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Abstract: The existing expectation maximization (EM) and space-alternating generalized EM (SAGE)
algorithms are only applied to direction of arrival (DOA) estimation in known noise. In this paper, the
two algorithms are designed for DOA estimation in unknown uniform noise. Both the deterministic
and random signal models are considered. In addition, a new modified EM (MEM) algorithm
applicable to the noise assumption is also proposed. Next, these EM-type algorithms are improved
to ensure the stability when the powers of sources are not equal. After being improved, simulation
results illustrate that the EM algorithm has similar convergence with the MEM algorithm, the SAGE
algorithm outperforms the EM and MEM algorithms for the deterministic signal model, and the SAGE
algorithm cannot always outperform the EM and MEM algorithms for the random signal model.
Furthermore, simulation results show that processing the same snapshots from the random signal
model, the SAGE algorithm for the deterministic signal model can require the fewest computations.

Keywords: array signal processing; DOA estimation; EM algorithm; maximum likelihood estimation;
statistical signal processing

1. Introduction

Direction of arrival (DOA) estimation is an important part of array signal processing
and some high-resolution estimation techniques have been developed in the literature [1,2].
In particular, the maximum likelihood (ML) technique plays a critical role since it can
offer the highest advantage in terms of both accuracy and spatial resolution. However,
ML direction finding problems are non-convex and difficult to obtain their solutions in
closed form.

One computationally efficient method to solve ML estimation problems is the classic
expectation maximization (EM) algorithm [3,4], which has been employed for ML direction
finding [5,6]. Each iteration of the EM algorithm is composed of an expectation step (E-step)
and a maximization step (M-step). At the M-step, however, the EM algorithm updates
all of the parameter estimates simultaneously, which causes slow convergence. In order
to speed up the convergence of the EM algorithm, the space-alternating generalized EM
(SAGE) algorithm has been proposed in [7]. References [8,9] show that the SAGE algorithm
does yield faster convergence in terms of DOA estimation.

The existing EM and SAGE algorithms are usually derived under known noise [5,6,8,9].
The known noise is without unknown parameters, which may be unrealistic in certain
applications. In fact, many seminal works in ML direction finding consider the so-called un-
known uniform noise model [1,2,10–12], i.e., the noise covariance matrix can be expressed
as τIK, where τ is the only unknown noise parameter and IK is the K× K identity matrix.
Under this noise assumption, a computationally attractive alternating projection algorithm
is presented for computing the deterministic ML based DOA estimator in [10]. The au-
thors in [11] investigate the statistical performance of this ML estimator and derive the
Cramer–Rao lower bound. Moreover, some statistical properties of both the deterministic
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and random ML based DOA estimators under unknown uniform noise are compared
in [12]. In addition to uniform noise, non-uniform noise has also attracted increasing
attention [13–16]. The non-uniform noise has an arbitrary diagonal covariance matrix and,
thus, makes DOA estimation complex. For efficiently computing both the deterministic
and random ML based DOA estimators in unknown non-uniform noise, some feasible
algorithms have been proposed in [17–20].

In this paper, we apply and design the EM and SAGE algorithms for DOA estimation
in unknown uniform noise. Theoretical analyses indicate that for the deterministic signal
model, τ has little effect on the two algorithms. However, the problem in the M-step of
the EM algorithm for the random signal model can be no longer decomposed into paral-
lel subproblems easily when τ is unknown. To proceed, we divide the M-step into two
conditional M-steps (CM-steps) based on the expectation CM (ECM) algorithm [21]. In
addition, we propose a new modified EM (MEM) algorithm applicable to the unknown
uniform noise assumption. Note that although the EM algorithm in [22] is similar to the
MEM algorithm, it is incorrectly derived. In brief, the proposed EM-type algorithms only
need low-dimensional numerical searches at each iteration and are easy to perform. How-
ever, the proposed EM-type algorithms require accurate initial points, which is generally a
computationally expensive task.

Existing simulations using EM-type algorithms always adopt sources of equal
power [5,6,8,9,22]. We find, however, that when the powers of sources are unequal, the DOA
estimates of multiple sources obtained by these EM-type algorithms tend to be consistent
with the true DOA of the source with the largest power. To this end, we improve the pro-
posed EM-type algorithms. After being improved, simulation results illustrate that (1) the
EM algorithm has similar convergence with the MEM algorithm, (2) the SAGE algorithm
outperforms the EM and MEM algorithms for the deterministic signal model, i.e., the SAGE
algorithm converges faster and can avoid the convergence to an undesirable stationary
point of the log-likelihood function (LLF) more efficiently, and (3) the SAGE algorithm
cannot always outperform the EM and MEM algorithms for the random signal model.

The proposed EM-type algorithms for the deterministic signal model can process
snapshots from the random signal model, so we, via simulation, compare these algorithms
for both signal models. Simulations show that, under the same snapshots, initial DOA
estimates, and stopping criterion, the SAGE algorithm for the deterministic signal model
can require the fewest iterations and computations.

The contributions of this paper can be enumerated as follows:

• We apply and design the EM and SAGE algorithms for DOA estimation in unknown
uniform noise. In particular, we derive the SAGE algorithm for random ML direction
finding, which is not discussed in [7,8,22].

• We propose a new MEM algorithm applicable to the unknown uniform noise assumption.
• We improve these EM-type algorithms to ensure the stability when the powers of

sources are not equal.
• Via simulation we show that the EM algorithm has similar convergence with the MEM

algorithm and the SAGE algorithm outperforms the EM and MEM algorithms for the
deterministic signal model. However, the SAGE algorithm cannot always outperform
the EM and MEM algorithms for the random signal model.

• Via simulation we show that processing the same snapshots from the random signal
model, the SAGE algorithm for the deterministic signal model can require the fewest
iterations and computations.

