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Abstract: This research develops an integrated navigation system, which fuses the measurements
of the inertial measurement unit (IMU), LiDAR, and monocular camera using an extended Kalman
filter (EKF) to provide accurate positioning during prolonged GNSS signal outages. The system
features the use of an integrated INS/monocular visual simultaneous localization and mapping
(SLAM) navigation system that takes advantage of LiDAR depth measurements to correct the
scale ambiguity that results from monocular visual odometry. The proposed system was tested
using two datasets, namely, the KITTI and the Leddar PixSet, which cover a wide range of driving
environments. The system yielded an average reduction in the root-mean-square error (RMSE) of
about 80% and 92% in the horizontal and upward directions, respectively. The proposed system was
compared with an INS/monocular visual SLAM/LiDAR SLAM integration and to some state-of-the-
art SLAM algorithms.
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1. Introduction

Accurate positioning is one of the key challenges in the field of vehicular navigation. A
robust navigation system should work under all driving environments (i.e., urban areas, ru-
ral roads, high-traffic, or low-traffic) and conditions (i.e., dry, wet, day, or night). In addition,
the concept of sensor redundancy is crucial when designing a navigation system. A navi-
gation system should be equipped with several integrated onboard sensors so that if one
sensor malfunctions for any reason, the other sensors will allow the system to operate safely
and properly [1-3]. The global navigation satellite system (GNSS)/inertial navigation sys-
tem (INS) integration has been well-studied and adopted in a large number of studies [4-11].
Typically, the measurements of both the GNSS and the inertial measurement unit (IMU) are
fused using a Kalman filter [12] that features the use of several integration methods between
the GNSS and the IMU [13] (i.e., loosely coupled and tightly coupled). In a loosely-coupled
integration, for instance, the INS estimates the pose of the vehicle via IMU mechanization
while receiving updates from the GNSS at a slower frequency, which minimizes the signifi-
cant drift of the IMU. The main problem with such navigation systems is that they solely
rely on the INS in cases of prolonged GNSS signal outages. This makes the whole system
vulnerable to degraded positioning accuracy as a result of the INS solution drift, especially
when using a low-cost micro-electro-mechanical system (MMEMS) IMU. Consequently, the
need for more onboard sensors is crucial to help maintain a navigation system’s accuracy
during a GNSS signal outage.

Light detection and ranging (LiDAR) sensors and cameras have been heavily under
investigation to be used for both indoor and outdoor navigation using LIDAR and visual
simultaneous localization and mapping (SLAM) techniques. SLAM algorithms are designed
to create a map of the surrounding environment while concurrently monitoring the location
of the sensor, which is achieved by a LIDAR sensor or a camera [14].
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There are a number of state-of-the-art LIDAR SLAM algorithms. One of the key leading
algorithms proposed in 2014 is LIDAR odometry and mapping (LOAM) [15]. Back then,
LOAM was the leading algorithm on the KITTI odometry benchmark [16]. Subsequently,
many variations of the LOAM were developed, such as A-LOAM and Kitware [17-20].
These variations improved the computational performance of the original LOAM algorithm.
It is worth mentioning that one key strength of LIDAR SLAM is that its performance is not
affected by illumination conditions because LiDAR is an active sensor.

Similar to the LIDAR SLAM developed algorithms, many visual SLAM (V-SLAM)
algorithms have been proposed, as collected and presented in [21]. V-SLAM is a type of
SLAM algorithm that utilizes visual cues, such as features or landmarks, to create a map
of the environment and determine the location of the sensor. V-SLAM typically uses a
camera as the primary sensor and processes images to identify features in the environment.
By analyzing the movement of these features between successive images, V-SLAM can
estimate the sensor’s location and construct a map of the surrounding area. V-SLAM can be
implemented using several types of cameras, such as monocular cameras [22-26] (trajectory
is retrieved up to a scale factor) and stereo cameras [27-29] (scale factor is corrected).
The main advantage of V-SLAM is that it captures significantly more details about the
environment in comparison to the use of LIDAR. However, V-SLAM is significantly affected
by illumination conditions, unlike LiDAR. In light of the mentioned advantages of both
LiDAR sensors and cameras, it is important to mention that the optimal scenario would be to
integrate the use of both sensors (i.e., the camera and LiDAR) in order to obtain rich details
about the environment while mitigating any adverse effects of the illumination variation.

