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Abstract: Differential privacy has emerged as a practical technique for privacy-preserving deep
learning. However, recent studies on privacy attacks have demonstrated vulnerabilities in the existing
differential privacy implementations for deep models. While encryption-based methods offer robust
security, their computational overheads are often prohibitive. To address these challenges, we propose
a novel differential privacy-based image generation method. Our approach employs two distinct
noise types: one makes the image unrecognizable to humans, preserving privacy during transmission,
while the other maintains features essential for machine learning analysis. This allows the deep
learning service to provide accurate results, without compromising data privacy. We demonstrate the
feasibility of our method on the CIFAR100 dataset, which offers a realistic complexity for evaluation.

Keywords: data privacy; image de-identification; privacy-preserving deep learning

1. Introduction

The rapid advancement in deep neural networks (DNNs) has enabled their widespread
application in personalized services across diverse fields, including advertising [1], fi-
nance [2,3], and medicine [4–6]. To train these DNN models for such personalized services,
institutions often collect and utilize extensive datasets. This data frequently contain sensi-
tive information, raising concerns about user privacy and data protection.

The data memorization effect of DNNs, where models retain information beyond
what is strictly necessary for their intended task [7], presents a significant privacy risk. This
vulnerability enables malicious actors to target and extract sensitive data ‘memorized’ by
the DNN. A prominent example is a model inversion attack [8–10], in which adversaries
reconstruct representative input data from the DNN model itself, potentially exposing
confidential information.

To mitigate sensitive information leakages, researchers have actively explored privacy-
preserving deep learning (PPDL) techniques designed to maintain performance while
protecting data. Two main categories have emerged: (1) encryption-based techniques, and
(2) perturbation-based techniques.

Prominent encryption-based approaches include homomorphic encryption (HE) [11–15]
and secure multi-party computation (SMPC) [16–18]. These methods encrypt DNN compu-
tations and values, ensuring the data remain unintelligible to unauthorized users without
the necessary decryption keys. However, the substantial computational overheads intro-
duced by these techniques often make them impractical. Additionally, the complex service
architectures, frequently involving trusted third parties, can introduce vulnerabilities to
privacy attacks [19].

In contrast to encryption-based techniques, perturbation-based methods modify DNN
models or input data to prevent the reconstruction of the original information. Differential
privacy (DP) [20] has emerged as a widely adopted model modification technique, due to
its low computational overheads. A prominent example is differential private stochastic
gradient descent (DP-SGD) [21], which introduces DP noise during the DNN training
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process. However, An et al. demonstrated that DP-SGD remains vulnerable to model
inversion attacks, especially with clean, raw input data and a known input domain [22].

Input data modification strategies, such as marginal distribution (MD)-based tech-
niques [23,24], offer an alternative. While effective for structured tabular data, their applica-
tion is limited in this domain. Generative adversarial networks (GANs) [25–27] can address
both structured and unstructured (e.g., image) data, but their success has been primarily
confined to simple datasets like MNIST. Instance-hiding based methods [28] have shown
good performance for accuracy on various datasets. However, they can be applied in the
training phase only. Thus, such methods cannot be applied to protect a client’s data privacy.

Inspired by a recent study demonstrating that machines can achieve higher recognition
rates on strategically noised images [29], we propose a differential privacy-based image
generation method for image datasets. Our approach aims to make images unrecognizable
to humans, preserving privacy, while enhancing machine-recognizability for specific tasks.
We address two core questions: (1) how to augment machine-interpretable characteristics
within the noised images, and (2) how to disrupt the original image’s explanatory cues,
mitigating privacy vulnerabilities. To enhance machine-readability, we leverage explainable
artificial intelligence (XAI) techniques. By extracting pretrained features from machine
models and strategically embedding them into the noised images, we ensure that they
remain interpretable by subsequent machine learning systems.