The rest of this paper is outlined as follows: in Section 2, we formulate both the
deterministic and random ML direction finding problems in unknown uniform noise.
In Sections 3–5, we design the EM, MEM, and SAGE algorithms, respectively. We analyze
some convergence properties of these EM-type algorithms in Section 6 and provide simula-
tion results to compare the convergence of these EM-type algorithms in Section 7. Finally,
we conclude this paper in Section 8.
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2. Signal Model and Problem Statement

An array of K sensors is assumed to receive the plane waves emitted from G narrow-
band sources, which share the same known center wavelength χ. We use the Cartesian
coordinate ζk = [xk yk zk]

T and the Spherical coordinate (1, µg, ηg) to locate the kth sensor
and the direction of the gth source, respectively. Here, [·]T denotes transpose, µg and ηg
denote the elevation and azimuth angles of the gth source, respectively. For convenience,
we transform (1, µg, ηg) into the corresponding Cartesian coordinate
γg = [sin(µg) cos(ηg) sin(µg) sin(ηg) cos(µg)]T . Let the origin be the reference point such
that the signal received at the array is written as

w(t) =
G

∑
g=1

b(ξg)mg(t) + v(t) = B(ξ)m(t) + v(t), (1)

where b(ξg) = [eφ1,g · · · eφK,g ]T with DOA ξg = (µg, ηg) ∈ Ω, φk,g = − 2π
χ ζT

k γg, and
 =
√
−1, mg(t) is the signal of the gth source, and v(t) is complex Gaussian noise of

zero mean and covariance τIK, i.e., v(t) ∼ CN (0, τIK) with 0 = [0 · · · 0]T . In (1),
B(ξ) = [b(ξ1) · · · b(ξG)], ξ = (ξ1, · · · , ξG) ∈ Ω with Ω = ΩG, and m(t) = [m1(t) · · · mG(t)]T.

EM-type algorithms need to define the unavailable complete data. According to the
classic EM paradigm for superimposed signals [5,6], we construct L independent snapshots,
the incomplete data of the EM algorithm, by

w(t) =
G

∑
g=1

[
b(ξg)mg(t) + vg(t)

]
=

G

∑
g=1

hg(t), t = 1, 2, . . . , L, (2)

where the hg(t)’s are the complete data. Moreover, the vg(t)’s are mutually uncorrelated
and vg(t) ∼ CN (0, βgτIK), where β = [β1 · · · βG]

T > 0 and 1T β = 1 with 1 = [1 · · · 1]T .
Note that the incomplete- and complete-data LLFs require the distributions of the mg(t)’s,
we adopt the following two statistical models separately.

2.1. Deterministic Signal Model

We let the mg(t)’s be deterministic and unknown [5,6,10,11], which leads to
hg(t) ∼ CN

(
b(ξg)mg(t), βgτIK

)
and w(t) ∼ CN

(
B(ξ)m(t), τIK

)
. Then, the incomplete-

and complete-data LLFs are formulated by

J (Ψ, τ) =
L

∑
t=1

log p
(
w(t); ξ, m(t), τ

)
= −LK log(πτ)− 1

τ

L

∑
t=1
‖w(t)− B(ξ)m(t)‖2, (3)

Z(Ψ, τ) =
L

∑
t=1

G

∑
g=1

log p
(
hg(t); ξg, mg(t), τ

)
= −LKG log(πτ)− LK

G

∑
g=1

log(βg)−
1
τ

L

∑
t=1

G

∑
g=1

1
βg
‖hg(t)− b(ξg)mg(t)‖2, (4)

where ‖ · ‖ denotes Euclidean norm and M = [m(1) · · · m(L)]. Note that Ψ = (ξ, M) de-
notes the signal parameters while τ is the only noise parameter. Finally, the ML estimation
problem is

max
ξ∈Ω,M,τ>0

J (Ψ, τ). (5)
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2.2. Random Signal Model

We assume mg(t) ∼ CN (0, ρg) where ρg is the power of the gth source. For simplicity,
all of the mg(t)’s and vg(t)’s are assumed to be mutually uncorrelated [5,6]. Next, we
have hg(t) ∼ CN (0, Ng) with Ng = ρgb(ξg)bH(ξg) + βgτIK, where [·]H denotes conjugate
transpose, and w(t) ∼ CN (0, Nw) with Nw = ∑G

g=1 Ng. The incomplete- and complete-
data LLFs are formulated by

J (Ψ, τ) =
L

∑
t=1

log p
(
w(t); ξ, ρ, τ

)
= −L

[
K log(π) + log

(
Det(Nw)

)
+ Tr

(
N−1

w P̂w
)]

, (6)

Z(Ψ, τ) =
L

∑
t=1

G

∑
g=1

log p
(
hg(t); ξg, ρg, τ

)
= −L

G

∑
g=1

[
K log(π) + log

(
Det(Ng)

)
+ Tr

(
N−1

g P̂g
)]

, (7)

where [·]−1, Det(·), and Tr(·) denote inversion, determinant, and trace, respectively. More-
over, Ψ = (ξ, ρ), P̂w = (1/L)∑L

t=1 w(t)wH(t), P̂g = (1/L)∑L
t=1 hg(t)hH

g (t), and
ρ = [ρ1 · · · ρG]

T . Finally, the ML estimation problem is

max
ξ∈Ω,ρ≥0,τ>0

J (Ψ, τ). (8)

3. EM Algorithm

In this section, we design and derive the EM algorithm for solving problems (5) and (8).
The E- and M-steps at the rth iteration are introduced below. Let [·](r), E{·}, and D{·}
denote an iterative value at the rth iteration, expectation, and covariance, respectively. [·](0)
is an initial estimate.