There are a number of studies that integrated the INS into a LIDAR sensor and /or a
camera. For example, in [30], we proposed an integrated INS/LiDAR SLAM navigation
system for outdoor environments. The developed integrated system showed superior
performance in comparison to the sole use of the INS in all case studies on urban and
rural driving environments. Similarly, in [31], the integration between the INS and LiDAR
SLAM remedies a malfunctioning GNSS in an unmanned aerial vehicle (UAV) mapping
system. The developed GNSS/INS/LiDAR SLAM system was able to fill in the GNSS
gaps and overcome the GNSS unexpected outages issue. In [32], an EKF was used to
combine a three-dimensional reduced-inertial-sensor system (3D-RISS) with GNSS and
LiDAR odometry (LO). The LO provided updates to the position and azimuth of the
3D-RISS. The system was tested in various driving situations in Toronto and Kingston,
Canada, and the integration yielded a 64% decrease in positioning errors compared with
the sole use of the INS solution. GNSS/IMU/ camera integration is exemplified in [33]. The
study presented a navigation method that integrates data from a monocular camera, IMU,
and GNSS to navigate ground vehicles in environments where GNSS signals are weak or
unreliable. The proposed method uses a Kalman filter to estimate the vehicle’s position and
orientation by fusing the different sensor data. Experimental results show that the proposed
approach outperforms a baseline method that only uses GNSS data in challenging GNSS
environments, reducing the position error by up to 74% in some scenarios. The method
also demonstrates good robustness against signal outages and multipath interferences.
In [34], a loosely-coupled integration between the INS, LIDAR SLAM, and visual SLAM
was accomplished using an EKF. The developed integrated system was tested during a full
GNSS signal outage using drives of the KITTI dataset [35,36], where the system yielded
accurate positioning results in comparison to the INS.

In recent years, the use of deep learning for localization and navigation has been
trending. In [37], a monocular camera was integrated into a LIDAR sensor to correct the
scale ambiguity of visual odometry with the help of deep learning, which was used in
the form of imagery semantic segmentation. In [38], a novel method for LO that utilized
deep learning-based feature points and a two-step pose estimation approach was proposed.
The first step involved extracting feature points from the LiDAR point cloud data using
a convolutional neural network (CNN), which was trained to identify distinctive and
robust features. The second step involved estimating the pose of the LiDAR sensor by
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minimizing the difference between the predicted feature points and the corresponding
feature points in the current frame. The proposed method was evaluated using the KITTI
dataset and compared with several state-of-the-art LO methods. The experimental results
showed that the proposed method achieves higher accuracy and robustness, particularly in
challenging scenarios such as fast motion and occlusion. Moreover, the proposed method
has a lower computational cost than some of the existing methods, making it more practical
for real-time applications. A review of the use of deep learning in localization is presented
in [39].

In this research, we propose an INS/monocular visual SLAM integrated system,
where a loosely-coupled integration is implemented between the INS solution and the
LIMO algorithm (monocular visual SLAM) using an EKF, with the aid of deep learning for
imagery semantic segmentation. The developed model is then tested using the raw KITTI
dataset in both urban and residential driving environments. It is worth mentioning that
the KITTI dataset was considered in our research as a source of low to moderate traffic
environment. Therefore, to expand the testing of our model in high-traffic environments,
we used the Leddar PixSet dataset.

Subsequently, we extended our work in [30], which developed an INS/LiDAR SLAM
integrated navigation system, to include the LIMO algorithm as a part of the navigation
system. As a result, an integrated INS/LiDAR/LIMO navigation system was developed
for two reasons. The first reason was to investigate the inclusion of the LiDAR sensor as
an additional onboard sensor to the IMU and the monocular camera. Secondly, we tested
our proposed INS/LIMO navigation system against the INS/LiDAR/LIMO and certain
state-of-the-art navigation algorithms.

2. Navigation System Architecture
2.1. LiDAR SLAM

The LiDAR SLAM used in this research is the Kitware SLAM [17], which is an updated
version of the original LOAM algorithm [15]. A detailed description of the Kitware SLAM
and the different enhancements it provides in comparison to LOAM are presented in our
work in [30].

2.2. LiDAR/Monocular Visual SLAM Integration

The LIMO [37,40] algorithm was adopted in our research to integrate the LiDAR
sensor into the monocular camera. The LIMO algorithm can be divided into two main
stages, namely, monocular visual odometry and scale correction. The first stage involves
the use of a conventional visual odometry pipeline, starting from the feature extraction and
matching to frame-to-frame motion estimation. The second stage is the key to correcting
the scale ambiguity of the resulting trajectory from the first stage, which is accomplished
using the LiDAR sensor. Before projecting the LIDAR points into the camera frame and the
image plane, all images are semantically segmented to identify the moving objects.

Semantic segmentation refers to the task of assigning each pixel in an image to a
specific object class. This is a challenging computer vision task that has many practical
applications, such as autonomous driving. One of the leading state-of-the-art models is
the original NVIDIA semantic segmentation model [41]. The model was designed to be
highly accurate and efficient, which led to the processing of large volumes of imagery
data in real time. The model uses an encoder—decoder architecture with skip connections.
The encoder consists of a series of convolutional layers, followed by batch normalization
and ReLU activation. The convolutional layers use small filters (3 x 3 or 1 x 1) and are
designed to reduce the spatial dimensionality of the image while increasing the number
of feature channels. The decoder consists of a series of upsampling layers, followed by
convolutional layers with batch normalization and ReLU activation. The upsampling layers
use bilinear interpolation to restore the spatial resolution of the image. The skip connections
are implemented by concatenating the feature maps from the encoder with the upsampled
feature maps from the decoder. The output layer of the model is a convolutional layer
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with softmax activation. This layer assigns a probability distribution over the object classes
to each pixel in the image. The class with the highest probability is then assigned to that
pixel. To train the NVIDIA semantic segmentation model, the Cityscapes dataset was
adopted [42]. The dataset contains over 5000 high-resolution images of urban scenes with
detailed annotations of objects and their boundaries. The model was trained to minimize a
loss function that measures the difference between the predicted segmentation map and
the ground truth segmentation map. The loss function used was the cross-entropy loss,
which is commonly used in classification tasks.

