scenario.

Suppose that each of the waste collecting bins is categorized as BH , BM, or BN for
highly toxic waste, medium-toxic waste, and normal-toxic level waste material, respectively.
The volume of each of the waste collection bins is V. If waste collected in the ith high-toxic
bin is Vi

H , ith medium-toxic bin is Vi
M, and ith normal-toxic bin is Vi

L, and there are N
high-toxic bins placed at the different locations of the metropolitan area, then the total
volume of the high-toxic waste (TVH), the total volume of the medium-toxic waste (TVM),
and the total volume of the normal-toxic waste materials (TVL) are calculated as follows:
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TVH =
N

∑
i=1

Vi
H (1)

TVM =
N

∑
i=1

Vi
M (2)

TVL =
N

∑
i=1

Vi
L (3)

The total waste material available (νtot) from all the waste bins after a specific amount
of time is the collective sum of all this waste:

νtot = TVH + TVM + TVL (4)

The dumper replaces these bins after a certain time interval of the day. Suppose a
dumper has a bin-carrying capacity for placing C bins. If it picks up bins placed at the
different locations of the areas up to their maximum capacity with X high-toxic bins, Y
medium-toxic bins, and Z normal-toxic bins, then the total amount of waste collected by a
dumper (ηtot) in its route is calculated as follows:

ηtot =
X

∑
i=1

Y

∑
j=1

Z

∑
k=1

Vijk (5)

The toxicity of waste depends on the waste material as well as the duration since it
was placed there. As more time lapses, the toxicity of the waste also increases. The toxicity
values of a unit amount of the highly toxic, medium-toxic, and normal-toxic bins after a
certain time are represented as TH , TM, and TN , respectively, and the waste collected after
a certain time t is measured as x amount of highly toxic, y amount of medium-toxic, and
z amount of normal-toxic waste. The toxicity values of waste collected from high-toxic bins
(ζH), medium-toxic bins (ζM), and normal-toxic bins (ζL) after time t are calculated as follows:

ζH =
X

∑
i=1

x× TH (6)

ζM =
y

∑
i=1

x× TM (7)

ζL =
z

∑
i=1

x× TL (8)

The toxicity level of all the collected waste bins (ζtot) from the different toxic level bins
after a certain time t is calculated as follows:

ζtot =
X

∑
i=1

x× TH +
y

∑
i=1

x× TM +
z

∑
i=1

x× TL (9)

4. Proposed Technique

Waste collection is a prime objective in any metropolitan area because it creates hazards
for the human body and causes many infectious diseases. Collecting waste from different
locations of a metropolitan area in a cost-effective way is a major challenge. In this work, an
efficient waste collection mechanism is proposed to maximize the toxicity of the collected
waste products within the maximum capacity of a dumper. The main features of the
proposed scheme are mentioned below:

1. Calculate the optimum number of dumpers required to collect the waste bins.
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2. Efficiently fill the dumpers with waste bins to enhance the toxicity of the collected
waste material.

4.1. Calculating the Dumper Requirement

The dumpers have a specific bin-carrying capacity, and they are placed in diverse
areas of a metropolitan area. The IoT sensors provide the live data of the empty bins
placed in each area. A bin must be emptied if its waste overflows before the next waste
collection. Suppose that there are F bins that may overflow if they are not emptied in the
current collection, and D − C is the dumper capacity available for carrying waste bins,
then the number of dumpers DN required to collect the bins placed at different locations is
calculated as follows:

DN =

⌈
F

DC

⌉
(10)

4.2. Optimum Waste Collection Algorithm

The proposed scheme fills the dumper capacity with the different types of waste bins
so that the maximum number of toxic bins are collected from different locations. The
proposed scheme fulfills this requirement by applying a 0/1 knapsack algorithm. The
knapsack picks items from a set of multiple items in such a way that the value of the
picked items is optimal within its carrying capacity. Our problem is similar to the knapsack
problem as in this problem, only waste bins that fall within the capacity of the dumper are
required to be picked up from the different locations to maximize the toxicity level of the
waste material present in the picked bins.

Our proposed scenario is analogous to the knapsack problem in all respects, as illus-
trated below and also mapped in Table 2.

Table 2. Knapsack mapping parameters.

