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Abstract: This paper presents the use of deep Reinforcement Learning (RL) for autonomous naviga-
tion of an Unmanned Ground Vehicle (UGV) with an onboard three-dimensional (3D) Light Detection
and Ranging (LiDAR) sensor in off-road environments. For training, both the robotic simulator
Gazebo and the Curriculum Learning paradigm are applied. Furthermore, an Actor–Critic Neural
Network (NN) scheme is chosen with a suitable state and a custom reward function. To employ the
3D LiDAR data as part of the input state of the NNs, a virtual two-dimensional (2D) traversability
scanner is developed. The resulting Actor NN has been successfully tested in both real and simulated
experiments and favorably compared with a previous reactive navigation approach on the same UGV.

Keywords: reinforcement learning; off-road navigation; curriculum learning; 3D LiDAR; unmanned
ground vehicles; traversability; robotic simulations

1. Introduction

Off-road navigation of Unmanned Ground Vehicles (UGVs) is a challenging task
that requires the ability to avoid obstacles below and above the surface level, including
overhangs [1]. This can be accomplished with classical approaches, such as potential
fields [2], or with modern machine learning (ML) [3]. Nevertheless, these techniques
present some issues: for the first approach, manual parameter tuning is required, whereas
for the second, adequate labeled data has to be available for training.

Reinforcement Learning (RL) is an ML approach that focuses on directly mapping
situations to actions to maximize a numerical reward [4]. In general, the training data for
RL is generated when an agent interacts by trial and error with the environment through
an action, that will produce a new state and a reward related to the achievement of a goal.
RL has been applied to a wide range of areas, such as games [4], computer vision [5] or
robotics [6]. In the latter, RL has been successfully employed for manipulator control [7], for
indoor navigation [8,9] and for self-driving cars [10,11], but little research has been made
on off-road scenarios.

To apply RL to autonomous navigation, it is necessary to employ vehicle simula-
tors [12], as training requires many hours and exposure to dangerous situations such as
collisions or overturns. Furthermore, autonomous navigation in off-road environments
implies abilities that are difficult to grasp and should be taught in an incremental way as in
Curriculum Learning (CL) [13].

In this paper, we propose a deep RL scheme, that makes use of the robotic simulator
Gazebo [14] and the CL paradigm, trains a pair of Neural Networks (NN), namely Actor–
Critic [4,15], to perform autonomous navigation of a UGV on off-road environments. To
this end, the input data is the two-Dimensional (2D) traversability data obtained from
tri-Dimensional (3D) point clouds of an onboard Light Detection and Ranging (LiDAR)
sensor, and the relative position and orientation of the UGV with respect to the current
geodetic goal. This navigation strategy has been tested in simulated and real scenarios,
including a comparison with a previous reactive approach on the same UGV.

In this way, the main contributions of the paper can be summarized as follows:
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• Generation of virtual 2D traversability ranges from a 3D laser scan, using a Random
Forest (RF) classifier trained with synthetic data.

• Implementation of an Actor–Critic RL scheme, which has been trained in simulated
scenarios of increasing difficulty with CL.

• Testing autonomous navigation on natural environments with the Actor NN in both
simulated and real experiments.

The rest of the paper is organized as follows. The next section presents some related
work. Then, Section 3 introduces the development of virtual 2D traversability scans from
the 3D LiDAR data of the mobile robot Andabata. Section 4 describes the characteristics of
the employed RL scheme. The training process and the experimental tests are shown in
Sections 5 and 6, respectively. The paper ends with a section devoted to conclusions and
the cited references.

2. Related Work
2.1. Non-Trained Methods

For end-to-end navigation, it is generally required a method to estimate the traversabil-
ity of the surroundings using onboard sensors of the UGV, such as LiDARs and cameras [16].
This task can be done by extracting different geometric features of the environment and us-
ing statistical analysis to estimate traversability. Thus, in [17] a 3D point cloud is processed
to estimate feasible vehicle poses in the surroundings. In [18], a rapidly exploring random
trees algorithm is directly used with 3D point clouds as input to produce safe paths within
the mapped environment. In [19], fuzzy elevation maps are built from 3D LiDAR data to
choose the best motion direction towards a distant goal. These methods require heuristic
tuning that involves expert knowledge and is hard to transfer to other UGVs.

