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Abstract: Convolutional neural networks (CNNs) play a key role in deep learning applications.
However, the high computational complexity and high-energy consumption of CNNs trammel their
application in hardware accelerators. Computing-in-memory (CIM) is the technique of running
calculations entirely in memory (in our design, we use SRAM). CIM architecture has demonstrated
great potential to effectively compute large-scale matrix-vector multiplication. CIM-based architecture
for event detection is designed to trigger the next stage of precision inference. To implement an
SRAM-based CIM accelerator, a software and hardware co-design approach must consider the CIM
macro’s hardware limitations to map the weight onto the AI edge devices. In this paper, we designed
a hierarchical AI architecture to optimize the end-to-end system power in the AIoT application. In
the experiment, the CIM-aware algorithm with 4-bit activation and 8-bit weight is examined on hand
gesture and CIFAR-10 datasets, and determined to have 99.70% and 70.58% accuracy, respectively.
A profiling tool to analyze the proposed design is also developed to measure how efficient our
architecture design is. The proposed design system utilizes the operating frequency of 100 MHz,
hand gesture and CIFAR-10 as the datasets, and nine CNNs and one FC layer as its network, resulting
in a frame rate of 662 FPS, 37.6% processing unit utilization, and a power consumption of 0.853 mW.

Keywords: artificial internet of things; computing in memory; convolutional neural network

1. Introduction

DEEP neural networks (DNNs) have highly flexible parametric properties, and these
properties are being exploited to develop artificial intelligence (AI) applications in various
domains ranging from cloud computing to edge computing. However, the high compu-
tational complexity and high-energy consumption of CNNs trammel their applications,
particularly in terms of hardware. Regarding hardware, various CNN accelerators have
been proposed to address computing needs, but most of them are still based on the Von
Neumann architecture, which requires substantial amounts of energy to transfer massive
amounts of data between memory and processing elements. Transferring a DNN to an
edge device remains challenging because of the high storage, computing, and power re-
quirements. To overcome this challenge, numerous high-throughput, low-power devices
have been proposed in recent years to reduce the time complexity of matrix–vector multipli-
cations. Computing-in-memory (CIM) reduces the massive data movement by performing
computation on the memory to avoid the Von Neumann bottleneck issue. Nevertheless,
CIM-based accelerators still need to overcome challenges.

To reduce the storage and computational costs, many different model compression
algorithms have been proposed. In this particular model, a quantization algorithm is used,
which is one of the most used compression algorithms. In the quantization algorithm, the
input and weight bit width is limited to reduce the computational complexity by using
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different types of quantizers. These types include binary [1], ternary [2], uniform [3–5], and
non-uniform quantizers [6–8].

Our SRAM-based CIM accelerator design is proposed to detect the event with ultra-
low-power consumption. A hierarchical AI architecture shown in Figure 1 below, and is
promising to save system power in AIoT applications. In the low-power sensor module,
information captured from the peripheral sensor such as the imager is pre-processed to
32 × 32 image size and then sent into the CIM-based accelerator for event detection to
trigger the precision inference in the next stage. Therefore, the end-to-end system power
can be optimized and saved by at least a 30% reduction. The adopted SRAM CIM macro [9]
in this paper can accommodate 8192 × 8 bit (64 Kb) weights, and contains 8 partitions. The
16 input data are shared in 8 partitions. These perform the inner product with the activation
of the weight group at the same time, and then eight results are generated in the next cycle.
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Figure 1. Hierarchical AI architecture. 
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This article is organized as follows. Section 2 introduces the background of model
quantization, the SRAM CIM macro, and the CIM-based accelerator. Section 3 describes
the proposed SRAM-based CIM accelerator architecture design. Section 4 describes the
equation-based profiling tool. Section 5 presents the experimental results, and Section 6
concludes this article.

2. Background
2.1. Model Quantization

Deep neural networks (DNNs) have achieved remarkable accuracies in various do-
mains of tasks, including computer vision [10], speech recognition [11], and NLP [12].
However, the DNN model usually has many parameters that lead to large storage overhead
and high computation complexity. These problems make it challenging to apply models on
edge devices such as FPGA, and computing-in-memory (CIM). Recent research on model
quantization has been proposed to reduce the bit precision of weights and activations.
These quantization techniques transform weights and activations into low-bit data struc-
tures. Several quantization techniques [13,14] have significantly compressed the storage of
the model. However, prior works have shown that quantization schemes would greatly
affect accuracy.