Bin Selection Parameters Knapsack Parameters

DC Bin placement capacity of the dumper Item-carrying capacity of sack
Cb Waste bin Weight of item
Pb Priority level of the collected bin Value of item

The problem is mapped as follows:

1. The carrying capacity of the sack in our problem is the dumper capacity to place
waste bins.

2. The items to be selected in the knapsack problem are the waste bins placed at different
locations in the metropolitan area.

3. The weight of an item in the knapsack problem is identical to the waste bin, and it is
uniform with value 1.

4. The value of an item in the knapsack problem is replaced with the priority of the
waste bin that is required to be collected. The priority of a bin directly depends on
the toxicity type of the waste material, the remaining capacity of the bin, and the time
since the last bin was emptied. Suppose that each bin has a waste capacity of K and
the M amount of the bin is filled with the same toxic type of material. If the waste is
placed in the bin in the last duration t, then the priority of the bin i (Pbi) is calculated
as follows:

Pbi = 2
k

k−M × t× ζX (11)

where ζX is the toxicity level of the waste material.

The 0/1 knapsack is an optimization algorithm, and it optimizes the priority of picked
bins placed at different locations. To achieve this optimization, the capacity of the dumper
is one of the major constraints in this problem. If the capacity of the bin-collecting dumper
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is represented by DC and there are N bins, then the collected number of bins Cb that are
picked is a constraint of this problem and is expressed as follows:

N

∑
i=1

Cbi ≤ DC

The optimization is achieved with the help of the following expression. Suppose that
there are N bins and the priority value of the ith bin is Pbi, then the optimization of our
problem by applying the 0/1 knapsack is expressed as follows:

Max
N

∑
i=1

Pbi

To minimize the computing time, the 0/1 knapsack problem is solved using the tabular
method instead of using dynamic and set-solving methods. The filling of the knapsack
table along with the selection of the optimal waste bins are shown in Algorithm 1. The
proposed knapsack algorithm is implemented by filling a knapsack table to scrutinize the
number of bins placed at the different locations of a metropolitan area. A complete 0/1
knapsack algorithm in our proposed scheme is shown in Algorithm 1.

Algorithm 1: Waste Bin Collection Criteria

Input : Current dumper size C
Bin-carrying capacity of dumpers DC
Total waste bins N
Output : Matrix X representing the bin selection table

1 X ← 2D array of size (N + 1)× (DC + 1)
2 for i← 0 to N do
3 X[i, 0]← 0
4 end
5 for j← 0 to DC do
6 X[0, j]← 0
7 end
8 for b← 1 to N do
9 Cb ← bin volume of the b-th bin

10 for C ← 1 to DC do
11 if Cb ≤ C then
12 X[b, C] = max(X[b− 1, C], Cb + X[b− 1, C− Cb])
13 else
14 X[b, C] = X[b− 1, C]
15 end
16 end
17 end
18 bin scrutiny section
19 while b > 1 and C > 1 do
20 if X[b, C] > X[b− 1, C] then
21 the bth bin will be chosen in the dumper
22 b = b− 1
23 C = C− Cb
24 else
25 b = b− 1
26 end
27 end
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5. Results

In this section, we will present some of the results that were attained while simulating
the waste collection based on our proposed mechanism. We labeled the high-, medium-,
and normal-toxicity bins with numbers 10, 5, and 2, respectively. We chose the time since
the last time the bin was collected from a set {1, 2, 3, . . . , 10} through a uniform distribution.
Similarly, we chose the weight/volume from the set {1, 2, 3, 4, 5}. For the simulations, we
set the capacity of the vehicle to be equal to 10 bins. If the number of critical-waste bins
was greater than the capacity of the vehicle, then another vehicle was sent. The number
of critical-waste bins was the number of bins that had a priority value greater than the
threshold value, which in our case, was equal to 100. The number of bins was set to be 40,
i.e., 40 high-toxicity bins, 40 medium-toxicity bins, and 40 low-toxicity bins.