3.1. Deterministic Signal Model
3.1.1. E-Step

Calculate the conditional expectation of the complete-data LLF in (4)

E
{
Z(∆)|W; ∆(r−1)} = C− L

{
KG log(τ) + K

G

∑
g=1

log(βg) +
1
τ

[
u(r) +

1
L

L

∑
t=1

G

∑
g=1

1
βg
‖h(r)

g (t)− b(ξg)mg(t)‖2]}, (9)

where ∆ = (Ψ, τ) = (ξ, M, τ), W = [w(1) · · · w(L)], and C = −LKG log(π). In (9),
the conditional distribution of hg(t) can be derived from [23] and

h(r)
g (t) = E

{
hg(t)|W; ∆(r−1)}

= b(ξ(r−1)
g )m(r−1)

g (t) + βg
[
w(t)− B(ξ(r−1))m(r−1)(t)

]
, (10)

u(r) =
1
L

L

∑
t=1

G

∑
g=1

1
βg

Tr
(
D
{

hg(t)|W; ∆(r−1)}) = 1
L

L

∑
t=1

G

∑
g=1

1
βg

Tr
(

βg(1− βg)τ
(r−1)IK

)
= K(G− 1)τ(r−1). (11)
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3.1.2. M-Step

Update the estimates of Ψ and τ by solving

min
ξ∈Ω,M,τ>0

KG log(τ) +
1
τ

[
u(r) +

1
L

L

∑
t=1

G

∑
g=1

1
βg

∥∥h(r)
g (t)− b(ξg)mg(t)

∥∥2]. (12)

Ψ(r) = (ξ(r), M(r)) and τ(r) are obtained by [6]

ξ
(r)
g = arg max

ξg∈Ω
Tr
(
ΓgP̂(r)

g
)
, ∀g, (13)

m(r)
g (t) = bH(ξ

(r)
g )h(r)

g (t)/K, ∀g, t, (14)

τ(r) = (1− 1/G)τ(r−1) + (1/K/G)∑G
g=1d(r)g /βg, (15)

where Γg = b(ξg)bH(ξg)/K, P̂(r)
g = (1/L)∑L

t=1 h(r)
g (t)

[
h(r)

g (t)
]H , and d(r)g = Tr

(
(IK −

Γ
(r)
g )P̂(r)

g
)
≥ 0. In (15), τ(r) > 0 if τ(r−1) > 0.

Remark 1. Note that the h(r)
g (t)’s in (10), the ξ

(r)
g ’s in (13), and the m(r)

g (t)’s in (14) are unrelated
to τ(r−1), we can omit (15) due to the nuisance parameter τ.

3.2. Random Signal Model
3.2.1. E-Step

Calculate the conditional expectation of the complete-data LLF in (7)

E
{
Z(∆)|W; ∆(r−1)} = C− L

G

∑
g=1

[
log
(
Det(Ng)

)
+ Tr

(
N−1

g P̂(r)
g
)]

, (16)

where ∆ = (Ψ, τ) = (ξ, ρ, τ) and

P̂(r)
g = E

{
P̂g|W; ∆(r−1)}

= N(r−1)
g −N(r−1)

g [N(r−1)
w ]−1N(r−1)

g + N(r−1)
g [N(r−1)

w ]−1P̂w[N
(r−1)
w ]−1N(r−1)

g . (17)

3.2.2. M-Step

Update the estimates of Ψ and τ by solving

min
ξ∈Ω,ρ≥0,τ>0

G

∑
g=1

[
log
(
Det(Ng)

)
+ Tr

(
N−1

g P̂(r)
g
)]

, (18)

which is difficult to be decomposed into parallel subproblems due to τ. To obtain Ψ(r) and
τ(r) easily, we rewrite (18) as

min
ξ∈Ω,σ≥0,τ>0

KG log(τ) +
G

∑
g=1

[
log
(
Det(Qg)

)
+

1
τ

Tr
(
Q−1

g P̂(r)
g
)]

, (19)

where Ng = τQg with Qg = σgb(ξg)bH(ξg) + βgIK and σ = [σ1 · · · σG]
T with σg = ρg/τ.

We now divide the M-step into the following two CM-steps based on the ECM algo-
rithm [21], i.e., the algorithm becomes the ECM algorithm. For convenience, we still call it
the EM algorithm.
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• First CM-step: Estimate Ψ but hold τ = τ(r−1) fixed. Then, problem (19) can be
decomposed into the G parallel subproblems

min
ξg∈Ω,σg≥0

log
(
Det(Qg)

)
+

1
τ(r−1)

Tr
(
Q−1

g P̂(r)
g
)
, ∀g. (20)

Ψ(r) = (ξ(r), ρ(r)) is obtained by [6]

ξ
(r)
g = arg max

ξg∈Ω
Tr
(
ΓgP̂(r)

g
)
, ∀g, (21)

ρ
(r)
g = σ

(r)
g τ(r−1) = max

{(
e(r)g − βgτ(r−1))/K, 0

}
, ∀g, (22)

where e(r)g = Tr
(
Γ
(r)
g P̂(r)

g
)

and ξ
(r)
g is indeterminate if ρ

(r)
g = 0.

• Second CM-step: Estimate τ but hold Ψ = Ψ(r) fixed. Then, problem (19) is simplified to

min
τ>0

KG log(τ) +
1
τ

G

∑
g=1

Tr
(
[Q(r)

g ]−1P̂(r)
g
)
. (23)

τ(r) is obtained by

τ(r) =
1

KG

G

∑
g=1

Tr
(
[Q(r)

g ]−1P̂(r)
g
)
=

1
K

τ(r−1) +
1

KG

G

∑
g=1

d(r)g /βg, (24)

where d(r)g = Tr
(
(IK − Γ

(r)
g )P̂(r)

g
)
≥ 0 and τ(r) > 0 if τ(r−1) > 0.