Main contributions of this paper can be summarized as follows:

1. We propose an image de-identification method that strategically combines two types
of noise. The first type makes the image unrecognizable to humans, protecting privacy.
The second type preserves essential features for machine learning tasks. This dual-
noise approach effectively removes private information from input images, while
maintaining the data’s utility for downstream analysis.

2. Our proposed method enables privacy-preserving deep learning-based services, by
de-identifying client input images, protecting their data during service interactions.

3. Our experimental results demonstrate the potential of XAI techniques for generating
features or clues that facilitate DNN classification. We anticipate that these findings
will stimulate future research directions focused on enhancing privacy across diverse
data modalities.

The rest of this paper is organized as follows. In Section 2, we describe related works.
We propose our differential private image de-identification method and give a theoretical
analysis in Sections 3 and 4, respectively. In Section 5, we show the feasibility of the
proposed method with experimental results. Finally, we summarize this paper in Section 6.

2. Related Works
2.1. Perturbation-Based Privacy-Preserving Deep Learning

Differential private stochastic gradient descent (DP-SGD) [21] stands as a prominent
perturbation-based PPDL method. It protects privacy by injecting calibrated noise into the
model’s gradients during the training process. This allows the model to learn essential fea-
tures, while adhering to the rigorous mathematical guarantees of differential privacy, which
quantify privacy protection based on the chosen parameters. However, recent advance-
ments in model inversion attacks have demonstrated that DP-SGD remains vulnerable,
even with carefully tuned privacy settings [22].

In contrast to model modification methods, input modification approaches probabilis-
tically alter sensitive information in the original data, hindering malicious exploitation
of DNN models. Two notable examples include DataSynthesizer by Ping et al. and the
Bayesian network method proposed by Zhang et al. [23,24]. DataSynthesizer offers differ-
ential privacy by analyzing dataset distributions and feature correlations, while Zhang et
al. employed a differential private Bayesian network for data synthesis. However, a key
limitation of both methods is their reliance on Bayesian theory, making them primarily
suitable for structured tabular data, where data distributions are well-defined.
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GAN-based approaches offer an alternative for handling unstructured data, where
data distributions are less well defined. Notable examples include DP-GAN by Xie et al. [25],
which incorporates DP-SGD into the GAN’s generator, and the teacher–student GAN
model proposed by Jordan et al. [26] for differential private generation. Torkzadehma-
hani et al. [27] further extended DP-GAN with a conditional framework for label generation.
However, a significant limitation remains: these methods have primarily demonstrated
feasibility on simple datasets, either structured or like MNIST.

Huang et al. introduced instance-hiding as an alternative input modification ap-
proach [28]. Their method strategically blends pixels from private data with those from
a large, diverse public dataset. This obfuscates the original content, while selectively pre-
serving key features, enabling machine learning on the modified data and subsequent
classification of clean inputs. However, a critical vulnerability remains: during service,
the instance-hiding method receives clean, raw data, exposing its distribution and leaving
it susceptible to state-of-the-art model inversion attacks. Furthermore, as illustrated in
Figure 1a, this lack of service-phase protection prevents clients from securely submitting
their private data for analysis by the service model.

(a) Existing method

(b) The proposed method
Figure 1. Architecture comparison of the existing and the proposed input modification schemes.

To address the service-phase vulnerability of instance-hiding, Gao et al. proposed
an image obfuscation method specifically for medical images [18]. Their method random-
izes both pixel values and positions within a defined distribution, achieving a balance
between practicality and client-side applicability. However, this randomization approach
presents a significant limitation: it disrupts the spatial relationships between pixels, mak-
ing the method unsuitable for services where object location is crucial, such as object-
detection tasks.
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2.2. Model Inversion Attack

Since the seminal work on model inversion attacks in [8], the field has witnessed the
rapid development of increasingly sophisticated techniques. In this section, we survey
recent advancements in state-of-the-art model inversion attack research.