Figure 3 illustrates the total toxicity value of the waste collected, showing the impact
of deploying varying numbers of waste bins. Our proposed method was compared with
three strategies: first bin first (FBF), which prioritizes bin collection based on location;
largest bin first (LBF), which plans routes focusing on the largest bins nearing their capacity,
assigning them a higher collection priority; and longest delay (LD), which grants higher
priority to bins with longer collection delays. The capacity of the vehicle for this figure was
set to be equal to 10 bins. The number of bins was increased from 20 bins to 40 bins in a
step size of 5. From Figure 3, we can see that the scheme yielded the highest value of the
overall toxicity for all values of the number of bins. Secondly, we can see that the value of
toxicity increases from 1350 to 2700 for the proposed scheme when the number of bins was
increased from 20 bins to 40 bins. The longest-delay scheme performs better as well. This
is because the toxicity value depends on the time delay as well, and a larger delay value
contributes to a higher toxicity value, as can shown in Equations (6)–(8). The FBF and LBF
schemes performed the worst, as both location and volume do not have any involvement
in the toxicity calculations.

20 25 30 35 40
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0

500

1000

1500

2000

2500

3000

T
o

x
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it
y

Proposed

FBF

LBF

LD

Figure 3. Collected waste toxicity levels vs. bin count.
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Figure 4 shows the distribution of the waste collected based on high-, medium-, and
normal-toxicity waste bins. The parameters for this figure are the same as in Figure 4.
In this figure, we can see that the proposed scheme performed best for the high-toxicity
waste bins, while the medium-toxicity waste bins were also comparable to those of the LD
scheme. The normal-toxicity waste bins were collected in small proportions due to their
priority value being in the low region. The normal-toxicity level bins would be collected
with a longer delay as the material that is present in the bin does not become toxic rapidly
with time.
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Normal/Low Toxicity Bins
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Proposed
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LBF
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Figure 4. Toxicity levels of high-, medium-, and normal-toxicity bin waste collected vs. bin count.

Figure 5 shows the results of the collected waste toxicity versus the truck capacity.
The number of bins of each type was set to be equal to 40 bins. In this figure, we can see
that the toxicity value of the collected waste is proportional to that of the LD scheme. The
LD scheme is directly based on the parameter that defines the toxicity value of the waste,
which is why it achieves a better performance in this case. It is important to mention here
that as in the case of Figure 3, Figure 5 considers the overall toxicity value of all the waste
bins combined. We can see that the FBF and the LBF schemes achieve a lower toxicity value
of the collected waste as they do not directly consider the toxicity of the waste.

Figure 6 is the breakdown of the results from Figure 5 into high-, medium-, and normal-
toxicity bins collected, and its overall toxicity in the subset. We can see that although the
LD scheme was performing better in Figure 5, the amount of high-priority waste being
collected by the proposed scheme is way better than in any of the schemes, including the LD
scheme. For medium-toxicity bins, the proposed scheme achieves comparable results, and
for normal-toxicity bins, the LD scheme achieves the highest value of the overall toxicity
waste being collected.
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Figure 5. Collected waste toxicity levels vs. garbage truck capacity.
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Figure 6. Toxicity levels of high-, medium-, and normal-toxicity bin waste collected vs. garbage
truck capacity.
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From Figures 7–10, we show the results for the amount of waste that was collected
for various scenarios. For this set of figures, we kept the same values of the parameters as
discussed in the discussion for Figures 3–6. Figure 7 shows the amount of waste collected
with a varying numbers of bins, which increases from 20, in a step size of 5, to 40. In Figure 7,
we can see that the amount of waste collected increases with the increased number of bins.
We can see that our proposed mechanism collects waste in an amount that is comparable to
the largest-waste-bin-first scheme, while our proposed performs better than the FBF and
the LD schemes. The downside of the increased value for the LBF scheme is that it achieves
a lower value of toxicity, as can be seen from the trends shown in Figures 3–6. The LD
scheme was performing well for toxicity values, as is shown in Figures 3–6, but in terms
of the amount of waste collected, it performed poorly, as shown in Figure 7. Meanwhile,
the FBF scheme performed worst in all the cases because the waste collection was not
conducted on any specific criteria, and so the scheme acts like random bin collection, as it
will be collecting bins that come in its way.
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Figure 7. Collected waste volume/weight vs. bin count.

A breakdown of the values in Figure 7 in terms of the high-, medium-, and normal-
toxicity bins is shown in Figure 8, where we can see that for high-toxicity bins, the pro-
posed method performs better than any of the other schemes. The performance in the
medium-toxicity waste bin collection is also better than those for the LBF and LD schemes,
while the LBF scheme achieved a slightly better value for the medium-toxicity waste
bins and achieved the best value for the low/normal-toxicity waste bins. The results in
Figures 4 and 8 confirm that our proposed method achieves a higher priority for the high-
toxicity waste bins while the medium- and the normal-toxicity waste will grow in priority
if it is delayed by a large value or the bin is about to be filled.
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Figure 8. Volume/weight of high-, medium-, and normal- toxicity waste bins collected vs. bin count.