4. MEM Algorithm

In the previous section, β is fixed and known. In this section, we regard β as a
parameter to be estimated and, thus, propose an MEM algorithm applicable to the unknown
uniform noise assumption.

To estimate τ and β easily, we introduce τg = βgτ as the common noise variance of
the gth source and have

vg(t) ∼ CN (0, τgIK). (25)

Clearly, τ = ∑G
g=1 τg and βg = τg/τ. The E- and M-steps at the rth iteration are introduced

below. Let τ = [τ1 · · · τG]
T .

4.1. Deterministic Signal Model

Based on (25), the complete-data LLF in (4) is rewritten as

Z(∆) = C− LK
G

∑
g=1

log(τg)−
L

∑
t=1

G

∑
g=1

1
τg
‖hg(t)− b(ξg)mg(t)‖2, (26)

where ∆ = (Ψ, τ) = (ξ, M, τ) and hg(t) ∼ CN
(
b(ξg)mg(t), τgIK

)
.

4.1.1. E-Step

Calculate the conditional expectation of the complete-data LLF in (26)

E
{
Z(∆)|W; ∆(r−1)} = C− L

G

∑
g=1

{
K log(τg) +

1
τg

[
u(r)

g +

1
L

L

∑
t=1
‖h(r)

g (t)− b(ξg)mg(t)‖2]}, (27)
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where

h(r)
g (t) = E

{
hg(t)|W; ∆(r−1)}

= b(ξ(r−1)
g )m(r−1)

g (t) +
(
τ
(r−1)
g /τ(r−1))[w(t)− B(ξ(r−1))m(r−1)(t)

]
, (28)

u(r)
g =

1
L

L

∑
t=1

Tr
(
D
{

hg(t)|W; ∆(r−1)}) = Kτ
(r−1)
g

(
1− τ

(r−1)
g /τ(r−1)). (29)

4.1.2. M-Step

Update the estimates of Ψ and τ by solving the G parallel subproblems

min
ξg∈Ω,mg ,τg>0

K log(τg) +
1
τg

[
u(r)

g +
1
L

L

∑
t=1

∥∥h(r)
g (t)− b(ξg)mg(t)

∥∥2], ∀g, (30)

where mg = [mg(1) · · · mg(L)]. Ψ(r) = (ξ(r), M(r)) and τ(r) are obtained by

ξ
(r)
g = arg max

ξg∈Ω
Tr
(
ΓgP̂(r)

g
)
, ∀g, (31)

m(r)
g (t) = bH(ξ

(r)
g )h(r)

g (t)/K, ∀g, t, (32)

τ
(r)
g = τ

(r−1)
g

(
1− τ

(r−1)
g /τ(r−1))+ d(r)g /K, ∀g, (33)

where P̂(r)
g = (1/L)∑L

t=1 h(r)
g (t)

[
h(r)

g (t)
]H and d(r)g = Tr

(
(IK − Γ

(r)
g )P̂(r)

g
)
≥ 0. In (33),

if τ(r−1) > 0, we have 1− τ
(r−1)
g /τ(r−1) > 0, ∀g, and then τ

(r)
g > 0, ∀g, i.e., τ(r) > 0.

4.2. Random Signal Model

Based on (25), the complete-data LLF in (7) is rewritten as

Z(∆) = C− L
G

∑
g=1

[
log
(
Det(Ng)

)
+ Tr

(
N−1

g P̂g
)]

, (34)

where ∆ = (Ψ, τ) = (ξ, ρ, τ) and Ng = ρgb(ξg)bH(ξg) + τgIK.

4.2.1. E-Step

Calculate the conditional expectation of the complete-data LLF in (34)

E
{
Z(∆)|W; ∆(r−1)} = C− L

G

∑
g=1

[
log
(
Det(Ng)

)
+ Tr

(
N−1

g P̂(r)
g
)]

, (35)

where

P̂(r)
g = E

{
P̂g|W; ∆(r−1)}

= N(r−1)
g −N(r−1)

g [N(r−1)
w ]−1N(r−1)

g + N(r−1)
g [N(r−1)

w ]−1P̂w[N
(r−1)
w ]−1N(r−1)

g . (36)

4.2.2. M-Step

Update the estimates of Ψ and τ by solving the G parallel subproblems

min
ξg∈Ω,σg≥0,τg>0

K log(τg) + log
(
Det(Qg)

)
+

1
τg

Tr
(
Q−1

g P̂(r)
g
)
, ∀g, (37)
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where Ng = τgQg with Qg = σgb(ξg)bH(ξg) + IK and σg = ρg/τg. Since Det(Qg) =

Kσg + 1 and Q−1
g = IK −

Kσg
Kσg+1 Γg, subproblems (37) are rewritten as

min
ξg∈Ω,σg≥0,τg>0

K log(τg) + log(Kσg + 1) +
1
τg

Tr
(
P̂(r)

g
)
−

Kσg

τg(Kσg + 1)
Tr
(
ΓgP̂(r)

g
)
, ∀g. (38)

To proceed, we first eliminate σ = [σ1 · · · σG]
T in (38) [24,25]. Thus, when obtaining ξ(r)

and τ(r), σ(r) and ρ(r) are obtained by [6]

σ
(r)
g = max

{(
e(r)g /τ

(r)
g − 1

)
/K, 0

}
, ∀g, (39)

ρ
(r)
g = σ

(r)
g τ

(r)
g = max

{(
e(r)g − τ

(r)
g
)
/K, 0

}
, ∀g, (40)

where e(r)g = Tr
(
Γ
(r)
g P̂(r)

g
)
. Note that if σ

(r)
g = 0, ξ

(r)
g is indeterminate and τ

(r)
g = Tr

(
P̂(r)

g
)
/K

by (38). To obtain ξ(r) and τ(r), we assume σ(r) > 0. After eliminating σ, subproblems (38)
are simplified to

min
ξg∈Ω,τg>0

(K− 1) log(τg) + log
(
Tr(ΓgP̂(r)

g )
)
+

1
τg

Tr
(
(IK − Γg)P̂

(r)
g
)
, ∀g. (41)