2.2. Data Trained Methods

Learning-based techniques have been successfully implemented for end-to-end naviga-
tion [20]. In [21], the robot behavior is learned using examples of the desired navigation in
complex unstructured scenarios. As these kinds of tests with real robots are time-consuming
and can affect robot integrity, the use of robotic simulations is very extended, like in [22],
where traversability data is obtained with Gazebo and, then, used for navigation. In [23],
an ML method is trained to classify point clouds of rough terrain using geometric informa-
tion. In [24], different ML estimators are trained with synthetic LiDAR data, and the best
classifier is applied in [25] to 3D point clouds to calculate a safe path towards the goals.
Nevertheless, finding suitable data to train these algorithms is not always easy, as they
usually require manual tagging, which is a slow and error-prone process. To overcome this
problem, synthetic datasets have been published, where data is directly acquired from a
robotic simulator [26], making it free of labeling errors and reducing human labor.

2.2.1. Reinforcement Learning (RL)

One step further in data-trained algorithms for autonomous navigation is the use of
RL. In this case, the training data is generated while practicing, and the behavior of the
vehicle is continually adjusted [4]. Thus, in [27], obstacle avoidance is learned by a UGV
while performing 2D path tracking. In [28], an unmanned aerial vehicle is trained with
Gazebo to fly among obstacles with a 2D LiDAR. For indoor navigation of UGVs, methods
can be found where the main exteroceptive sensors are a 2D rangefinders [29–31], depth
cameras with a limited field of view [32] or RGB cameras [9,33]. In [34], 2D virtual range
data generated from a monocular camera is employed by a UGV as input for RL. In [35],
an onboard 3D LiDAR is used to build local elevation maps for navigating rough terrain
with RL.

2.2.2. Curriculum Learning (CL)

When facing complicated tasks, it is often beneficial to employ the CL paradigm,
where the training process is done in different stages of increasing difficulty [13]. Thus,
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in [36] a robotic arm learns to grasp and place objects. In [37], a UGV finds out how
to perform end-to-end navigation in warehouses with 2D LiDARs and a frontal camera.
In [38], autonomous car driving is trained with the CARLA simulator [10] from a static
environment with no traffic to more realistic settings with cars, pedestrians and changing
weather conditions.

Finally, it is relevant to mention that most of the previously cited papers about RL
adopt an Actor–Critic scheme [9,27–29,31,33,35–38].

3. Virtual 2D Traversability Scanner

Modern 3D LiDAR sensors produce a variable and large amount of 3D points, making
this kind of data unsuitable for being used as input for RL, which requires a small-size
constant-length vector. For this reason, 3D point clouds will be processed to emulate the
output of a virtual 2D traversability scanner.

3.1. Case Study

Andabata is a wheeled skid-steer UGV designed for off-road navigation that weighs
41 kg. It is 0.67 m long, 0.54 m wide and 0.81 m height (see Figure 1a). It has four DC motors
(one for each wheel) powered by a 30 V battery [19]. The local coordinate frame is placed
at the center of the wheel contact points with the ground with its local X, Y and Z axes
pointing forward, to the left and upwards, respectively.

For outdoor localization, Andabata employs the IMU of a smartphone (with incli-
nometers, gyroscopes, and a compass) and a GNSS receiver with a horizontal resolution of
1 m. The main exteroceptive sensor for navigation is a 3D LiDAR sensor with 360◦ field of
view built by rotating a 2D LiDAR [39].

All motors and sensors are connected to the onboard computer (Intel Core processor
i7 4771 with 16 GB RAM, 8 MB cache and four cores at 3.5 GHz), which employs Ubuntu
18.04 and the Melodic version of the Robot Operating System (ROS). The hardware and
software of Andabata have been modeled in Gazebo (see Figure 1b) to perform reliable
simulations [25].

(a) (b)

Figure 1. The mobile robot Andabata (a) and its simplified hardware model in Gazebo (b).