Figure 9 shows the amount of waste collected versus the carrying capacity of the
vehicle which was increased from 10 to 20 in a step size of 20. The numbers of bins for
Figures 9 and 10 were set to be equal to 40. From Figure 9, we can see that the amount
of waste collected increases with the increased capacity of the truck. We can see that the
value increases from 50 to about 97 for the proposed scheme when the capacity of the truck
is increased from 10 to 20. The LBF scheme performance is neck-in-neck with that of the
scheme in terms of the amount of waste collected for the lower capacity of the truck and
achieves slightly higher when the capacity of the truck is greater than 15. The FBF and the
LD schemes perform worst as they do not rely on the amount of waste for calculating their
bin collection priority. LBF collects bins based on their weight/volume so that is why it
achieves a higher value for the amount of waste collected, but it performs poorly when we
consider the toxicity measure of the collected waste, as can be seen in Figures 5 and 6.

When we break down the results in Figure 9 to show the amount of waste collected
from the high-, medium-, and low/normal-toxicity waste, as shown in Figure 10, we can
see that the proposed method performs significantly better than the LBF scheme while
it performs multi-fold higher than the FBF and the LD scheme for the reasons that were
discussed in the explanation of Figure 9. The proposed scheme performs better than the
LBF scheme for the medium-toxicity waste bins as well and only performs poorly for the
low/normal-toxicity waste bins as only a small set of the normal-toxicity waste bins made
it into the high-priority zone due to a longer wait time or due to the amount of waste that
might become full in a short time.
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Figure 9. Collected waste volume/weight vs. garbage truck capacity.
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Figure 10. Volume/weight of high-, medium-, and normal-toxicity waste bins collected vs. garbage
truck capacity.
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Cost Analysis of the Proposed Method with Legacy System

Our proposed method optimizes waste collection and reduces the number of required
trips by deploying an IoT system. This section presents a cost analysis of the proposed
system, demonstrating that over the long term, the initial investment in IoT deployment
will prove beneficial compared to the legacy method. For this analysis, we assumed that the
vehicles are already available, so the capital cost of the legacy system is not considered. We
considered that there are N bin locations, each with three bins. The distance between two
bin locations was set at 100 m; thus, if there are 100 bin locations, our vehicles would need
to travel approximately 10 kilometers for each trip. For the legacy systems, we estimated
a per-kilometer cost of USD 20, 30 and 40, encompassing fuel, maintenance, salaries, and
other associated expenses in waste collection.

Regarding the proposed system, we evaluated the improvements in terms of the
reduced number of trips required, as illustrated in Figure 11. The analysis indicates a clear
reduction of at least 50% in trips required for the optimized system compared to those of
the legacy systems.
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Figure 11. Number of trips required (comparison).

Turning to the additional costs for the proposed system, we considered that each bin
is equipped with an ultrasonic sensor, priced at around USD 50. These sensors are WiFi-
enabled and can utilize the WiFi network available at the end-user premises. Additionally,
we anticipated a maintenance cost of approximately 1% of the total sensor costs per week.
Furthermore, there will be an operational cost, estimated at 2% of the total cost of all the
sensors per week. In assuming there will be five trips per week, the cost analysis is depicted
in Figure 12.

Referring back to the proposed algorithm, as indicated in Figure 11, we observed that
the number of trips will be halved compared to the legacy system. Consequently, the cost
per week of operation will also be reduced by half. Although the proposed model entails
higher initial costs due to sensor installation, the weekly operational expenses will decrease.
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It is evident that the accumulated costs will break even at approximately 30 weeks for the
case where the operational cost is 20 USD per km, while it will break even at 20 and 17,
when the cost per km is USD 30 and 40, respectively.
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Figure 12. Cost analysis.