In [43], the hierarchical multi-scale attention for semantic segmentation (HMSA)
was developed as a modified version of the original NVIDIA semantic segmentation
model [41]. The HMSA model introduces additional attention mechanisms and feature
aggregation techniques to improve the accuracy of the segmentation. The hierarchical
attention mechanism in the HMSA model is composed of three levels of attention modules:
a global attention module, a local attention module, and a detail attention module. The
global attention module is responsible for capturing the high-level context information of
the input image, whereas the local attention module focuses on capturing the mid-level
details. The detail attention module is designed to capture the fine-grained details of the
input image. Each attention module is implemented as a convolutional neural network
(CNN) that takes the feature maps of the previous layer as input and outputs a set of
attention maps. The attention maps are used to weigh the feature maps in the previous
layer, producing an attention-weighted feature map that is used as input to the next layer
of the network. The attention maps are learned via a training process that minimizes
the loss function that measures the difference between the predicted segmentation and
the ground truth segmentation. In addition to the attention modules, the HMSA model
also includes a feature aggregation module that combines features from multiple scales to
improve the accuracy of the segmentation. The feature aggregation module is designed to
take advantage of the complementary information provided by the features at different
scales. Specifically, the feature aggregation module combines the attention-weighted feature
maps from each scale using a weighted sum, where the weights are learned via a training
process. To further improve the accuracy of the segmentation, the HMSA model uses a
multi-scale testing strategy during inference. This strategy involves resizing the input
image to multiple scales and passing each resized image through the network to obtain a
set of segmentation maps at different scales. The final segmentation map is obtained by
upsampling and averaging the segmentation maps obtained at each scale.

The hierarchical multi-scale attention for semantic segmentation (HMSA) model was
evaluated using several benchmark datasets, including Cityscapes and PASCAL VOC, and
achieved state-of-the-art performance on these datasets. The HMSA model outperformed
other semantic segmentation models that do not use attention mechanisms or feature
aggregation techniques.

In particular, on the Cityscapes dataset, the HMSA model achieved a mean intersec-
tion over union (mloU) score of 82.2%, outperforming previous state-of-the-art models
such as the pyramid scene parsing network (PSPNet) [44] and DeepLabv3+ [45], which
achieved mloU scores of 81.2% and 80.3%, respectively. On the PASCAL VOC dataset, the
HMSA model achieved a mloU score of 88.5%, outperforming previous state-of-the-art
models such as DeepLabv3+ and RefineNet, which achieved mloU scores of 85.7% and
83.4%, respectively.

These results demonstrate the effectiveness of the attention mechanisms and feature
aggregation techniques used in the HMSA model, and its ability to outperform previous
state-of-the-art semantic segmentation models on benchmark datasets.

Figure 1 presents a sample of the semantic segmentation results using the NVIDIA
semantic segmentation model on the KITTI dataset, D-28. The figure depicts one frame of
the dataset, frame 1644.
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(b) Segmented image

Figure 1. A sample semantically segmented image using NVIDIA semantic segmentation model
(KITTL, D-28, frame 1644).

After completion of the semantic segmentation, the LIDAR points are projected into
the image plane. Any LiDAR point that lies on a moving object is neglected. The remaining
LiDAR points are used for depth estimation, and thus scale correction.

2.3. Proposed Integrated Navigation System
2.3.1. Coordinate Transformations

SLAM pose estimations are calculated with respect to the reference frame of the sensor.
That is, in LIDAR SLAM, all poses are referenced to the local frame of the first point cloud,
whereas in Visual SLAM, they are referenced to the first camera frame. Therefore, all
coordinates are transformed into the WGS84 reference, which is essential for subsequent
Kalman filtering. The sequence of transformation is graphically shown in Figure 2.

R/1Y,

Z LiDAR frame
@ (R/1)"

R/ )

GNSS/INS

R/t

Camera frame
(cam)

Object

X

Figure 2. Graphical illustration of camera and LiDAR pose transformation into the world frame (WGS84).



Sensors 2023, 23, 6019

6 of 20

The position and rotation transformations can be performed via a homogenous trans-
formation using 4 x 4 transformation matrices. Let P“" and P denote the coordinates
of a point captured in the local frame of the camera and the LiDAR, respectively. Let
Pfcef denote the same point expressed in the WGS84 reference frame. The sequence of
homogenous transformations is presented by Equations (1)—(4).