3.2. Traversability Assesment

In [24], a method to directly process the 3D leveled point clouds generated by Andabata
was presented, where every 3D point was classified according to its traversability. Different
classifiers were trained using supervised learning with labeled data generated synthetically.
Then, binary classified points were projected in a local 2D horizontal grid to determine cell
traversability for autonomous navigation [25].
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In this paper, a simplified version of these procedures is proposed. Firstly, the 3D
points are projected on a horizontal plane at the current position of the vehicle, and a
local 2D polar grid is built, which consists of 32 sectors of 11.25◦ and 10 uneven annuluses
with a maximum radius of 10 m as in [25]. 3D points with a height greater than 1.2 m
are not projected, which would allow Andabata to move underneath overhangs such as
tree canopy.

Then, five geometric features are calculated for every cell with the spatial coordinates
of the 3D points that fall inside it: roughness (F1), vertical orientation (F2), planarity (F3), the
minimum height (F4) and the maximum difference in height (F5). The first three features
are calculated by Principal Component Analysis (PCA).

A new RF classifier is trained to assess the traversability of each cell (see Figure 2). This
is done by using synthetic 3D scans with every point already labeled as traversable and
non-traversable (see Figure 3a). Then, each polar cell is tagged according to the following
criteria (see Figure 3b):

• If the cell does not contain enough points to compute geometric features (i.e., five), it
is labeled as empty in white.

• If at least 15% of points are non-traversable, the cell is classified as non-traversable
in red.

• In another case, i.e., with more than 85% of traversable points, the cell is classified as
traversable in green.

3D
points

x y z Label Label

Feature
extraction

Training
Process

RF Classifier320
cells

2D Projection

Figure 2. Pipeline for training the RF cell classifier.

(a) (b)

Figure 3. A synthetic 3D point cloud (a) and its tagged 2D polar grid (b) for training the RF cell classifier.

The same fifteen synthetic 3D point clouds used in [24] have been employed for
supervised learning, where ten of them are for training and five only for validation. All in
all, this data contains 4800 cells, from which 2922, 1191 and 687 are green, red and white,
respectively. Table 1 contains the components of the confusion matrix for the validation data
by considering the negative and positive green and red classes, respectively. Performance
metrics have been computed in Table 2, where good classification results can be observed,
although slightly worse than those obtained for the RF point estimator [24].
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Table 1. Confusion matrix for the validation data.

Component Value

True Positive (TP) 340

True Negative (TN) 780

False Positive (FP) 82

False Negative (FN) 210

Table 2. Validation metrics for the RF cell classifier.

Metric Formula Result

Precision TP+TN
TP+TN+FP+FN 0.798

Recall (RE) TP
TP+FN 0.618

Specificity (SP) TN
TN+FP 0.906

Balanced Accuracy RE+SP
2 0.762

Once trained the RF classifier, can be employed for predicting the traversability label
of the 2D cells of a 3D point cloud (see Figure 4). This constitutes an improvement in the
processing time with respect to our previous navigation strategy [25], because it directly
classifies 320 navigation cells instead of around 32,000 3D points.

x y z

320
cellsFeature

extraction

Label

RF Classifier3D
points

2D Projection

Figure 4. Pipeline for the prediction of cell traversability.

Finally, with the traversability grid, the virtual 2D scanner will produce a vector vt
at the discrete time step t with 32 maximum navigable distances along every sector. An
example of this processing on the simulated environment is shown in Figure 5, where Xp
and Yp represent the projection of the local X and Y axes of Andabata on the 2D horizontal
grid, respectively.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Visualization of a single vertical 2D scan from the simulated 3D LiDAR of Andabata (a), a
3D point cloud (b), the deduced cell traversability (c) and the virtual 2D traversability ranges (d).

4. Deep Reinforcement Learning

For deep RL, it has been chosen a model-free, on-policy and online scheme, called
Actor–Critic [4,15], that tries to adjust, at the same time, the Actor and the Critic NNs.
During training, the Actor selects an action at for a given state xt, whereas the Critic
informs how good was the selected action with a value qt. A baseline function, calculated
with at and qt, serves to adjust both NNs during training (see Figure 6).

Figure 6. Actor–Critic general scheme.