6. Conclusions

Efficient waste collection is an important part of waste management systems. Waste
collection faces challenges such as routing waste dumper vehicles and filling their capacity
to maximize the collection of toxic waste. In this study, we developed an optimal waste
collection algorithm that loads the dumper vehicle with waste bins across a city to maximize
the toxicity of the collected waste bins while meeting the dumper capacity requirements.
The given problem was solved using the 0/1 knapsack algorithm where the sack capacity is
taken as the bin-carrying capacity of the dumper, the weight of an item is taken as a waste
bin, and the value of an item is taken as the priority of the bin that depends on the toxicity
and the duration of the waste. The proposed technique was implemented in a MATLAB
simulator, and the simulation results verify the significance of the proposed solution in
terms of high-priority toxic waste collection compared to other techniques in the literature.
Furthermore, the cost analysis shows that the cost of the equipment installed at each waste
disposal premise will be covered in less than a year.

Author Contributions: Conceptualization, S.K., B.A., A.A.K.A., S.A. and M.A.; writing—original
draft, S.K., B.A. and A.A.K.A.; writing—review and editing, S.A. and M.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported and funded by the Deanship of Scientific Research at Imam
Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23078).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available in the paper.



Sensors 2024, 24, 3167 17 of 18

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhu, W.; Zhu, C. A Prediction-Based Route Guidance Method Toward Intelligent and Green Transportation System. IEEE Internet

Things J. 2023, 10, 12763–12776. [CrossRef]
2. Sun, P.Z.; You, J.; Qiu, S.; Wu, E.Q.; Xiong, P.; Song, A.; Zhang, H.; Lu, T. AGV-Based Vehicle Transportation in Automated

Container Terminals: A Survey. IEEE Trans. Intell. Transp. Syst. 2023, 24, 341–356. [CrossRef]
3. Al-Nbhany, W.A.N.A.; Zahary, A.T.; Al-Shargabi, A.A. Blockchain-IoT Healthcare Applications and Trends: A Review. IEEE

Access 2024, 12, 4178–4212. [CrossRef]
4. Wang, S.; Zhou, X.; Wen, K.; Weng, B.; Zeng, P. Security Analysis of a User Authentication Scheme for IoT-Based Healthcare.

IEEE Internet Things J. 2023, 10, 6527–6530. [CrossRef]
5. Saad, M.; Ahmad, M.B.; Asif, M.; Khan, M.K.; Mahmood, T.; Mahmood, M.T. Blockchain-Enabled VANET for Smart Solid Waste

Management. IEEE Access 2023, 11, 5679–5700. [CrossRef]
6. Jammoul, M.; Semaan, N.; Jabaly, Y. Engineering Laboratories Chemical Waste Management—Introduction of a Web-Based

System. IEEE Eng. Manag. Rev. 2023, 51, 205–214. [CrossRef]
7. Yu, X. Low-Carbon Design of Green Packaging Based on Deep Learning Perspective for Smart City. IEEE Access 2023,

11, 117423–117433. [CrossRef]
8. Awotunde, J.B.; Sur, S.N.; Jimoh, R.G.; Aremu, D.R.; Do, D.T.; Lee, B.M. FL_GIoT: Federated Learning Enabled Edge-Based Green

Internet of Things System: A Comprehensive Survey. IEEE Access 2023, 11, 136150–136165. [CrossRef]
9. Jammeli, H.; Ksantini, R.; Ben Abdelaziz, F.; Masri, H. Sequential Artificial Intelligence Models to Forecast Urban Solid Waste in

the City of Sousse, Tunisia. IEEE Trans. Eng. Manag. 2023, 70, 1912–1922. [CrossRef]
10. Hossen, M.M.; Majid, M.E.; Kashem, S.B.A.; Khandakar, A.; Nashbat, M.; Ashraf, A.; Hasan-Zia, M.; Kunju, A.K.A.; Kabir, S.;

Chowdhury, M.E.H. A Reliable and Robust Deep Learning Model for Effective Recyclable Waste Classification. IEEE Access 2024,
12, 13809–13821. [CrossRef]

11. Gómez-Sanabria, A.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Haberl, H. Potential for future reductions of global GHG and air
pollutants from circular waste management systems. Nat. Commun. 2022, 13, 106. [CrossRef] [PubMed]

12. Bihałowicz, J.S.; Rogula-Kozłowska, W.; Krasuski, A. Contribution of landfill fires to air pollution–An assessment methodology.
Waste Manag. 2021, 125, 182–191. [CrossRef] [PubMed]

13. Gautam, M.; Agrawal, M. Greenhouse gas emissions from municipal solid waste management: A review of global scenario. In
Carbon Footprint Case Studies: Municipal Solid Waste Management, Sustainable Road Transport and Carbon Sequestration; Springer:
Singapore, 2021; pp. 123–160.