Balle et al. introduced a black-box attack capable of reconstructing training data [30].
Assuming knowledge of the data distribution, they leveraged shadow models and con-
fidence scores from the target model. Wang et al. proposed a method combining varia-
tional autoencoders with StyleGAN [31,32]. By training a prior distribution for the latent
space that reflects the training data distribution, they could generate representative latent
vectors suitable for StyleGAN. An et al. also employed StyleGAN, but with a different
approach [22]. They trained a latent space mapping network using the target classifier’s
confidence scores. This allowed them to extract representative data of the target class,
bypassing the defenses of DP-SGD-based PPDL models, even with strong privacy settings.

The current landscape of model inversion attacks is dominated by black-box ap-
proaches. These attacks require minimal information—only the target model and the data
distribution—posing a significant challenge to privacy-preserving deep learning. Since
DP-based PPDL methods inherently reveal the data distribution, they are particularly sus-
ceptible to such attacks. This highlights the critical need for further research into developing
robust privacy-preserving techniques that can withstand these increasingly sophisticated
black-box attacks.

2.3. Explainable Artificial Intelligent

The widespread adoption of machine learning (ML) has spurred questions about
whether models arrive at their classifications using features that align with human under-
standing. To address this, explainable artificial intelligence (XAI) has emerged as a field
dedicated to developing techniques that reveal the features influencing ML model outputs.
XAI aims to provide transparency and insights into the decision-making processes of these
complex models.

Several XAI techniques exist for explaining DNN behavior. Gradient-based methods,
such as those proposed by Simonyan et al. [33], utilize backpropagation gradients to
generate heatmap-style explanation maps. Guided backpropagation [34] builds upon this
concept but drops negative gradients, aiming to highlight only the positive contributions
of input features to the final output. Layer-wise relevance propagation (LRP) [35,36] takes
a different approach, analyzing the activated weights within the DNN. By calculating the
contribution of each weight, LRP generates an explanation map that reveals how individual
features influenced the model’s decision.

3. Human-Unrecognizable Differential Private Noised Image Generation Method

Existing input modification-based PPDL schemes often utilize unmodified original
images during the service time, as shown in Figure 1a. This exposes client data to potential
privacy risks, including network hijacking. While encryption offers a degree of protection,
it has known vulnerabilities to certain privacy attacks [19]. Alternatively, adding substantial
noise to the data can provide robust privacy by completely obscuring sensitive information.
However, this extreme obfuscation makes the image unusable for both authorized humans
and machine learning models, negating its utility.

To address the limitations of traditional privacy-preserving methods, we propose a
noise generation method that makes images unrecognizable to humans, while preserving
machine-readability. Our approach combines two core elements:

1. Human Obfuscation: We introduce strong Gaussian noise into the image, disrupting
the visual coherence and making it unrecognizable to humans.

2. Machine-Readable Enhancement: Leveraging XAI techniques, we extract crucial
image features, such as structural information, and re-embed them into the noised
image. This maintains machine-recognizability, despite the obfuscation.
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This hybrid method effectively safeguards privacy, while enabling machine learn-
ing analysis.

Recent research on DNN security, particularly in adversarial examples and XAI, pro-
vides a compelling foundation for our approach. These studies highlight a critical disparity:
features readily identifiable by humans may not be the same features crucial for machine
recognition [37,38]. For instance, an image and its adversarial counterpart can appear
identical to humans, yet be classified differently by a machine learning model. Similarly,
Dombrowski et al. demonstrated that explanation maps, tools used for understanding
DNN decisions, can diverge for visually indistinguishable images [38]. By leveraging this
inherent disparity, our method injects machine-recognizable features into images, achieving
human-imperceptible obfuscation, while preserving machine readability.

3.1. Overview

Figure 1b shows a simplified architecture of the proposed differential private image
generation method. The proposed method consists of two components; i.e., Conversion g(·)
and Service Model f (·). The Conversion component transforms the input image into a
noised format, preserving machine-readability, while obscuring the image from human
recognition, and the Service Model component conducts training and analysis tasks on the
converted, noised image.