P = R/ (R/ 1), (R/0),(R/D L, PE™ (1)
P = (R/D (R/8),(R/D)},PE @)
Rigm = RyRY;REzy 3)

Rle‘ = RéR?i )

ipt—destinati . . .
where (R/ t)i%:;:f;?i ori;fnlna " symbolizes the 4 x 4 homogeneous transformation matrix

from the original frame to the destination frame (i.e., (R/ t);:%ij
transforms coordinates from frame 1 to frame 2; and the frame abbreviations are defined as
cam: camera frame, Li: LIDAR frame, b: body frame, I: local-level frame, and ecef: WGS84

reference frame.

the transformation that

2.3.2. INS/LIMO Integration

The proposed integrated system features a loosely-coupled (LC) integration between
the INS and the LIMO, as shown by the block diagram in Figure 3, using an extended
Kalman filter (EKF). The raw IMU measurements (i.e., accelerations and angular rotations)
are fed into a full IMU mechanization, as described in [30,46], which yields the position,
velocity, and attitude of the INS. Meanwhile, both monocular camera images and LiDAR
point clouds are fed into the LIMO algorithm to produce the position and attitude estima-
tions. These are used as measurement updates in the update stage of the EKF, which results
in the final integrated navigation solution. Finally, the estimated errors are fed back into
the full mechanization in a closed-loop error scheme.

Position, velocity, and attitude

e =
| iases of accelerometers and gyroscopes
Bi f 1 d |
v s 20 -t == L
ot (|
MU alc celcliatmns IMU full Position, velocity, and attitude - INS N I I N
and angular oL > >
rotations mechanization Integrated navigation solutions
EKF
Monocular LiDAR/Mono- T R
Pl images SLAM — ) — .
Images (LIMO) Position and attitude LIMO navigation solution
LiDAR point clouds

Figure 3. A block diagram of the INS/LIMO LC integration.

The EKF mathematical and stochastic models (i.e., the system model, the design matrix
(H), and the system dynamic matrix (F)) are the same as our work in [30]. The system
noise covariance matrix (Q) is a diagonal matrix, which includes the noise variance of each
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parameter in the system state. The state vector and measurement update vector are given
by Equations (5) and (6), respectively.
5x=[or v e Oby bbg]" )

T T
6Zy = [or 6¢]” = [pns—LiMO ANS—LIMO MNNS—LIMO PNS—LIMO TNS—LIMO YINS—LIMO] (6)

where 6r = [6¢ SN 6H] T is the position error vector; 0v = [dv, 6v, vy Tis the velocity

error vector; 6e = [6p  ér  dy| T is the attitude angles’ error vector; 6b, = [0bax  Obay  Oba: ] T

is the accelerometer bias error vector; 6by = [6bgx  6bgy  Obg:] Tis the gyroscope bias error
vector; ¢rNs—LIMO, AINS—LIMO, FINs—LiMo are the measurement errors of the geodetic lati-
tude, longitude, and height; and pins—_rimo, YINs—LIMO, YINS—LIMO are the measurement
errors of the pitch, roll, and yaw angles.

The covariance matrix of the measurements Rj_;jp0 is assumed to be diagonal
and contains the variances of the position and attitude angles received from the LIMO
estimations, which are depicted by Equation (7).

i 2 2 2 2 2 2
RkaIMO *dmg{U(PLzMo UALIMO UhUMo PLimo rLIMO UyLIMO} (7)

2 2 2
where Y91im0” Ao’ Tipimo
2

DLimo” Urzumo' U]%Limo are the variances of the attitude estimations of the LIMO algorithm.

are the variances of the LIMO’s position estimations; and

2.3.3. INS/LIMO/LiDAR Integration

As a continuation of our work in [30], we investigated the integration of the INS,
LIMO, and LiDAR SLAM as opposed to our proposed INS/LIMO system described in
Section 2.3.2. The INS/LIMO/LIDAR integration features the use of a multi-update EKF,
as shown by the block diagram in Figure 4. The first update stage of the EKF fuses the INS
position and attitude with the LIDAR SLAM pose estimations. The result of the first update
stage is INS/LiDAR pose estimations, which are subsequently fused with the LIMO pose
estimations in the second update stage to produce the final INS/LIMO/LiDAR integrated
navigation model. Finally, the updated errors are fed back into the mechanization to form a
closed-loop error scheme.

Position, velocity, and attitude

— T_
07y = [572 552] = [‘PNS/LFLIMO ANS/Li—LIMO  PINS/Li—LIMO  PINS/Li—LIMO TINS/Li—LIMO YINS/Li—LIMO

_____________________________________ -
Biases of accelerometers and gyroscopes 1
————————————— - — - S M T O N M S S e e e
¥ | |
IMU accelerations IMU full Position, velocity, and attitude - INS : :
and angular L.
- mechanization 1 1
rotations | X
INS/LIDAR INS/LiDAR/LIMO
EKF navigation EKF integrated navigating
LiDAR SLAM solution solution
LiDAR pomt clouds —T
(KITWARE) Position and attitude
Monocular | LIDAR/Mono-
images SLAM
Images (ng'MO) Position and attitude

T
6Zin = [or1 de1]” = [@ins—1i AINs—1i MiNs—Li PINS—Li TINS—Li YINS—Li]

Figure 4. A block diagram of the INS/LIMO/LiDAR LC integration.