2.2. SRAM CIM Macro

Von Neumann’s architecture is based on the stored-program computer concept, where
instruction data and program data are stored in the same memory. This design is still used
in most computers produced today. However, the von Neumann architecture is famous for
its bottleneck due to the relative ability between processing elements and memories when
a large amount of data movement is taking place. The CNN processes both training and
inference and frequently requires a large amount of data to perform data and parameter
modifications. CIM has been widely known as the solution to this problem through its
ability to perform computational operation and store its data in the same place. Many
SRAM CIM macros have been proposed and designed based on different applications.
Figure 2 shows the concept of a CIM macro. Qing et al. [15] proposed a 4 + 2T SRAM
macro for embedded searching and CIM applications. Zhang et al. [16] proposed a machine
learning classifier that was implemented in a 6T SRAM array. Si et al. [17] proposed a
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dual-split-control 6T SRAM CIM that can support a fully connected layer. Biswas and
Chandrakasan [18] proposed a 10T Conv-SRAM for binary weight neural networks. The
aforementioned CIM macro works have shown the result of CIM advantages, particularly
in functionality and energy efficiency. In this work, we proposed 4-bit input and 8-bit
weight per computing unit as our hardware architecture design. We adopted the design
from the 6T-SRAM chip [9], and the algorithm followed its specifications.
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Figure 2. The concept of CIM macro.

2.3. CIM-Based Accelerator

There have been many studies on CIM-based accelerators according to the different
types of CIM macros. The ReRAM-based accelerator is the most well known as it has less
area and high energy efficiency while supporting on-chip training [19–23]. RECOM [24] was
the first CIM-based accelerator to support DNN processing. Jiang et al. [25,26] proposed
SRAM CIM accelerators for CNN training. However, in several cases, it was assumed
that the CIM macros were in the ideal state. Few studies have designed a CIM macro for
system-level architecture. The proposed CIM-based architecture in this work is aimed at
the optimization of CNN inference to detect the event with ultra-low-power consumption.
Moreover, this architecture is based on the taped-out CIM macro instead of the ideal one
in the aforementioned cases. Several aspects differentiate the condition between the ideal
and the taped-out CIM macro. The ideal CIM macro usually has a large capacity that
does not bring multiple reloading during calculation, whereas the taped-out CIM macro
has a limited capacity. The ideal CIM macro can complete high-precision calculations, as
opposed to the taped-out macro with its low-precision calculations. The taped-out CIM
macro must concern with the analog-to-digital converter (ADC) number and its variation
caused by the BL current [27]. Therefore, this work is proposing a hardware and software
co-design to compensate for the limitation of the CIM macro.

3. Proposed SRAM-Based Accelerator Architecture Design
3.1. CIM-Aware Quantization Algorithm

A linear quantization function is added to the model while training in our quantization
scheme. The weight quantization function is as follows:

w′f p ← Tw

(
w f p

)
(1)

wq
f p ← 2·

round
(

w′f p·
(

2bw − 1
))

2bw
− 1 (2)
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f (x) = max(0, x) (3)

where w f p and wq
f p represent the weight before and after quantization in a floating

point scope. Tw is a non-linear transformation function to restrict the range of weight.
Equation (2) quantizes the transformed weights w′f p to 2bw groups of data. The ReLU
formula of Equation (3) is used as the activation function to restrict the range of activations.
The quantized weights will be mapped to integers by a mapping function at the inference
step. These make the matrix multiplication an integer-only arithmetic. We use hand ges-
ture [28] and CIFAR-10 [29] datasets as our training and validation data. Both datasets
have 32 × 32 image sizes, as shown in Figure 3. The ten classes of classification accuracy
reach 99.70% and 70.58% with the proposed tiny model, respectively [30].
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3.2. Top-Level Design