Our two-component system, consisting of a data de-identification module and an
analysis service, offers a promising approach for securing client privacy during data transfer.
This architecture leverages DP and is divided into three phases:

Phase 1: Training with Privacy Protection

1. Distribution Learning: The de-identification module, denoted as g(·), learns the
distribution of Gaussian noise and the machine-readable features essential for accurate
analysis. XAI techniques are employed to extract these features. However, it is crucial
to acknowledge that such features might introduce some level of information leakage.

2. Privacy-Preserving Noise Injection: To mitigate information leakage risks arising
from a potential malicious analysis of the service model ( f (·)), DP noise is incorpo-
rated into the training process of g(·). This added noise mathematically guarantees a
level of privacy protection against leakage through the service model.

3. Service Model Training: Once g(·) has been trained, the noisy images generated by
g(·) are used to train the service model f (·).
Phase 2: Secure Distribution of De-identification Module
The trained g(·) component is then securely delivered to authorized clients through a

secure channel.
Phase 3: Client-Side Data Conversion and Secure Analysis

1. Client-Side Conversion: When a client has private data containing sensitive informa-
tion to be analyzed, the client utilizes the locally deployed g(·) component. This com-
ponent transforms the client’s data into a machine-readable but human-imperceptible
noisy image.

2. Secure Transmission and Analysis: The anonymized noisy image is then transmitted
to the service provider. The service model f (·), previously trained on similar noisy
images, can perform the required analysis, without compromising the client’s raw
data privacy, due to the DP guarantees and human-imperceptibility of the noise.

3.2. Conversion Component

This section delves into our core component, termed the conversion component (g(·)),
which addresses two crucial questions in privacy-preserving deep learning: (1) How can
images be obfuscated for privacy, while retaining features essential for machine learning?;
and (2) How can we eliminate potential information leakages through explanation maps
that arise from obfuscated images?
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To move beyond the limitations of purely random Gaussian noise, we replace it
with a generator that learns to produce noise with a controlled distribution. This balances
obfuscation with structure preservation. Furthermore, we employ XAI techniques to extract
machine-readable features. Unlike traditional CNN feature layers or pretrained teacher
models, which are strongly tied to specific details within the original image, XAI results
have a weaker connection to the image itself. XAI results instead highlight how the model
reached its output, similar to the backpropagation process. This characteristic makes them
ideal for extracting machine-readable features without excessively compromising privacy.

A significant challenge lies in the potential for an image’s partial shape or features to
persist within its XAI-generated explanation map, even after obfuscation. To combat this,
we add a controlled degree of randomness to the noisy image’s explanation map during
the training process of our conversion component. However, indiscriminate random
perturbations risk damaging the very features we aim to preserve for analysis. Instead, we
carefully overlay the explanation map with that of a different, randomly chosen class. This
process is meticulously managed using DP, ensuring mathematical guarantees regarding
the privacy level offered.

To train our conversion component (g(·)), we employ a specialized generative adver-
sarial network (GAN). This GAN incorporates a discriminator that guides the generator
towards producing structured, target-magnitude Gaussian noise, and an explainer ( f ′(·))
that facilitates the generation of machine-readable features using XAI-derived explanation
maps (see Figure 2). The explainer’s architecture mirrors that of the service model ( f (·)),
and it is pretrained with the original, unmodified data. For the given explainer XAI method
h(·), Gaussian noise generation method n(·), differential private noise generation method
N (·), and specified input image x, the objective function of our GAN algorithm can be
expressed as

min
g

max
D

En(x)∼pdata(n(x))[log D(n(x)))]

+Ex∼pdata(x)[1 − log D(g(x))

+ |h ◦ f ′(x)− h ◦ N ◦ f ′(g(x))|]

(1)

where ◦ is the composition of functions, g(·) is a generator, which is the Conversion com-
ponent, and D is a discriminator. In Equation (1), the term |h ◦ f ′(x)− h ◦ N ◦ f ′(g(x))|
means the distance between the explain map of the original data and the explain map of the
converted data with differential private noise. Here, the loss function of the discriminator
is the same as that of the original GAN’s discriminator, except that the distribution of the
discriminator’s input is changed from the original images to noised images. Contrarily,
the loss function of the generator is defined as a joint loss consisting of noise loss and
explanation loss.