The state vector is the same as expressed by Equation (5). The first and second update
stages are expressed by Equations (8) and (9), respectively.
T

®)
©)

]T
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where Jr; and érp are the position error vectors in the first and second update stages,
respectively; de; and de; are the attitude error vectors in both update stages; and §Z;; and
0Zy, are the measurement update vectors. The covariance matrices of the measurement
updates are Ry and Ry_;1p0, as shown by Equation (7) and in [30], respectively.

3. Data Sources and Driving Scenarios
3.1. Scenario 1: Low to Moderate Traffic Environment

In this research, the first scenario involves using the raw Karlsruhe Institute of Tech-
nology and Toyota Technological Institute (KITTIL, Karlsruhe, Germany) dataset [35], which
features driving within low to medium traffic conditions. In addition, it is widely used as a
benchmark dataset, which is accessible online via [36]. Researchers worldwide post their
results and models on the KITTI odometry benchmark [16]. The sensors used in the KTTTI
ground vehicle are an integrated GNSS/IMU unit (OXTS RT3003), a 360-degree rotating
mechanical lidar with 64 beams (Velodyne HDL-64E), and two Sony stereo pairs that collect
coloured and greyscale images. The dataset includes the estimates of all the system’s
intrinsic and extrinsic calibration parameters. The KITTI dataset can be broken down
into two main categories, namely, the raw dataset and the odometry dataset. The latter is
derived from the raw dataset; however, it does not include IMU raw data measurements
(i.e., accelerations and angular rotations). Therefore, the raw dataset is the one considered
in this research in order to benefit from the IMU raw measurements, which also contributes
as an essential part of the proposed navigation models.

In this study, the KITTI dataset is used to formulate two case studies. The first case
study proposes an integrated INS/LIMO navigation model, as presented in Section 4.1—Case
Study 1. Meanwhile, the second case study is an extension to our previous work in [30],
which is presented in Section 4.3—Case Study 3. This showcases another integrated navi-
gation system (INS/LIMO/LiDAR SLAM) that achieves the concept of sensor redundancy.
Table 1 provides a summary and some descriptive trajectory statistics for the raw KITTI drive
considered in the aforementioned case studies.

Table 1. Trajectory information for the considered KITTI drives [36].

Average Speed

Drive Label Drive Number Length (m) Time (s) (km/h) No. of Frames
D-27 2011_09_30_drive_0027_sync 692.47 114.85 21.71 1106
D-28 2011_09_30_drive_0028_sync 3312.20 407.80 28.17 4078
D-33 2011_09_30_drive_0033_sync 1709.57 165.31 37.23 1594
D-34 2011_09_30_drive_0034_sync 920.52 126.88 26.12 1224
D-16 2011_09_30_drive_0016_sync 404.71 28.84 50.52 278
D-42 2011_10_03_drive_0042_sync 2591.80 121.19 76.99 1170

3.2. Scenario 2: High Traffic Environment

The second scenario considers driving in high-traffic environments, for which the
Leddar PixSet dataset was used [47]. In 2020, this dataset was created by LeddarTech, a
company specializing in lidar technology. The data collection platform used by LeddarTech
is a ground vehicle (Toyota RAV 4). All perception sensors were mounted on the front
bumper of the vehicle, as shown in [47]. The data collection sensors included a solid-state
LiDAR (Leddar PIXELL sensor), a mechanical LiDAR (Ouster64), three cameras (FLIR), a
180-deg panorama camera (FLIR), a radar (TI AWR1843 mmWave radar), an integrated
GNSS/IMU unit, and a PEAKCAN (Toyota RAV4 CAN bus). The system’s extrinsic and
intrinsic calibration parameters are provided for all datasets. In addition, LeddarTech
provided researchers with an online Python API to perform a number of analysis tasks on
the datasets (i.e., data synchronization and colourizing LiDAR point clouds) [48]. It is highly
recommended by the company to use its online API when using its datasets. It is worth
mentioning that the datasets were collected in a variety of weather and lighting conditions,
and a variety of challenging driving scenarios (occlusions and crowded intersections).



Sensors 2023, 23, 6019

9 of 20

As a result, we considered this dataset, especially the datasets with high traffic, to
develop and test the performance of our proposed integrated INS/LIMO navigation system,
as presented in Section 4.2 of this paper—Case Study 2. Thse data are recent in the field
and the onboard sensor configuration of the data collection platform (front bumper) is
different from the KITTI dataset (vehicle top). In addition, the sensors are also of different
makes. The drives considered from the Leddar PixSet datasets, along with some descriptive
information, are shown in Table 2.

Table 2. Trajectory information for the considered Leddar PixSet drives [49].