Figure 4 shows the proposed architecture including ping-pong SRAM and CIM macro.
The chip architecture consists of two main blocks, which are the memory unit and the CIM
unit. The memory unit consists of two identical 64 kb SRAMs (SRAM A and SRAM B).
The controller handles the instruction code and controls the operation of the chip. At first,
SRAM A acts as an input SRAM that receives the input data off-chip. The scheduler then
arranges the data movement from SRAM into the CIM unit. The arrangement block handles
the movement of the convolution output from the CIM unit into SRAM. The CIM macro
receives the weight data and handles the convolution process (multiplication between
input data and weight). In a normal convolution process, the convolution output shall
be transmitted from SRAM into the off-chip, and then the input of the next layer will be
transmitted from the off-chip again. This has the drawback of the latency of sending data
on-chip and off-chip through the interface. The interface is the gate between on-chip and
off-chip data movement, mainly handling the data flow from off-chip such as input data,
weight, and transfer convolution output to off-chip. Therefore, our memory system unit
adapts the ping-pong SRAM mechanism to decrease the latency. Instead of sending the
convolution output off-chip, the receiving SRAM at the current layer will act as the input
SRAM in the next layer. Finally, the last layer of convolutional output will be sent off-chip
to perform the computation of the fully connected layer.
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The CIM core mainly contains two SRAM CIM macros (also acting as a weight SRAM),
an accumulator, and an activation block. Because of CIM’s parallel computing with favor-
able efficiency, conventional digital PE is replaced with CIM macros. Taking advantage of
SRAM CIM being both memory and PE, the energy consumption of the transfer weight
between the memory and the PE is minimized. Weight SRAM accommodates the weight of
the current layer because CIM cannot store all weights at once; therefore, the CIM macro
must reload new weights for each new layer. The result of the internal calculation of the
CIM is accumulated by the shift accumulator and the kernel accumulator. The accumulated
result is further processed by the activation block, and the calculated result is stored in the
OFM SRAM.

3.3. Weight Data Mapping

The design of the adopted SRAM CIM macro accommodates the maximum capacity of
8192 × 8-bit (64 kb) weights and contains 8 partitions. Each of these partitions are divided
into 64 groups of 16 weights. These 16 weights of a group are defined as a weight group.
The details of these partitions are described in Figure 5a. When using a SRAM CIM macro
for computing, each partition activates one weight group at the same relative position
through the control signal. All weights of a kernel must be stored in SRAM CIM macros.
Therefore, mapping weight to the SRAM CIM mostly follows the sequence according
to kernel size, as shown in Figure 5b. The SRAM CIM macro contains 8 partitions, and
each partition contains 64 weight groups. Each grid represents 1 weight group, and the
16 weight groups in each partition at the same position are considered GS. A GS is defined
as a weight group at the same position on each kernel of each subfilter. If α = 16 and N = 16,
GS1-1 in Figure 5b denotes the GS which contains K1-1, K2-1, . . . , K16-1, with a total of
256 weights.

The 16 input data contain 4-bit data each, are passed into a demultiplexer [31], and
shared in 8 partitions. These perform the inner product with the activation of the weight
group at the same time, and then eight results are generated in the next cycle. This inner
product operation behavior is in accordance with the convolution calculation in the CNN, as
shown in Figure 6. In this work, the two SRAM CIM macros sharing the same control signal
and input are combined into one core to acquire higher parallel computation capability. By
doing so, the 16 weight groups can be activated at the same time and perform 16-vector
inner products of 16 kernels in one cycle. These 16 weight groups at the same relative
position are defined as a group set (GS). The parallel computing feature of CIM can be
viewed as eight convolution operations at one time. Figure 6 is an example of an IFM
convolving with three 3 × 3 × 16 kernels and mapping these kernels onto different CIM
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partitions. K1-1–K1-9 denote the weight groups of kernel 1, while each weight group
contains 16 weights in the channel direction.
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4. Equation-Based Profiler
4.1. Configuration Parameter