Figure 2. GAN architecture for the proposed image conversion component.

The noise loss Lnoise measures the errors of the discriminator for modified image data
G(x) and is calculated as follows:

Lnoise = log (1 − D(g(x))) (2)

which encourages the Conversion component to learn the distribution of Gaussian noise.
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The explanation loss Lexp measures the difference between the explain maps of the
original image and the modified image and is calculated as follows:

Lexp = d(h ◦ f ′(x), h ◦ N ◦ f ′(g(x))) (3)

where d(·) is a distance function that measures the difference between the explain maps
of the original image h ◦ f ′(x) and the converted data with differential private noise
h ◦ N ◦ f ′(g(x)). The explanation loss makes features of the original image and the con-
verted image more similar when analyzed by machine; that is, it encourages the Conversion
component to inject machine-recognizable features into the converted image.

Consequently, the loss function of the generator LG is defined as a weighted summa-
tion of two such loss functions:

Lg = αLnoise + βLexp (4)

where α and β are hyperparameters to control the characteristics of the generator.
As mentioned above, the role of the discriminator is to encourage the Conversion

component to learn the distribution of Gaussian noise. In other words, the distribution of
the input images is changed to the distribution of noised images. Thus, the loss function of
the discriminator LD is defined as follows:

LD = log (1 − D(n(x))) + log (D(g(x))) (5)

4. Theoretical Analysis

To show that the security of the proposed method can be supported by DP, we describe
our theoretical basis in this section. According to the definition of DP, the proposed method
has to satisfy following equation:

Pr[ f (D1) = S]
Pr[ f (D2) = S]

≤ eϵ + δ (6)

where f (·) is a deterministic function that hides a single data point. D1 and D2 are neigh-
boring data points in a specific data distribution. ϵ and δ are privacy parameters. The dis-
tinguishability of two processed data points, f (D1) and f (D2), increases when the value of
ϵ and δ increases.

In Equation (6), to address neighboring data D1 and D2, we need to define the field of
data. Since the proposed method is focusing on image data, the field of data can be width ·
height · channels · 255 in RGB expression. However, such a field only represents the field of
each pixel, not the contents in the image. Since the content in the image is expressed by a
group of pixels, we define a set of classification results as a field of data.

Therefore, the conversion component of the proposed method can be expressed
as follows:

h ◦ N ◦ f ′(g(x)) (7)

where N is a deterministic function, which generates noise satisfying DP, which is equiv-
alent to f in Equation (6). Here, we apply a theorem that defines the properties of DP as
follow [39]:

Theorem 1. If F(x) satisfies DP, then for any deterministic or randomized operation g on F(x),
g(F(x)) satisfies DP.

Therefore, following the Theorem 1, the conversion component satisfies DP.

5. Experiment

To show the feasibility of our proposed scheme, we show experimental results as
follows: (1) the classification performance according to the values of noise magnitude σ and
privacy parameter ϵ and δ; (2) a de-identification performance comparison of the image



Sensors 2024, 24, 3166 8 of 14

with the original Gaussian noise and the image with the proposed scheme; (3) an analysis on
machine-recognizable features from XAI; and (4) the effect of DP on the explanation map.

5.1. Experimental Configuration

Since most reference implementations of XAI do not support gradient calculation from
explanation maps, we implemented an explainer network that calculates gradients from
explanation maps referring to Dombrowski et al.’s implementation [38]. The Conversion
component was implemented with a generator, as shown in Table 1, and a Service Model
component that performed classification on the generated images, the VGG16 network
shown in Table 2 with input size of 224 × 224 pixels, was used.