The state xt has 35 values that consist of the traversability vector vt, together with
two previous actions (indicated as at−1, at−2) and the heading error pt of the UGV with
respect to the current goal (see Figure 7), which is obtained from the GNSS coordinates and
compass orientation. The action is directly the steering speed of Andabata, which is in the
domain at ∈ [−0.5, 0.5] rad s−1 and includes a dead zone of [−0.15, 0.15] rad s−1 to avoid
small changes of direction.
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Goal

Figure 7. Heading error pt and distance dt of Andabata with respect to the target at the discrete time
step t.

The Actor and Critic linear NNs each contain two hidden square layers (200 × 200
dimension) and an output layer (200 × 1 dimension) which have been implemented by
using the ML library PyTorch (https://pytorch.org, accessed on 14 March 2023). The
dimensions of the input layers for Actor and Critic NNs are 35 × 200 and 36 × 200,
respectively. Both have as input xt, but the Critic NN also includes the environmental
reward rt (see Figure 8).

input layer hidden layer

output layer

hidden layer

input layer hidden layer hidden layer

output layer

Figure 8. Layers of the Actor (top) and the Critic (bottom) NNs.

4.1. Reward Function

The reward function rt evaluates the situation of the UGV in the environment. It has
been adjusted by trial and error as:

rt = ra
t − rr

t , (1)

where ra
t and rr

t are the attractive and repulsive functions, respectively. The attractive
function is defined as:

ra
t = Ka · (dt − dt−1), (2)

where Ka = 200, dt and dt−1 are the distances between Andabata and the goal point at the
current time step and at the previous (see Figure 7). The repulsive function is modeled as:

rr
t =

32

∑
i=1

Kr(i) · (vmax − vt(i)), (3)

where vmax = 10 m, vt(i) is the 2D virtual range in the direction i of the navigation grid
and Kr a parameter that depends on the sector that corresponds to i (see Figure 9). Three
values Kr1 = 0.1, Kr2 = 0.03 and Kr3 = 0.009 are chosen to produce a higher punishment
when Andabata directly navigates to obstacles.

https://pytorch.org
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This strategy produces smoother steering behaviors than sparse penalty functions [29,31],
where only a minimum distance to obstacles is considered for negative rewards, which can
lead to rough UGV reactions.

Figure 9. Possible values for the Kr parameter.

4.2. ROS Implementation

Figure 10 shows the generation of a control action from a 3D point cloud through
the trained Actor NN, that will allow Andabata to move towards a goal while avoiding
obstacles in off-road environments.

3D
points

GNSS robot coordinates

Compass orientation

2D virtual
traversability sensor

Geodetic goal coordinates

Actor NN

x y z

Figure 10. Inputs and outputs of the Actor NN during autonomous navigation.

The software necessary to perform autonomous navigation has been developed with
ROS nodes, which are fully compatible between Andabata and its Gazebo implementa-
tion [25]. Figure 11 shows the ROS implementation in terms of nodes and topics. Table 3
shows the rates at which the different messages are delivered between different nodes in an
asynchronous way through the topics. It stands out that the interval among control actions
is 0.1 s, although the acquisition time for 3D laser scans is approximately 3.33 s.

The Unscented Kalman Filter (UKF) node generates the mobile robot localization by
using the IMU, the compass and wheel odometry produced by the direct kinematics node.
The 3D laser scanner node builds leveled 3D point clouds by combining vertical 2D laser
scans with the angular position of the LiDAR head and UKF localization. To simulate the
data generated by the real sensors and the motor drivers, several Gazebo plugins were
introduced. All these nodes have been previously employed in [19].

While a new 3D point cloud is forming, the current one is continually transformed
into the current robot pose. Then, these relative point clouds are processed to generate
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the 2D traversability data that the Actor NN node employs to produce angular speed
commands. Finally, the inverse kinematics node computes the wheel speeds of each side
for skid-steering assuming that the vehicle navigates at a constant longitudinal speed.

Figure 11. ROS computation graph. Driver nodes (Gazebo plugins for the simulated robot) are
represented with blue ellipses instead of red squares.

Table 3. Output rate of the ROS messages.