Next, we eliminate τ in (41). Thus, when obtaining ξ(r), τ(r) is obtained by
τ
(r)
g = d(r)g /(K− 1), ∀g, where d(r)g = Tr

(
(IK − Γ

(r)
g )P̂(r)

g
)
. After eliminating τ, subproblems

(41) are simplified to

min
ξg∈Ω

(K− 1) log
(
Tr(P̂(r)

g )− Tr(ΓgP̂(r)
g )
)
+ log

(
Tr(ΓgP̂(r)

g )
)
, ∀g, (42)

where ξg ∈ δ
(r)
g =

{
ξg ∈ Ω | Tr(ΓgP̂(r)

g ) > Tr(P̂(r)
g )/K

}
due to the fact that when ξ

(r)
g ∈ δ

(r)
g ,

e(r)g = Tr(Γ(r)
g P̂(r)

g ) > Tr(P̂(r)
g )/K and

σ
(r)
g = max

{(
e(r)g /τ

(r)
g − 1

)
/K, 0

}
=
(
e(r)g − Tr(P̂(r)

g )/K
)
/d(r)g > 0, ∀g. (43)

Since (K − 1) log
(
Tr(P̂(r)

g )− x
)
+ log(x) is a monotonically decreasing function of x for

x ≥ Tr(P̂(r)
g )/K, subproblems (42) are equivalent to

max
ξg∈δ

(r)
g

Tr
(
ΓgP̂(r)

g
)
, ∀g. (44)

Based on the above analysis, Ψ(r) = (ξ(r), ρ(r)) and τ(r) are obtained by

ξ
(r)
g = arg max

ξg∈Ω
Tr
(
ΓgP̂(r)

g
)
, ∀g, (45)

τ
(r)
g =

{
d(r)g /(K− 1) ≥ 0, e(r)g > Tr(P̂(r)

g )/K,
Tr(P̂(r)

g )/K ≥ 0, e(r)g ≤ Tr(P̂(r)
g )/K,

∀g, (46)

ρ
(r)
g = max

{(
e(r)g − Tr(P̂(r)

g )/K
)
/(K− 1), 0

}
, ∀g, (47)

where we can use a proof by contradiction to verify that τ(r) > 0 if τ(r−1) > 0.

5. SAGE Algorithm

In the SAGE algorithm, each iteration consists of G cycles and ξ
(r)
q is obtained at the

qth cycle of the rth iteration. Let [·](r,q) mean an iterative value at the qth cycle of the rth
iteration, [·](r−1) = [·](r−1,G) = [·](r,0).
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At the qth cycle of the rth iteration, the SAGE algorithm first constructs the complete
data by [7,8]

hg(t) =
{

b(ξg)mg(t) + v(t) g = q,
b(ξg)mg(t) g 6= q.

(48)

Then, the E- and M-steps at the qth cycle of the rth iteration are introduced below.

5.1. Deterministic Signal Model

Based on (48), we have hq(t) ∼ CN
(
b(ξq)mq(t), τIK

)
and the hg(t)’s with g 6= q are

deterministic. The complete-data LLF is expressed as

Z(ξq, mq, τ) =
L

∑
t=1

log p
(
hq(t); ξq, mq(t), τ

)
= −LK log(πτ)− 1

τ

L

∑
t=1
‖hq(t)− b(ξq)mq(t)‖2. (49)

5.1.1. E-Step

Calculate the conditional expectation of the complete-data LLF in (49)

E
{
Z(ξq, mq, τ)|W; ∆(r,q−1)} = −LK log(πτ)− 1

τ

L

∑
t=1
‖h(r)

q (t)− b(ξq)mq(t)‖2, (50)

where ∆ = (ξ, M, τ), 0K is the K× K zero matrix, and

h(r)
q (t) = h(r,q)

q (t) = E
{

hq(t)|W; ∆(r,q−1)}
= b(ξ(r,q−1)

q )m(r,q−1)
q (t) +

[
w(t)− B(ξ(r,q−1))m(r,q−1)(t)

]
, (51)

D
{

hq(t)|W; ∆(r,q−1)} = 0K. (52)

5.1.2. M-Step

Update the estimates of ξq, mq, and τ by solving

min
ξq∈Ω,mq ,τ>0

K log(τ) +
1

τL

L

∑
t=1
‖h(r)

q (t)− b(ξq)mq(t)‖2. (53)

ξ
(r)
q , m(r)

q , and τ(r,q) are obtained by

ξ
(r)
q = ξ

(r,q)
q = arg max

ξq∈Ω
Tr
{

ΓqP̂(r)
q
}

, (54)

m(r)
q (t) = m(r,q)

q (t) = bH(ξ
(r)
q )h(r)

q (t)/K, ∀t, (55)

τ(r,q) = d(r)q /K, (56)

where P̂(r)
q = (1/L)∑L

t=1 h(r)
q (t)

[
h(r)

q (t)
]H and d(r)q = Tr

(
(IK − Γ

(r)
q )P̂(r)

q
)
.