Table 1. Details of the implemented generator network for the conversion component.

Layer Description Number of Parameters

Convolution (7 × 7, stride 1, padding 3) 64 filters 1792

Instance Norm - -

ReLU activation - -

(6 residual blocks) . . . . . .

Deconvolution (3 × 3, stride 1, padding 1) 64 filters 4352

Instance Norm - -

ReLU activation - -

Convolution (7 × 7, stride 1, padding 3) Target image channels 1792

tanh activation - -

Table 2. Details of the implemented VGG16 network.

Layer Description Number of Parameters

Convolution (3 × 3 , same padding) 64 filters, ReLU activation 1792

Convolution (3 × 3, same padding) 64 filters, ReLU activation 36,864

Max Pooling (2 × 2, stride 2) -

Convolution (3 × 3, same padding) 128 filters, ReLU activation 73,792

Convolution (3 × 3, same padding) 128 filters, ReLU activation 147,520

Max Pooling (2 × 2, stride 2) -

Convolution (3 × 3, same padding) 256 filters, ReLU activation 295,136

Convolution (3 × 3, same padding) 256 filters, ReLU activation 590,080

Convolution (1 × 1) 256 filters, ReLU activation 65,536

Convolution (3 × 3, same padding) 256 filters, ReLU activation 590,080

Max Pooling (2 × 2, stride 2) -

Fully-connected 4096 units, ReLU activation 1,048,576

Fully-connected 4096 units, ReLU activation 16,777,216

Output (Softmax) 100 units 40,960

In addition, we performed all experiments using the CIFAR100 [40] dataset. Existing
DP-based data-modification-based PPDL approaches, such as [25,27], were used MNIST
as a benchmark dataset. However, since the MNIST dataset has a small number of classes
and too simple a structure, the MNIST dataset was not suitable to show the possibility of
general applications to various fields. On the other hand, the CIFAR100 dataset consists of
very diverse types of images divided into 100 classes. Due to the diversity of the composed
images, it is used to show the general applicability of new techniques in state-of-the-art
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research related to image processing [41–44]. Therefore, to show the feasibility of the
proposed human-unrecognizable differential private noised image generation method, we
used the CIFAR100 dataset in the experiments.

The differential private noise generation mechanism and the XAI method for the explainer
were set up as a Gaussian mechanism [45] and guided backpropagation [34], respectively.

5.2. Classification Performance

To show the feasibility of the proposed human-unrecognizable differential private
noised image generation method, we evaluated the classification accuracy on the CIFAR100
dataset in two ways: (1) measurement of the classification accuracy under various parame-
ters; and an (2) ablation test without Lexp. Here, the accuracy of the explainer model used
to train the Conversion component that satisfied the parameters was 0.720. The overall
results are shown in Table 3.

Table 3. Classification accuracy of the proposed method under various parameter settings (w. base
accuracy 0.720).