Drive Label Drive Number Length (m) Time (s) Aveiignf /lSI}:)eed No. of Frames
D-1040 20200721_165008_part39_640_1040 169.29 40.60 15 407
D-1509 20200618_191030_part17_1120_1509 258.19 38.99 23.83 391
D-2784 20200706_144800_part25_2160_2784 329.70 68.30 17.38 684
D-11079 20200706_171559_part27_10588_11079 258.15 50.10 18.55 502

4. Analysis and Results
4.1. Case Study 1: INS/LIMO Integration—KITTI Dataset

The first case study presents several raw KITTI drives used to test the developed
INS/LIMO integrated navigation system. The first dataset 2011_09_30_drive_0028_sync,
labelled as D-28, was considered, for which the ground truth is the integrated GNSS/INS
solution provided by the OXTS unit operating in the RTK mode. It is worth mentioning that
this drive corresponds to sequence number 8 of the KITTI odometry dataset. Consequently,
the frames used from raw D-28 are frames 1100 to 5170, which lasted for approximately
408 s, a travelled distance of 3312.20 m, and an average speed of around 28 km /h. Figure 5
presents the errors in the navigation frame (the ENU reference frame). The figure presents
three navigation solutions, namely, the INS solution, the LIMO solution, and the INS/LIMO
solution. The INS solution drifts significantly in the east, north, and upward directions,
which is expected behaviour and echoes our previous work in [30]. Conversely, the LIMO
positioning solution is significantly more accurate. As a result, the final INS/LIMO solution
followed that of LIMO by tuning the covariance matrix of the system noise (Q) and the
covariance of the measurement updates (R). Figure 6 shows the attitude results (roll, pitch,
and yaw angles) for the three navigation solutions. In contrast to the positioning results,
it is noticeable that the INS produces slightly more accurate attitude results than LIMO
as quantified in Table 3. This behaviour also echoes our previous work in [30], where the
accuracy of the INS attitude was justified.

However, the INS attitude solution seems to be more stable and significantly less noisy
than LIMO. This promotes the INS attitude estimations to be preferable, and thereby the
INS/LIMO followed the INS solution by tuning the Q and R matrices. Table 3 presents
the errors statistic for both the position and attitude of all navigation solutions. The RMSE
values were calculated using Equation (10).

RMSE = (10)

where 7 is an index for each data point, n is the total number of points, and x; and JAci are the
estimated value and the ground truth value for each data point, respectively.

It is noticeable from the table that the error statistics of the final integrated INS/LIMO
solution are almost identical to the position estimates of the LIMO, albeit the attitude of the
INS, which coincides with EKF tuning as mentioned earlier.

All trajectories of D-28 are visualized and shown in Figure 7, where the ground truth
trajectory is compared with the INS, LIMO, and INS/LIMO trajectories.
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Table 3. Position (m) and attitude angles (deg) error metrics—D-28.

INS LIMO INS/LIMO
Mean RMSE Max Mean RMSE Max Mean RMSE Max
East —1817.44 2475.40 5675.91 3.74 4.44 9.17 3.74 4.44 9.17
North —895.41 1036.99 1544.63 —-1.22 3.33 7.31 -1.22 3.33 7.31
Horizontal ~ 2092.57 2683.83 5706.95 512 5.55 9.47 5.12 5.55 9.47
Upward 262.23 298.13 483.47 5.81 6.61 17.17 5.81 6.61 17.19
Roll —0.018 0.470 1.171 0.529 0.731 2.563 —0.018 0.474 1.199
Pitch 0.114 0.497 1.238 0.112 0.506 3.026 0.115 0.504 1.278
Yaw —1.226 1.344 2.348 —-0.919 3.144 12.207 —1.248 1.361 2.350
48.9869
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o> RN
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Figure 7. Comparison of trajectories, D-28.

The same analysis was conducted for drives D-42, D-16, D-27, D-33, and D-34. The
drives yielded the same trends for position and attitude. This showcases that the proposed
integrated INS/LIMO navigation system is robust and accommodates different driving
scenarios in both rural and urban environments. Figure 8 illustrates the comparison
of the ground truth trajectory versus all navigation solutions, visualized in the ENU
reference frame.

Figure 9 presents the error statistics for the aforementioned drives in the form of a
reduction in the RMSE between the INS/LIMO navigation system and the INS solution.Table 4
presents the values of the RMSE in the east, north, horizontal, and upward directions.
Table 4. Positional RMSE (m) values for the KITTI drives.
D-42 D-16 D-27 D-33 D-34
INS INS/LIMO INS INS/LIMO INS INS/LIMO INS INS/LIMO INS INS/LIMO
East 194.48 4.80 0.79 0.40 43.21 1.17 73.09 2.06 114.53 1.58
North 32.71 4.84 3.15 3.30 133.18 1.84 378.77 2.81 136.57 2.38
Horizontal 197.21 6.81 3.25 3.33 140.02 2.18 385.76 348 178.24 2.86
Upward 22.21 0.46 1.83 0.17 10.48 1.78 13.62 5.41 12.74 1.16
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Figure 8. Comparison of trajectories of KITTI drives in the ENU frame.