ROS Topic Message Type Rate (Hz)

/2D_scan sensor_msgs/LaserScan 40

/head_angle andabata_msgs/LaserEvent 40

/encoder_data andabata_msgs/Wheels_speed 100

/imu sensor_msgs/Imu 100

/3D_cloud sensor_msgs/PointCloud2 0.3

/3D_relative_cloud sensor_msgs/PointCloud2 20

/tf tf/tfMessage 1000

/mag_orientation sensor_msgs/MagneticField 100

/fix sensor_msgs/NavSatFix 1

/2D_virtual_scan sensor_msgs/LaserScan 10

/cmd _vel geometry_msgs/Twist 10

/wheel _speed _cmd andabata_msgs/Wheels_cmd 10
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5. Training with Curriculum Learning

Following the CL strategy, three simulated scenarios of increasing complexity have
been used to accelerate the training process and to increase its convergence. In this way,
Andabata begins with a horizontal 2D laser scanner in an indoor scenario, continues with
its 3D LiDAR and ends in a natural environment. In each stage, 200 navigation episodes
are performed. Each one can be aborted either by reaching the goal (i.e., if dt < 1 m), when a
collision is detected (i.e., if any of the elements of vt is less than 0.72 m) or when a maximum
time is exceeded.

5.1. First Stage

At this stage, a squared maze-like environment of 80 m side has been used. Several
possible initial and goal positions for Andabata have been chosen for training the NNs (see
Figure 12). The initial heading of the vehicle is always zero, i.e., it points to the upper side
of Figure 12.

In addition, the 3D LiDAR has been replaced by a 2D laser scanner with 32 horizontally
mounted beams with a maximum range of 10 m. This is also the distance returned when
obstacles are far away to emulate the 2D traversability virtual scanner (see Figure 13a). The
maximum allowed time for each episode is 180 s.

Figure 12. Top view of the training environment for the first and second stages. Possible initial and
goal points are marked with blue crosses and green dots, respectively.

(a) (b)

Figure 13. Examples of 2D laser scans acquired in the first (a) and in the second (b) stages in the maze.

Figure 14a shows three tests using the trained Actor NN at this stage, where it can be
observed good navigation results with a longitudinal speed of 0.3 m s−1 between initial
and goal points.
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(a) (b)

Figure 14. Validation tests at the end of the first (a) and second (b) stages. The followed paths are
represented with red lines.

5.2. Second Stage

At this stage, virtual 2D traversability scans are generated from the simulation of the
3D laser scanner of Andabata, which combines successive vertical 2D scans acquired in
motion (see Figure 13b). The remaining navigation conditions from the previous stage have
not been changed.

The main difference from the previous stage is that the ranges of the 2D virtual scanner
are discontinuous rather than continuous. Three tests were done to examine the resulting
Actor NN. Figure 14b shows the trajectories followed by Andabata, which correctly reach
the goals while avoiding the walls of the maze.

5.3. Third Stage

At the last stage, the maze is substituted by a natural environment modeled with a
Gazebo in a square of 120 m side that contains trees, high grass and bushes on uneven
terrain with a maximum difference in height of 14 m (see Figure 15).

The NN training process continues with navigation episodes along four pairs of
feasible initial and end positions with a maximum allowed time of 300 s. Figure 16 shows
the paths followed among these pairs once finished training, where it can be observed
that the mobile robot successfully reaches the goals while avoiding both negative and
positive obstacles.

Figure 15. View of the modeled natural environment for training at the third stage.
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Figure 16. Navigation tests after the third training stage.

The moving average with 1000 time steps of the reward function along the 200 training
episodes r̄t is shown in Figure 17. The average duration of each episode was 83.4 s, 78.6 s
and 94.6 s for the first, second and third stages, respectively. In the first stage, it can be
observed that learning is achieved very quickly by improving r̄a

t . In the second stage,
improvements require more training steps and involve the reduction of r̄r

t . The third stage
shows a slow and slightly positive evolution of r̄t.