Privacy Parameter
Noise Parameter

σ = 3.0 σ = 4.0 σ = 5.0

without Lexp 0.603 0.586 0.577

ϵ = 0.1
δ = 10−5 0.620 0.611 0.601

δ = 0.9 0.623 0.612 0.598

ϵ = 0.9
δ = 10−5 0.652 0.629 0.624

δ = 0.9 0.651 0.632 0.620

First, we measured the accuracy of the Service Model component trained with the gen-
erated noised training images using the Conversion component. Each Conversion component
was trained with noise parameter σ values of 3.0, 4.0, and 5.0 and privacy parameters (ϵ, δ)
value (0.1, 10−5), (0.1, 0.9), (0.9, 10−5) and (0.9, 0.9), respectively. When the σ value was
3.0 and ϵ value was 1, the accuracy was observed to be about 0.62 with both of δ values.
Similarly, with a σ value of 4.0, the accuracy was about 0.61 and 0.63 with ϵ values of 0.1
and 0.9, respectively. For a σ value of 5.0, accuracy was about 0.60 and 0.62 with ϵ values of
0.1 and 0.9, respectively. From such results, we observed a tendency that matched with the
theoretical characteristic of DP, where the value of ϵ affected the noise more than that of δ. In
the ablation test, we observed accuracies of 0.603, 0.586, and 0.577 with respect to σ values
of 3.0, 4.0, and 5.0, respectively. Such results imply that the explanation loss Lexp is a key
feature for injecting machine-recognizable features into a converted image. Considering
the simple network architecture of the Service Model component and the complexity of the
CIFAR100 dataset, such results were considered acceptable [46].

The Conversion component of the proposed scheme mimics the Gaussian noise and dif-
ferential private explainer’s explanation maps; that is, it is infeasible to show the privacy of
modified images with mathematical theory. Instead, we show that the noise generated from
the Conversion component is similar enough to the noised image with real Gaussian noise.

5.3. Image De-Identification

Figure 3 shows graphical examples of images with the original Gaussian noise and
converted images using the proposed scheme. According to the characteristic of Gaussian
noise, the magnitude of noise increases when the σ value increases. In other words,
details of the original image fade out and the probability of a sensitive information leakage
through human analysis decreases, Figure 3a. Specifically, it is very difficult to recognize the
presence of any object in the image with a value of σ around 3.0 and more. Images converted
by the proposed Conversion component under each target σ are shown in Figure 3b. When
comparing the images with Gaussian noise and converted images, it is almost impossible
to see a distinctive difference.
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(a) (b)
Figure 3. Comparison of noised images with Gaussian noise and converted images using the
proposed scheme. (a) Noised images with Gaussian noise with a target σ value; (b) Converted images
using the proposed scheme with a target σ value (ϵ = 0.1, δ = 0.9).

To show the de-identification performance concretely, we measured a quantitative
indicator of Structural Similarity (SSIM) [47], which is widely used in the image processing
field to measure a generated image’s quality. The SSIM quantifies the perceived similarity
between two images, often referred to as the reference image (x) and the test image (y).
It goes beyond a simple pixel intensity comparison by incorporating luminance (l(x, y)),
contrast (c(x, y)), and structure (s(x, y)) comparisons. The SSIM value ranges from −1 to 1,
with 1 indicating perfect structural similarity and values closer to −1 signifying significant
structural dissimilarities. The specific equation for SSIM involves a combination of these
three components:

SSIM(x, y) = [l(x, y)× c(x, y)× s(x, y)] (8)

where each component is calculated based on the means (µx, µy), standard deviations (σx,
σy), and covariance (σxy) of x and y within a local window, along with two parameters (C1
and C2) to stabilize the division by small denominators. This metric provides a valuable tool
for assessing image quality and compression effectiveness in image processing applications.
Therefore, we calculated the SSIM between the original image and the modified image, to
show the average difference from the original image. In other words, a smaller SSIM value
means a lower recognition probability by humans. Table 4 shows the average SSIM of the
test datasets of CIFAR10 and CIFAR100, which were generated with the original Gaussian
noise and the proposed scheme. In both datasets, the average SSIM value decreased
as the target σ increased. In addition, we observed that there was no difference in the
average SSIM of noised images and converted images according to each target σ and
privacy parameter ϵ. That is, the proposed conversion component showed a very stable
de-identification performance.

Table 4. Average SSIM of images where the original Gaussian noise and the proposed image
conversion method were applied (δ = 0.9, scaled by ×102).