After we proposed the design of the SRAM-based CIM architecture, we proceed to
perform the analysis of the estimation result of the design. A profiling tool is important for
performing an analysis of the source and target data structures for data integration. The
configuration parameters on the profiler are based on the parameter from the architecture
design. The configuration parameters are operating frequency (OF), input and output band-
width (IOB), CIM input (CI), convolution output (CO), bit representation (BR), maximum
weight capacity (MWC), and SRAM size. The default operating frequency is 100 MHz,
while further experimental results will include the range between 10 and 100 MHz with
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the step of 10 MHz. The input and output bandwidth is set at 16 bits. The CIM input and
convolution output represent the amount of the input and output channel from the CIM
macro, and those are set at sixteen and eight channels, respectively. The bit representation,
meaning the quantized n-bit being used for the inference process, is set at 4 bits. The
maximum weight capacity is the maximum value of weight data distribution on the CIM
macro bank, and is set at 32 kb. Lastly, the SRAM size being used is 64 kb with a combined
size of 1024 words and 64 bits (one word is 4 bits in size).

4.2. Network Parameter

The parameters for the profiling tool are provided based on the network being used.
In our case, we use nine CNN layers and one fully connected layer with image sizes in
32 × 32 pixels. The parameters consist of input shape, zero padding, stride, and output
shape, which are presented in Table 1. As for the input image, the parameter for the input
shape at layer 1 will be 32 pixels height times 32 pixels width, times three channels. We
use notations such as H, W, and I to denote the height, width, and channel for input shape,
respectively. Filter or kernel defines the size of the convolution matrix denoted by its height
(R) and width (S). Zero padding (Z) refers to the usage of the zero-padding feature on each
layer. It returns TRUE if the corresponding layer uses zero padding or FALSE otherwise.
Stride uses the step of 1 or 2 with the configuration of vertical (V) and horizontal (L) stride
as 1× 1 or 2× 2. The output shape defines the size of the output result after the convolution
process. The filter size and stride combination will produce a different output shape result.
The output shape consists of its height (M), width (N), and channel (O).

Table 1. Network parameters using the configuration of 9 CNNs and 1 FC layer.

Layer

Input Shape Filter/Kernel Zero
Padding

Stride Output Shape

Height Width Channel Height Width Vertical HorizontalHeight Width Channel

H W I R S Z V L M N O

Conv1 32 32 3 3 3 TRUE 1 1 32 32 16

Conv2 32 32 16 3 3 TRUE 1 1 32 32 16

Conv3 32 32 16 3 3 TRUE 1 1 32 32 16

Conv4 32 32 16 3 3 TRUE 2 2 16 16 16

Conv5 16 16 16 3 3 TRUE 1 1 16 16 16

Conv6 16 16 16 3 3 TRUE 1 1 16 16 16

Conv7 16 16 16 3 3 TRUE 2 2 8 8 16

Conv8 8 8 16 3 3 TRUE 1 1 8 8 16

Conv9 8 8 16 3 3 TRUE 2 2 4 4 16

FC 4 4 16 1 1 FALSE 1 1 4 4 10

4.3. Data Size Calculation

The data size calculations represent how much data is being used during the dataflow
and convolution process, as shown in Table 2. Dataflow consists of the data movement of
both off-chip and on-chip. The input data size indicates the data size for the input feature
map, as shown in Equation (4). These data are being moved through the interface from the
off-chip into the SRAM. The equation for input data size involved the input shape (I, H, W)
on the corresponding layer with the bit representation (BR). On layer 1, if the zero padding
is TRUE, then the input channel (I) uses 16 channels. The output data size indicates the size
for the output feature map (after the convolution process), as shown in Equation (5), with
the data being moved off-chip. This equation involves the output shape (M, N, O) on the
corresponding layer with the bit representation (BR). On the FC layer, bit representation is
1 bit. The weight data have the movement from off-chip into the CIM macro, with the size
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calculated as in Equation (6). It can be seen that this equation consists of input shape (I, H,
W), output shape channel (O), and bit representation (BR). The calculation in Equation (7)
below is how many processes happened during the MAC (multiply and accumulation)
process on convolution.

Input Data Size = I × H ×W × BR (4)

Output Data Size = M× N ×O× BR (5)

Weight Data Size = I × H ×W ×O× BR (6)

Calculation = I × R× S×M× N ×O× 2 (7)

Table 2. Data size calculation based on the configuration and network parameters.