Moreover, the other parameter estimates are not updated at this cycle and their
iterative values are

ξ
(r,q)
g = ξ

(r,q−1)
g , ∀g 6= q, (57)

m(r,q)
g (t) = m(r,q−1)

g (t), ∀g 6= q, t. (58)

Remark 2. Since the h(r)
q (t)’s in (51), ξ

(r)
q in (54), and the m(r)

q (t)’s in (55) are unrelated to
τ(r,q−1), we can omit (56) due to the nuisance parameter τ.
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5.2. Random Signal Model

Based on (48), we have hq(t) ∼ CN (0, Nq) with Nq = ρqb(ξq)bH(ξq)+ τIK. However,
the distribution of hg(t) with g 6= q is only associated with mg(t). The complete-data LLF
is written as

Z(ξq, ρ, τ) =
L

∑
t=1

∑
g 6=q

log p
(
mg(t); ρg

)
+

L

∑
t=1

log p
(
hq(t); ξq, ρq, τ

)
= −L(G− 1) log(π)− L ∑

g 6=q

[
log(ρg) + P̂g/ρg

]
−LK log(π)− L

[
log
(
Det(Nq)

)
+ Tr

(
N−1

q P̂q
)]

, (59)

where P̂g = (1/L)∑L
t=1 |mg(t)|2 and | · | denotes modulus.

5.2.1. E-Step

Calculate the conditional expectation of the complete-data LLF in (59)

E
{
Z(ξq, ρ, τ)|W; ∆(r,q−1)} = V − L ∑

g 6=q

[
log(ρg) + P̂(r,q)

g /ρg
]

−L
[

log
(
Det(Nq)

)
+ Tr

(
N−1

q P̂(r)
q
)]

, (60)

where ∆ = (ξ, ρ, τ) and V = −L(K + G− 1) log(π). In (60),

P̂(r,q)
g = E

{
P̂g|W; ∆(r,q−1)}

= ρ
(r,q−1)
g

[
1− bH(ξ

(r,q−1)
g )d(r,q−1)

g
]
+ [d(r,q−1)

g ]H P̂wd(r,q−1)
g ≥ 0 (61)

with d(r,q−1)
g = [N(r,q−1)

w ]−1b(ξ(r,q−1)
g )ρ

(r,q−1)
g and

P̂(r)
q = P̂(r,q)

q = E
{

P̂q|W; ∆(r,q−1)}
= N(r,q−1)

q −N(r,q−1)
q [N(r,q−1)

w ]−1N(r,q−1)
q

+N(r,q−1)
q [N(r,q−1)

w ]−1P̂w[N
(r,q−1)
w ]−1N(r,q−1)

q . (62)

5.2.2. M-Step

Update the estimates of ξq, ρ, and τ by solving

min
ξq∈Ω,ρ≥0,τ>0

∑
g 6=q

[
log(ρg) + P̂(r,q)

g /ρg
]
+ log

(
Det(Nq)

)
+ Tr

(
N−1

q P̂(r)
q
)
. (63)

We, thus, have ρ
(r,q)
g = P̂(r,q)

g , ∀g 6= q, and ξ
(r)
q , ρ

(r,q)
q , and τ(r,q) are obtained by solving

min
ξq∈Ω,σq≥0,τ>0

K log(τ) + log
(
Det(Qq)

)
+

1
τ

Tr
(
Q−1

q P̂(r)
q
)
, (64)

where Nq = τQq with Qq = σqb(ξq)bH(ξq) + IK and σq = ρq/τ. Following (45)–(47), ξ
(r)
q ,

ρ
(r,q)
q , and τ(r,q) are obtained by

ξ
(r)
q = ξ

(r,q)
q = arg max

ξq∈Ω
Tr
(
ΓqP̂(r)

q
)
, (65)

τ(r,q) =

{
d(r)q /(K− 1) ≥ 0, e(r)q > Tr

(
P̂(r)

q
)
/K,

Tr
(
P̂(r)

q
)
/K ≥ 0, e(r)q ≤ Tr

(
P̂(r)

q
)
/K,

(66)

ρ
(r,q)
q = max

{(
e(r)q − Tr

(
P̂(r)

q
)
/K
)
/(K− 1), 0

}
, (67)
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where τ(r,q) = 0 is possible although its probability is very low. For example, if G = 2,
L = 1, and ρ

(1,1)
1 = 0 at 1st cycle of the 1st iteration, at the 2nd cycle of the 1st iteration we

will have

N(1,1)
w = ρ

(1,1)
2 b(ξ(1,1)

2 )bH(ξ
(1,1)
2 ) + τ(1,1)IK = N(1,1)

2 (68)

and then P̂(1)
2 = w(1)wH(1) by (62). Furthermore, if w(1) = hb(ξ̄) (h 6= 0, ξ̄ ∈ Ω), we will

obtain ξ
(1)
2 = ξ̄ by (65) and τ(1,2) = d(1)2 /(K− 1) = 0 by (66).

To avoid τ(r,q) = 0, we use the following two CM-steps to re-estimate ξq, ρq, and τ

based on problem (64) if τ(r,q) = 0 in (66).

• First CM-step: Estimate ξq and ρq but hold τ = τ(r,q−1) fixed. Then, problem (64) is
simplified to

min
ξq∈Ω,σq≥0

log
(
Det(Qq)

)
+

1
τ(r,q−1)

Tr
(
Q−1

q P̂(r)
q
)
. (69)

Following (21) and (22), ξ
(r)
q and ρ

(r,q)
q are obtained by

ξ
(r)
q = ξ

(r,q)
q = arg max

ξq∈Ω
Tr
(
ΓqP̂(r)

q
)
, (70)

ρ
(r,q)
q = σ

(r,q)
q τ(r,q−1) = max

{(
e(r)q − τ(r,q−1))/K, 0

}
. (71)

• Second CM-step: Estimate τ but hold ξq = ξ
(r)
q and σq = σ

(r,q)
q fixed. Then, problem (64)

is simplified to

min
τ>0

K log(τ) +
1
τ

Tr
(
[Q(r)

q ]−1P̂(r)
q
)
, (72)

where Q(r)
q = σ

(r,q)
q b(ξ(r)q )bH(ξ

(r)
q ) + IK. We obtain τ(r,q) by

τ(r,q) = Tr
{
[Q(r)

q ]−1P̂(r)
q
}

/K =
(
τ(r,q−1) + d(r)q

)
/K, (73)

where d(r)q = Tr
(
(IK − Γ

(r)
q )P̂(r)

q
)
≥ 0 and τ(r,q) > 0 if τ(r,q−1) > 0.