14. Xin, C.; Zhang, T.; Tsai, S.B.; Zhai, Y.M.; Wang, J. An empirical study on greenhouse gas emission calculations under different
municipal solid waste management strategies. Appl. Sci. 2020, 10, 1673. [CrossRef]

15. Amicarelli, V.; Lagioia, G.; Bux, C. Global warming potential of food waste through the life cycle assessment: An analytical
review. Environ. Impact Assess. Rev. 2021, 91, 106677. [CrossRef]

16. Nguyen, W.; Martinez, D.M.; Jen, G.; Duncan, J.F.; Ostertag, C.P. Interaction between global warming potential, durability, and
structural properties of fiber-reinforced concrete with high waste materials inclusion. Resour. Conserv. Recycl. 2021, 169, 105453.
[CrossRef]

17. Shen, X.; Pan, H.; Ge, Z.; Chen, W.; Song, L.; Wang, S. Energy-Efficient Multi-Trip Routing for Municipal Solid Waste Collection
by Contribution-Based Adaptive Particle Swarm Optimization. Complex Syst. Model. Simul. 2023, 3, 202–219. [CrossRef]

18. Cicceri, G.; Guastella, D.C.; Sutera, G.; Cancelliere, F.; Vitti, M.; Randazzo, G.; DiStefano, S.; Muscato, G. An Intelligent
Hierarchical Cyber-Physical System for Beach Waste Management: The BIOBLU Case Study. IEEE Access 2023, 11, 134421–134445.
[CrossRef]

19. Zhang, M.; Cui, W.; Jiang, Q.; Wang, N. Routing Optimization for Healthcare Waste Collection With Temporary Storing Risks and
Sequential Uncertain Service Requests. IEEE Access 2024, 12, 2868–2881. [CrossRef]

20. Hajovsky, R.; Pies, M.; Velicka, J.; Slany, V.; Rous, R.; Danys, L.; Martinek, R. Design of an IoT-Based Monitoring System as a Part
of Prevention of Thermal Events in Mining and Landfill Waste Disposal Sites: A Pilot Case Study. IEEE Trans. Instrum. Meas.
2023, 72, 1–14. [CrossRef]

21. Brighente, A.; Conti, M.; Renzone, G.D.; Peruzzi, G.; Pozzebon, A. Security and Privacy of Smart Waste Management Systems: A
Cyber–Physical System Perspective. IEEE Internet Things J. 2024, 11, 7309–7324. [CrossRef]

22. Jabbour, C.J.C.; Colasante, A.; D’Adamo, I.; Rosa, P.; Sassanelli, C. Customer Attitudes Toward Circular Economy in the E-Waste
Context: A Survey Assessing Sustainable Consumption Dynamics. IEEE Eng. Manag. Rev. 2023, 51, 28–45. [CrossRef]

23. Tereshchenko, E.; Happonen, A.; Porras, J.; Vaithilingam, C.A. Green Growth, Waste Management, and Environmental Impact
Reduction Success Cases From Small and Medium Enterprises Context: A Systematic Mapping Study. IEEE Access 2023,
11, 56900–56920. [CrossRef]

24. Ding, H.; Qiao, J.; Huang, W.; Yu, T. Cooperative Event-Triggered Fuzzy-Neural Multivariable Control with Multitask Learning
for Municipal Solid Waste Incineration Process. IEEE Trans. Ind. Inform. 2024, 20, 765–774. [CrossRef]