Layer
Input Data Size Weight Data Size Output Data Size Calculation

IDS WDS ODS MAC

Conv1 65,536 1728 65,536 884,736

Conv2 65,536 9216 65,536 4,718,592

Conv3 65,536 9216 65,536 4,718,592

Conv4 65,536 9216 16,384 1,179,648

Conv5 16,384 9216 16,384 1,179,648

Conv6 16,384 9216 16,384 1,179,648

Conv7 16,384 9216 4096 294,912

Conv8 4096 9216 4096 294,912

Conv9 4096 9216 1024 73,728

FC 1024 640 160 5120

4.4. Data Cycles and MAC Cycles

The input, weight, and output data cycles are the amounts of the cycles required
during the IFM, weight, and OFM data movement, respectively. While the MAC cycle is the
amount of the cycle during the calculation process, the input data cycle involves the input
data size (IDS), I/O bandwidth (IOB), bit representation (BR), and 12 as the constant. The
output data cycle has a similar configuration, except it uses output data size (ODS) instead
of input. The weight data cycle equation required maximum weight capacity (MWC),
weight data size (WDS), and bit representation (BR). The MAC cycles equation involves
input channel (I), stride (V, L), output channel (O), filter/kernel (R, S), zero padding (Z),
CIM input (CI), and convolution output (CO). TOTAL values represent the total cycles
required for each layer; they are the summation of input, output, weight data, and MAC
cycles. The cycle calculations are shown in Equations (8)–(11) and the results are shown in
Table 3.

Input Data Cycle = round
(

IDS
IOB × BR

)
× 12 (8)

Weight Data Cycle =
MWC−WDS

BR
(9)

Output Data Cycle = round
(

ODS
IOB × BR

)
× 12 (10)

MAC Cycles =

I × V × L ×

Z


True, W

L

False, W − S + 1
L

 ×
Z


True, H

V

False, H − R + 1
V

 × O × R × S

L
V

CI × CO
(11)
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Table 3. Data and MAC cycles based on the configuration and network parameters.

Layer Input Data Cycles Weight Data Cycles Output Data Cycles MAC Cycles TOTAL

Conv1 12,288 8192 0 3456 23,936

Conv2 0 8192 0 18,432 26,624

Conv3 0 8192 0 18,432 26,624

Conv4 0 8192 0 4608 12,800

Conv5 0 8192 0 4608 12,800

Conv6 0 8192 0 4608 12,800

Conv7 0 8192 0 1152 9344

Conv8 0 8192 0 1152 9344

Conv9 0 8192 0 288 8480

FC 0 8192 30 42 8264

5. Experimental Results

This section shows the results of the profiling from the proposed SRAM-based CIM
architecture design. The experimental results consist of quantization result, frame rate,
MAC utilization, power consumption, and energy consumption per inference.

5.1. CIM-Aware Quantization Algorithm Result

To obtain the most efficient accuracy result among the quantized bit width, we com-
pare the model using two different datasets: hand gesture and CIFAR-10. Hand gesture
datasets include 10 classes of 32 × 32 grayscale images, while CIFAR-10 datasets consist of
10 classes of 32 × 32 RGB images. All the datasets are being trained using the VGG9 model
(9CNN + 1 FC layer), with the first layer and FC layer computation performed in FP32.
The accuracy result for bit width with the weight and activation bits of 8b/32b, 8b/8b, and
8b/4b, respectively, are shown in Table 4 below. Among the accuracy performance of the
quantized bit activation, the 4-bit activation receives an acceptable/reasonable error drop
compared to the full precision (32 bit) and 8 bit.

Table 4. Quantization comparison results between datasets.

Model
Bit Width Accuracy (%)

W/A CIFAR-10 Hand Gesture

VGG9 8b/32b 74.65 98.94

FP32 on 1st Conv & FC-layer
8b/8b 70.78 99.7

8b/4b 70.58 99.7

5.2. Frame Rate

Frame rate is the frequency or rate at which consecutive images (also called frames) are
captured or displayed. It is usually also expressed as frames per second or FPS. To calculate
the frame rate, we need to obtain the total cycles and the operating frequency. The total
cycles are obtained from the previous calculation in Section 4.4, and it is the summation of
the data and MAC cycles from layer one (Conv1) to the last layer (FC). Once we obtain the
total cycle, we can obtain the total time by dividing it by the operating frequency. As for the
frame rate, we can calculate it by dividing 1 by the total time. The chart in Figure 7 shows
the frame rate for various operating frequencies from 10 to 100 MHz with three different
image sizes.