The drastic reductions in the horizontal and upward directions for all drives are
evident. The only exception is D-16 in the horizontal direction, where the INS slightly
outperformed the integrated system solution. The reason for this is that D-16 is very short
(roughly 400 m in 28 s). During this short time, the INS solution did not drift significantly.
This stability over short periods of time is expected from high-quality IMUs, such as the
one used in the KITTI data collection platform. This echoes many similar short drives

shown in [30].
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4.2. Case Study 2: INS/LIMO Integration—LeddarTech PixSet Dataset

The second case study adopts the Leddar PixSet dataset as a source for high-traffic
driving environments. Therefore, it was considered to further test the developed integrated
INS/LIMO navigation system. The first dataset used is 20200721_165008_part39_640_1040,
labelled as D-1040. This is an approximately 170 m drive that lasted for 40 s, yielding an
average speed of 15 km/h. The ground truth for all drives of the Leddar PixSet dataset is
provided by the integrated solution of the GNSS/INS unit (SBG EKINOX) operating in
the RTK mode. Figures 10 and 11 present the position and attitude errors of all navigation
solutions, respectively. The statistical characteristics of these errors are quantified in Table 5.
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Figure 10. Position errors (ENU), D-1040.
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Figure 11. The errors of attitude angles (roll, pitch, and yaw), D-1040.

Table 5. Position (m) and attitude angles (deg) error metrics—D-1040.

INS LIMO INS/LIMO

Mean RMSE Max Mean RMSE Max Mean RMSE Max
East —1.87 3.44 7.77 6.65 8.20 17.56 6.65 8.20 17.56
North —25.94 38.66 98.13 —12.27 12.97 17.45 —12.27 12.97 17.45
Horizontal 26.21 38.82 98.43 14.38 15.35 22.24 14.38 15.35 22.24
Upward 5.86 7.59 14.75 0.31 0.35 0.70 0.31 0.35 0.71
Roll 0.725 0.863 1.802 —6.935 7.664 10.717 0.730 0.871 1.822
Pitch —0.623 0.765 1.362 —6.231 7.544 15.388 —0.629 0.770 1.375
Yaw 0.586 0.715 1.382 —9.687 10.935 18.966 0.584 0.713 1.374

In contrast to the first case study (the KITTI dataset), Figure 10 shows that the perfor-
mance of the LIMO is not quite as accurate as the first case study. However, it still provides
a better solution than the INS position estimations. As a result, the integrated navigation
solution continues to follow the LIMO solution. In regard to attitude estimations, it can
be seen in Figure 11 that INS provides more accurate results for the roll, pitch, and yaw
angles, which are similar to those of the first case study. However, it is worth mentioning
that the only difference in the comparison to the first case study is the degradation in the
quality of LIMO attitude estimations, as shown in Table 4. The reason for such degradation
is because of the onboard sensors that are mounted on the front bumper of the car, which
narrows the field view of the sensors (both camera and LiDAR) in comparison to the case
of the KITTI dataset (car-top mount). This, in turn, makes the entire system sensitive to
scene occlusion while driving in high-traffic environments.

Figure 12 illustrates a comparison between the ground truth trajectories and all other
navigation solutions in the WGS84 reference frame.
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Figure 12. Comparison of trajectories, D-1040.

The integrated navigation system was tested for the remaining drive of the Leddar
PixSet dataset. Figure 13 presents a comparison between the trajectories of each of the
remaining drives in the ENU reference frame. The reductions in the position RMSE
(INS/LIMO vs. INS) in the horizontal and vertical directions are shown in Figure 14, which
are quantified in Table 6.
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Figure 14. Reduction in the INS RMSE, Leddar PixSet drives.
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Table 6. Positional RMSE (m) values for the Leddar PixSet drives.
D-1509 D-2784 D-11079
INS INS/LIMO INS INS/LIMO INS INS/LIMO
East 3141 5.49 55.68 25.07 16.51 11.96
North 10.66 8.71 184.15 7.11 117.17 4.81
Horizontal 33.17 10.29 192.39 26.06 118.33 12.90
Upward 4.60 0.08 19.31 0.10 10.80 0.09

It is important to mention that the same trends of the integrated INS/LIMO system
continue to occur among all drives. However, in Figure 13, D-1509 shows that LIMO
produces more accurate positioning results in comparison to the other drives. Upon
investigation, it is found that D-1509 is a straight driving segment with no turns, with
minimal scene occlusions, which is not the case in the remaining drives.

4.3. Case Study 3: INS/LIMO/LiDAR Integration—KITTI Dataset

The third and final case study is a continuation of our work in [30], where the inte-
grated INS/LIMO/LiDAR navigation system described in Section 2.3.3 is tested using
D-28. The main reason that the KITTI dataset was chosen for this case study is that it is a
benchmark dataset that allows for comparison with state-of-the-art models. Furthermore,
we used the KITTI dataset in [30], and therefore, we continue to use it in this study to
expand our previously proposed INS/LiDAR SLAM navigation model.