Moreover, the other parameter estimate(s) is (are) not updated at this cycle and the
iterative value(s) is (are)

ξ
(r,q)
g = ξ

(r,q−1)
g , ∀g 6= q. (74)

6. Properties of the Proposed EM, MEM, and SAGE Algorithms
6.1. Convergence Point

It is easy to verify that the above EM-type algorithms satisfy standard regularity con-
ditions [5,21,26] and always converge to stationary points of J (Ψ, τ). Of course, the con-
vergence points of these EM-type algorithms depend on their initial points. To generate
appropriate initial points, we can employ the method presented in [10] using the determin-
istic signal model.

6.2. Complexity and Stability

At the rth iteration, the computational burdens of the above EM-type algorithms lie in
solving the G maximization problems

ξ
(r)
g = arg max

ξg∈Ω
Tr
(
ΓgP̂(r)

g
)
, ∀g. (75)
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Thus, these EM-type algorithms have almost the same computational complexity at every
iteration and if an algorithm has faster convergence, its number of iterations required will
be smaller and its computations will be fewer.

However, when the powers of sources are unequal, we have found via simulation that
the DOA estimates of multiple sources, updated by (75), tend to be consistent with the true
DOA of the source with the largest power. Accordingly, these EM-type algorithms may
be unstable. To address this issue, we can reduce the difference between ξ

(r)
g and ξ

(r−1)
g by

increasing Tr
(
ΓgP̂(r)

g
)

rather than maximizing it, i.e.,

Tr
(
Γ
(r)
g P̂(r)

g
)
≥ Tr

(
Γ
(r−1)
g P̂(r)

g
)
, ∀g, (76)

which guarantees the monotonicity of these EM-type algorithms [3]. As a good example,
Algorithm 1 in the next section has given excellent simulation results.

Algorithm 1 Gradient ascent with backtracking line search

1: y(ηg) = K× Tr
(
ΓgP̂(r)

g
)
, ηg = η

(r−1)
g ∈ (0, π) (radian).

2: while |y′(ηg)| > 0.001 do

3: s = 0.1×
{

(π − ηg)/y′(ηg), y′(ηg) > 0,
−ηg/y′(ηg), y′(ηg) < 0.

4: while y
(
ηg + sy′(ηg)

)
< y(ηg) + 0.3s

(
y′(ηg)

)2 do
5: s = 0.5s.
6: end while
7: ηg = ηg + sy′(ηg) ∈ (0, π) (radian).
8: end while
9: η

(r)
g = ηg.

7. Simulation Results

We give simulation results to compare the proposed EM-type algorithms. For convenience,
the array is assumed to be a uniformly spaced linear array, in which ζk = [χ

2 (k− 1) 0 0]T. We
set G = 2, L = 20, and β = 1/G in the EM algorithm. Here, µ1 = µ2 = 90◦ is known while
η1 and η2 need to be estimated. M in the deterministic signal model is also generated by the
independent random numbers mg(t) ∼ CN (0, ρg). All the algorithms adopt the stopping

criterion ‖ξ(r+1) − ξ(r)‖ ≤ 0.001◦. Algorithm 1 is designed to search the η
(r)
g ’s in (76) [27].

Moreover, M(0) = [1 1]T , ρ(0) = 1, τ(0) = 1/G, and τ(0) = 1. In this section, the EM, MEM,
and SAGE algorithms are simply written as EM, MEM, and SAGE, respectively.

7.1. Deterministic Signal Model

To compare the convergence of EM, MEM, and SAGE, Figure 1 plots theirJ (Ψ(r), τ(r))’s,
η
(r)
1 ’s, and η

(r)
2 ’s under one trial. In Figure 1, K = 10, η1 = 20◦, η2 = 80◦, ρ1 = −2 dB,

ρ2 = 4 dB, τ = 4 dB, η
(0)
1 = 24◦, and η

(0)
2 = 84◦. It is easy to see that EM, MEM, and SAGE

converge to a consistent (η1, η2) estimate given an accurate initial point. Moreover, EM has
a similar convergence with MEM while SAGE converges faster than EM and MEM.

Figures 2 and 3 show two scatter plots of (η1, η2) estimates under 200 trials. In Figure 2,
K = 10, η1 = 25◦, η2 = 75◦, ρ1 = −4 dB, ρ2 = 2 dB, τ = 4 dB, η

(0)
1 = 40◦, and η

(0)
2 = 60◦.

Moreover, the numbers of desirable points obtained by EM, MEM, and SAGE are 68, 72,
and 179, respectively. In Figure 3, K = 10, η1 = 70◦, η2 = 78◦, ρ1 = −2 dB, ρ2 = 4 dB,
τ = 4 dB, η

(0)
1 = 50◦, and η

(0)
2 = 58◦. Moreover, the numbers of desirable points obtained

by EM, MEM, and SAGE are 159, 157, and 190, respectively. Figures 2 and 3 imply that
given a poor initial point, SAGE can avoid the convergence to an undesirable stationary
point of J (Ψ, τ) more efficiently than EM and MEM.
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2 comparison.
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Figure 2. Scatter plot of (η1, η2) estimates.
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Figure 3. Scatter plot of (η1, η2) estimates.

Note that in each of Figures 2 and 3, the SAGE algorithm requires the least processing
time due to the fastest convergence and thus performs the fewest computations required.
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Moreover, both sources in Figure 2 are not closely spaced, so it is very difficult to mix up
both sources and the desirable points in Figure 2 are centered around the true position
(25◦, 75◦). However, both sources in Figure 3 are closely spaced and the desirable points
are centered around (78◦, 70◦) or (70◦, 78◦), i.e., these EM-type algorithms are likely to mix
up closely spaced sources.