Scheme Gaussian
Proposed

ϵ = 0.9 ϵ = 0.5 ϵ = 0.1

Target σ 3.0 4.0 5.0 3.0 4.0 5.0 3.0 4.0 5.0 3.0 4.0 5.0

SSIM 1.54 1.29 1.16 1.52 1.21 1.12 1.54 1.30 1.15 1.55 1.28 1.22

5.4. Machine-Recognizable Features from XAI

To analyze the feasibility of the proposed machine-recognizable feature injection
method, we visualized some features analyzed by machine using XAI, i.e., guided back-
propagation, and Figure 4 shows the results. The first row shows the original image of
samples, and the corresponding converted image by Conversion component g(x) is shown
in the second row. In the third row, an explanation map of the classification results of
the explainer model of the original image h ◦ f ′(x) is shown. Explanation maps of the
classification results of the explainer model h ◦ f ′ ◦ g(x) and the Service Model component
h ◦ f ◦ g(x) are shown in the fourth and fifth row, respectively. The last row shows explana-
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tion maps of the classification results of the model where DP was not applied. All samples
were selected from the test set of the CIFAR100 dataset, which was classified correctly by
the Service Model trained with σ = 3.0, ϵ = 0.1 and δ = 10−5.

Considering Equation (3), the explanation map of h ◦ f ′(x) and h ◦ f ′ ◦ g(x) should
have become similar as the model shows better performance. However, the explanation
maps of h ◦ f ′ ◦ g(x) in the fourth row only shows very strange images that do not match
with the corresponding explanation map in the third row. In addition, the explanation map
of h ◦ f ′(x) and h ◦ f ◦ g(x) show different shapes with proper privacy parameter settings.
However, the experimental results in Section 5.2 show a clear performance difference
using Lexp. Additionally, compared to the last row, which shows almost all details, the
explanation maps in the fifth row hide details of the object very well. As a consequence
of such observations, we conjecture that the explanation loss Lexp preserves machine-
recognizable features that are not human-unrecognizable, even in the presence of noise
from DP.

Figure 4. Comparison of the explanation map extracted from the explainer and the service model
(σ = 3.0, ϵ = 0.1, δ = 10−5).

5.5. Effect of DP on the Explanation Map

To observe the effect of DP on the converted image, we extracted an explanation
map from arbitrary selected samples under various privacy parameters. All samples
were selected from the test set of the CIFAR100 dataset that was classified correctly by
all Service Models with each privacy parameter. Figure 5 shows the partial results of
the selected samples. In each sub-figure, the first row shows the original image of each
sample; the second row shows the corresponding explanation map with a stronger privacy
parameter; and the third row shows another corresponding explanation map with weaker
privacy parameters.

As shown in Figure 5a, most explanation maps show the outlines of the object with
a relatively low target σ value. However, when considering privacy parameters, we can
observe that explanation maps with weaker parameters show colors and shapes similar to
those of the original object. In particular, in the first sample from left, the shape of the fish
has almost disappeared in the second row. Conversely, the third row shows a much clearer
shape and colors of the yellow fish. Meanwhile, with a relatively high target σ value, the
explanation maps show very noisy images, regardless of the privacy parameters. However,
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we can intermittently observe relatively clear explanation maps, such as the last image of
the third row from the left.

(a) σ = 3.0 (b) σ = 5.0
Figure 5. Comparison of noised images with Gaussian noise and converted images using the
proposed method.

6. Conclusions

The proposed method presents a new privacy-preserving deep learning method that
tackles the challenge of protecting client data during service interactions. Our contribution
lies in differential privacy-based image de-identification. This method strategically injects
noise to obfuscate visual content, while strategically embedding machine-readable, XAI-
derived features. We achieve this balance using a customized GAN architecture that
explicitly incorporates explanation maps during the training process.

In addition, our approach addresses the limitations of the existing perturbation-based
methods, which can be vulnerable to state-of-the-art model inversion attacks. The integra-
tion of differential privacy (DP) provides theoretical guarantees of privacy, with the level of
protection controlled by the DP parameters.

The optimization of the accuracy and privacy trade-offs caused by image de-identification,
as well as differential privacy and extensions to other types of tasks, such as object detection,
will be our future work.
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