The position and attitude errors are presented in Figures 15 and 16, respectively,
whereas Table 7 provides the statistics of these errors. It is noticeable from Table 7 that
the INS/LIMO/LIDAR system offers improved accuracy in comparison with LIDAR. The
reduction in the RMSE is approximately 70% and 60% in the horizontal and upward
directions, respectively. Finally, Figure 17 graphically compares the INS, LIMO, LiDAR
SLAM, and INS/LIMO/LiDAR navigation solutions in the WGS84 reference frame.
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Figure 15. Position errors (ENU), D-28 (INS/LIMO/LiDAR).
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Figure 17. Comparison of trajectories, D-28 (INS/LIMO/LiDAR).
Table 7. Position (m) and attitude angles (deg) error metrics—D-28 (INS/LIMO/LIDAR).
INS LIMO LiDAR INS/LIMO/LiDAR
Mean RMSE Max Mean RMSE Max Mean RMSE Max Mean RMSE Max
East —1817.44 2475.40 5675.91 3.74 4.44 9.17 —5.06 12.10 27.00 3.74 4.44 9.17
North —895.41 1036.99 1544.63 —-1.22 3.33 7.31 —12.32 14.70 27.64 —-1.22 3.33 7.31
Horizontal 2092.57 2683.83 5706.95 5.12 5.55 9.47 16.80 19.05 36.51 5.12 5.55 9.47
Upward 262.23 298.13 483.47 5.81 6.61 17.17 16.25 16.84 25.64 5.81 6.61 17.19
Roll —0.0177 0.4696 1.1714 0.5292 0.7313 2.5635 0.5358 1.5920 3.7675 —0.0177  0.4738 1.1978
Pitch 0.1140 0.4971 1.2378 0.1118 0.5056 3.0260 —0.1281 1.7569 3.4024 0.1150 0.5040 1.2745
Yaw —1.2263 1.3443 2.3483 —0.9188 3.1443 12.2069 —2.9487  3.1716 7.0003 —1.2612 1.3703 2.3497
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4.4. Comparison between the INS/LIMO and INS/LIMO/LiDAR Integration

It is evident from Figures 15 and 16 that the final integrated navigation system follows
the LIMO position estimations and the INS attitude estimations. This means that the
performance of the LIMO is superior to the LIDAR SLAM, as solidified by Table 5. As a
result, we can conclude that the use of our proposed INS/LIMO integrated system is the
best system, given that no sensor failure occurs. In other words, the inclusion of the LiDAR
SLAM in the integrated navigation system is redundant. This redundancy enhances the
robustness of the navigation system against any potential malfunctioning of the onboard
sensors. Therefore, in the case of INS/LiDAR/LIMO integration, the use of the LiDAR as a
redundant onboard sensor will prove to be important if the monocular camera fails for any
known or unknown reason. Consequently, the navigation system will continue to operate
and generate reliable pose estimates up to the accuracy of LIDAR SLAM.

4.5. Comparison with State-of-the-Art Models

In order to assess the quality of our proposed navigation model, it is imperative to
compare our work with state-of-the-art models. Taking this into account, we used the
KITTI dataset in the first and third case studies in this research as a benchmark dataset. In
the first case study, our proposed INS/LIMO navigation system provides better attitude
estimations in comparison to the sole use of LIMO. In addition, the system positioning
estimations rely on LIMO, which outperformed a number of algorithms on the KITTI
odometry benchmark [16], such as ORB-SLAM [26,29] and Stereo LSD-SLAM [27].

Regarding the additional integration of INS/LIMO/LiDAR presented in the third case
study, we extensively compared the LIDAR SLAM algorithm we used in [30] with leading
state-of-the-art LIDAR models [18,20,50]. Our model outperformed the previous models
using the KITTI dataset.

5. Conclusions

In this research, an integrated INS/Visual SLAM (LIMO) navigation system was
proposed. The system featured a loosely-coupled integration of the INS and the monocular
camera SLAM pose estimations using an EKF. In addition, the system was tested on two
datasets, namely, the KITTI dataset and the Leddar PixSet dataset, which covered various
driving environments in terms of the nature of the environment (i.e., rural and urban
drives) and traffic intensity (i.e., low to moderate traffic and high traffic). The performance
of the integrated system resulted in an average reduction of 80% and 92% in the RMSE in
the horizontal and upward directions, respectively. In addition, the proposed navigation
system was tested against another integration scheme that fuses the measurement of the
IMU, a monocular camera, and a LiDAR sensor. The results showed a reduction of 99%
and 97% in the RMSE in the horizontal and upward directions, respectively. In addition,
the results also confirmed that the inclusion of LiDAR did not affect the final accuracy
of the navigation system, albeit adding sensor redundancy to the system, which can be
beneficial in the case of a camera malfunctioning. Finally, our proposed navigation system
was compared with state-of-the-art models.
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