(a) (b)

(c)

Figure 17. Evolution of the reward function at the first (a), the second (b) and the third (c) stages.
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6. Experimental Results
6.1. Real Test

Using the trained Actor NN, a navigation test with Andabata was performed in a
trail inside a hollow as in [25]. Figure 18 shows the path followed by the mobile robot, as
recorded by the GNSS receiver, to reach two consecutive goals while avoiding weeds, hills
and ditches. Figure 19 displays some snapshots along the experiment in the places marked
in Figure 18 from the beginning (a) to the end (f) of the trajectory.

Figure 18. Path followed by Andabata with indications of traveled distance and elapsed time.
Shadowed areas in brown, green and blue colors represent hills, weeds and ditches, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 19. Photographs of Andabata during the autonomous navigation test at the spots indicated in
Figure 18.

6.2. Simulated Test

An experiment has been performed on the natural environment already modeled
in [25], which consists of a square of 100 m side with a maximum difference in height of
16 m (see Figure 20).
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Figure 20. Modeled natural scenario for simulated testing [25].

Figure 21 shows the path followed by Andabata while visiting three consecutive
objectives. At 175 s, the mobile robot was able to avoid a negative obstacle, reach the first
goal and point toward the second goal. Then, it reaches the second objective at 450 s and,
on its way to the third goal, the vehicle avoids a high grass area among trees, starting this
maneuver at 740 s.

Figure 21. Path followed by the robot with time and distance stamps.

6.3. Comparison between Reactive and RL Approaches

Following is a comparison between our previous reactive navigation method [25] and
the proposed deep RL strategy. The paths tracked by Andabata on the real scenario are
shown in Figure 22. The corresponding headings of the vehicle along these trajectories are
represented in Figure 23. Although both methods have chosen different actions over time,
no significant differences between both methods can be observed in these figures.
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Figure 22. Comparison between reactive and RL paths on the hollow, represented with blue and red
lines, respectively.

Figure 23. Heading changes along time with the reactive and the Actor NN controllers.

To compare the success ratio between both approaches, a simulated test has been
performed in the Gazebo environment of Figure 20. For this purpose, 50 navigation
attempts have been made with the mobile robot to reach three consecutive objectives (see
Figure 24). It can be observed that the Actor NN is capable of finding alternative paths that
the reactive approach cannot. Table 4 shows the success percentage for each of these goals,
where the Actor NN clearly displays better results.
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(a) (b)

Figure 24. Paths followed by Andabata with the reactive (a) and the Actor NN (b) approaches.

Table 4. Success ratio for reaching three consecutive goals along 50 simulated trials.

Controller Goal 1 Goal 2 Goal 3

Actor NN 98.0% 90.0% 70.0%

Reactive 80.0% 73.3% 53.3%

7. Conclusions

The paper has presented the RL training process for off-road UGV navigation with
an Actor–Critic scheme. This has been accomplished with CL by using realistic robotic
simulations on scenarios of increasing difficulty. Virtual 2D traversability ranges, generated
by an RF classifier from a leveled 3D laser scan, have been employed as input data for
both NNs.

In this way, reactive navigation has been implemented for the Andabata mobile robot
with its 3D laser scanner using ROS topics and nodes. One issue of the proposed deep RL
method is that it requires time to retrain in case any parameter is changed, for example, on
the reward function.

The resulting Actor NN has been successfully tested in both simulated and real
experiments. In comparison with our previous navigation method on the same UGV [25],
the resulting controller shows similar reactive behaviors, but with higher output rates of
actions and increased reliability to reach successive goals.

Future work includes the employment of a commercial portable 3D LiDAR to improve
the data acquisition rate. It is also of interest to generate more 2D traversability ranges
and to consider the navigation time in the reward function, which is a limiting factor in
battery-operated mobile robots.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-Dimensional
3D Three-Dimensional
CL Curriculum Learning
FN False Negative
FP False Positive
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
LiDAR Light Detection Furthermore, Ranging
ML Machine Learning
NN Neural Network
PCA Principal Components Analysis
RE REcall
RL Reinforcement Learning
RF Random Forest
ROS Robot Operating System
SP SPecifity
TN True Negative
TP True Positive
UGV Unmanned Ground Vehicle
UKF Unscented Kalman Filter
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