According to these simulations, we can conclude that (1) EM has similar convergence
with MEM, and (2) SAGE outperforms EM and MEM.

7.2. Random Signal Model

To compare the convergence of EM, MEM, and SAGE, Figure 4 plots theirJ (Ψ(r), τ(r))’s,
η
(r)
1 ’s, and η

(r)
2 ’s under one trial. In Figure 4, K = 10, η1 = 20◦, η2 = 80◦, ρ1 = −4 dB,

ρ2 = 4 dB, τ = 4 dB, η
(0)
1 = 24◦, and η

(0)
2 = 84◦. We can also observe that given an accurate

initial point, EM, MEM, and SAGE converge to a consistent (η1, η2) estimate. Moreover,
EM has similar convergence with MEM while SAGE converges faster than EM and MEM.
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Figure 4. J (Ψ(r), τ(r)), η
(r)
1 , and η

(r)
2 comparison.

Figures 5 and 6 show two scatter plots of (η1, η2) estimates under 200 trials. In Figure 5,
K = 10, η1 = 25◦, η2 = 75◦, ρ1 = −4 dB, ρ2 = 2 dB, τ = 4 dB, η

(0)
1 = 40◦, and η

(0)
2 = 60◦.

Moreover, the numbers of desirable points obtained by EM, MEM, and SAGE are 185, 186,
and 175, respectively. In Figure 6, K = 10, η1 = 70◦, η2 = 78◦, ρ1 = −2 dB, ρ2 = −1 dB,
τ = 4 dB, η

(0)
1 = 55◦, and η

(0)
2 = 63◦. Moreover, the numbers of desirable points obtained

by EM, MEM, and SAGE are 161, 161, and 172, respectively. Figures 5 and 6 imply that
EM has similar convergence with MEM but compared to EM and MEM, SAGE is less and
more efficient for avoiding the convergence to an undesirable stationary point of J (Ψ, τ)
in Figures 5 and 6, respectively. Note that in each of Figures 5 and 6, the SAGE algorithm
requires the least processing time due to the fastest convergence and thus performs the
fewest computations required. In addition, these EM-type algorithms are likely to mix up
closely spaced sources, so the desirable points in Figure 5 are centered around (25◦, 75◦)
and the desirable points in Figure 6 are centered around (78◦, 70◦) or (70◦, 78◦).

Based on the above figures, we can conclude that (1) EM has similar convergence with
MEM, and (2) SAGE cannot always outperform EM and MEM.
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Figure 5. Scatter plot of (η1, η2) estimates.
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Figure 6. Scatter plot of (η1, η2) estimates.

7.3. Deterministic and Random Signal Models

Snapshots from the random signal model can be processed by these EM-type al-
gorithms for the deterministic signal model, which means that we can compare these
algorithms for both signal models. The above simulation results have shown that EM has
similar convergence with MEM, so we only compare EM and SAGE for both signal models
in this subsection for simplicity.

Since both signal models have the same DOA parameter ξ, the stopping criterion
‖ξ(r+1) − ξ(r)‖ ≤ 0.001◦ is suitable. Figure 7 shows a scatter plot of (η1, η2) estimates under
50 trials. In Figure 7, K = 10, η1 = 50◦, η2 = 100◦, ρ1 = −4 dB, ρ2 = 4 dB, τ = 4 dB,
η
(0)
1 = 55◦, and η

(0)
2 = 95◦. We can see that EM and SAGE for both signal models yield

close (η1, η2) estimates for each trial.
Based on Figure 7, Figure 8 compares the numbers of iterations required by these

algorithms. We can observe that EM for the deterministic signal model generally needs more
iterations than EM for the random signal model. The reason is that EM for deterministic
signal model needs to update more parameter estimates at each iteration and, thus, has
slower convergence than EM for the random signal model. Moreover, SAGE for the
deterministic signal model generally needs fewer iterations than SAGE for the random
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signal model. More importantly, SAGE for the deterministic signal model always requires
the fewest iterations for each trial. Thus, we can conclude that SAGE for the deterministic
signal model is superior to the other algorithms in the computational cost.
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Figure 7. Scatter plot of (η1, η2) estimates.
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Figure 8. Numbers of iterations of different algorithms.

Figure 9 shows the root mean square error (RMSE) performances of DOA estimation
obtained by the SAGE algorithm for the deterministic and random signal models. In
Figure 9, η1 = 60◦, η2 = 120◦, ρ1 = 0 dB, ρ2 = 1 dB, τ = 3 dB, η

(0)
1 = 55◦, and η

(0)
2 = 115◦.

Each RMSE is computed from 1000 independent realizations. We can observe that as the
number of sensors K increases, the SAGE algorithm for each signal model yields small
RMSEs, which indicates that increasing the number of sensors K can improve the accuracy
of DOA estimation.
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Figure 9. RMSEs of the SAGE algorithm.

8. Conclusions

In this paper, we applied and designed the EM and SAGE algorithms for DOA estima-
tion in unknown uniform noise and proposed a new MEM algorithm applicable to the noise
assumption. Next, we improved these EM-type algorithms to ensure the stability when the
powers of sources are unequal. After being improved, simulation results illustrated that
the EM algorithm has similar convergence with the MEM algorithm, the SAGE algorithm
outperforms the EM and MEM algorithms for the deterministic signal model, and the
SAGE algorithm cannot always outperform the EM and MEM algorithms for the random
signal model. In addition, simulation results indicated that when these EM-type algorithms
process the same snapshots from the random signal model, the SAGE algorithm for the
deterministic signal model can require the fewest iterations and computations.
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