25. Nowakowski, P.; Pamuła, T. Application of deep learning object classifier to improve e-waste collection planning. Waste Manag.
2020, 109, 1–9. [CrossRef] [PubMed]

http://doi.org/10.1109/JIOT.2023.3255200
http://dx.doi.org/10.1109/TITS.2022.3215776
http://dx.doi.org/10.1109/ACCESS.2023.3349187
http://dx.doi.org/10.1109/JIOT.2022.3228921
http://dx.doi.org/10.1109/ACCESS.2023.3235017
http://dx.doi.org/10.1109/EMR.2023.3298964
http://dx.doi.org/10.1109/ACCESS.2023.3326988
http://dx.doi.org/10.1109/ACCESS.2023.3335245
http://dx.doi.org/10.1109/TEM.2021.3081609
http://dx.doi.org/10.1109/ACCESS.2024.3354774
http://dx.doi.org/10.1038/s41467-021-27624-7
http://www.ncbi.nlm.nih.gov/pubmed/35013164
http://dx.doi.org/10.1016/j.wasman.2021.02.046
http://www.ncbi.nlm.nih.gov/pubmed/33711733
http://dx.doi.org/10.3390/app10051673
http://dx.doi.org/10.1016/j.eiar.2021.106677
http://dx.doi.org/10.1016/j.resconrec.2021.105453
http://dx.doi.org/10.23919/CSMS.2023.0008
http://dx.doi.org/10.1109/ACCESS.2023.3317689
http://dx.doi.org/10.1109/ACCESS.2023.3338018
http://dx.doi.org/10.1109/TIM.2022.3225046
http://dx.doi.org/10.1109/JIOT.2023.3322532
http://dx.doi.org/10.1109/EMR.2023.3303209
http://dx.doi.org/10.1109/ACCESS.2023.3271972
http://dx.doi.org/10.1109/TII.2023.3264108
http://dx.doi.org/10.1016/j.wasman.2020.04.041
http://www.ncbi.nlm.nih.gov/pubmed/32361385


Sensors 2024, 24, 3167 18 of 18

26. Hannan, M.; Begum, R.; Al-Shetwi, A.Q.; Ker, P.; Al Mamun, M.; Hussain, A.; Basri, H.; Mahlia, T. Waste collection route
optimisation model for linking cost saving and emission reduction to achieve sustainable development goals. Sustain. Cities Soc.
2020, 62, 102393. [CrossRef]

27. Van Engeland, J.; Lavigne, C.; Beliën, J.; De Jaeger, S. Solving a real-life multi-period trailer-truck waste collection problem with
time windows. Expert Syst. Appl. 2024, 237, 121301. [CrossRef]

28. Martikkala, A.; Mayanti, B.; Helo, P.; Lobov, A.; Ituarte, I.F. Smart textile waste collection system – Dynamic route optimization
with IoT. J. Environ. Manag. 2023, 335, 117548. [CrossRef]

29. Ali, B.; Javed, M.A.; Alharbi, A.A.K.; Alotaibi, S.; Alkhathami, M. Internet of Things-Assisted Vehicle Route Optimization for
Municipal Solid Waste Collection. Appl. Sci. 2024, 14, 287. [CrossRef]

30. Sanger, J.B.; Sitanayah, L.; Ahmad, I. A Sensor-based Garbage Gas Detection System. In Proceedings of the 2021 IEEE 11th Annual
Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 27–30 January 2021; pp. 1347–1353.
[CrossRef]

31. Dehghani, M.H.; Omrani, G.A.; Karri, R.R. Solid waste—sources, toxicity, and their consequences to human health. In Soft
Computing Techniques in Solid Waste and Wastewater Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 205–213.

32. Tsakona, M.; Anagnostopoulou, E.; Gidarakos, E. Hospital waste management and toxicity evaluation: A case study. Waste
Manag. 2007, 27, 912–920. [CrossRef]

33. Aguila, J.M.U.; Dimayuga, H.S.; Pineda, K.O.F.; Magwili, G.V. Development of Smart Waste Bin with Integrated Volume and
Weight Sensor. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information
Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1
December 2019; pp. 1–5. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.scs.2020.102393
http://dx.doi.org/10.1016/j.eswa.2023.121301
http://dx.doi.org/10.1016/j.jenvman.2023.117548
http://dx.doi.org/10.3390/app14010287
http://dx.doi.org/10.1109/CCWC51732.2021.9376147
http://dx.doi.org/10.1016/j.wasman.2006.04.019
http://dx.doi.org/10.1109/HNICEM48295.2019.9072885

	Introduction
	Related Works
	Urban Waste Management System
	Household Waste Bins
	Sector-Based Bins
	Waste Pickup Transportation
	City-Wide Dumping Centers

	Literature Review

	System Model
	Proposed Technique
	Calculating the Dumper Requirement
	Optimum Waste Collection Algorithm

	Results
	Conclusions
	References 