Total Time =
Total Cycles

Operating Frequency
(12)
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Frame Rate =
1

Total Time
(13)
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5.3. MAC Utilization

MAC utilization indicates how much the operation cycles occupy the whole inference
process, including data movement. This can be obtained by dividing the MAC cycles by
the total cycles. Figure 8 shows the MAC utilization for different image sizes.

MAC Utilization =
MAC Cycles
Total Cycles

(14)
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5.4. Power Consumption

Power consumption measurements can be performed for an exploratory purpose to
understand and study the power consumption profiles of the proposed design. Power
is measured in Watts, a unit of power in the International System of Units (SI) equal to
one joule of work performed per second. Operation per cycle is defined by dividing the
calculation by MAC cycles. It can be calculated in a layer or the total for all layers and will
return the same result. Ptotal is the power consumption measured at the given power rating.
The power rating is based on the assumption of an ideal power rating, and it is obtained at
30 TOPS/W at a 100 MHz operating frequency. Ptotal calculation can be seen in Equation
(16), with the terra unit value being 1012 (as in 1 Terra = 1012). Power consumption in a
mixed-signal CMOS circuit can be briefly divided into two components baswed on the
Equation (17). Pstatic is composed of leakage, bias current in analog circuit, etc. (fixed
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across different frequencies). Pdynamic occurs due to the transient current when switching
the CMOS digital circuit (proportional to frequency). The power consumption for different
operating frequencies can be measured by using Equation (18), and the result is shown in
Figure 9.

Operation per Cycle =
Calculation
MAC Cycles

(15)

Ptotal =
(Operating Frequency) × (Operation per Cycle)

Terra Unit
Power Rating

(16)

Ptotal = Pstatic + Pdynamic (17)

Ptotal@Freq = (Ptotal@100 MHZ × PStatic) +

(
Ptotal@100 MHZ × Pdynamic ×

Freq
100 MHZ

)
(18)

Sensors 2022, 22, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 8. MAC utilization for different image sizes. 

5.4. Power Consumption 

Power consumption measurements can be performed for an exploratory purpose to 

understand and study the power consumption profiles of the proposed design. Power is 

measured in Watts, a unit of power in the International System of Units (SI) equal to one 

joule of work performed per second. Operation per cycle is defined by dividing the 

calculation by MAC cycles. It can be calculated in a layer or the total for all layers and will 

return the same result. Ptotal is the power consumption measured at the given power rating. 

The power rating is based on the assumption of an ideal power rating, and it is obtained 

at 30 TOPS/W at a 100 MHz operating frequency. Ptotal calculation can be seen in Equation 

(16), with the terra unit value being 1012 (as in 1 Terra = 1012). Power consumption in a 

mixed-signal CMOS circuit can be briefly divided into two components baswed on the 

Equation (17). 𝑃static is composed of leakage, bias current in analog circuit, etc. (fixed across 

different frequencies). 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 occurs due to the transient current when switching the 

CMOS digital circuit (proportional to frequency). The power consumption for different 

operating frequencies can be measured by using Equation (18), and the result is shown in 

Figure 9. 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝐶𝑦𝑐𝑙𝑒 =  
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑀𝐴𝐶 𝐶𝑦𝑐𝑙𝑒𝑠
  (15) 

𝑃𝑡𝑜𝑡𝑎𝑙 = 
(𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) × (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝐶𝑦𝑐𝑙𝑒)

𝑇𝑒𝑟𝑟𝑎 𝑈𝑛𝑖𝑡

𝑃𝑜𝑤𝑒𝑟 𝑅𝑎𝑡𝑖𝑛𝑔
  (16) 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐  (17) 

𝑃𝑡𝑜𝑡𝑎𝑙@𝐹𝑟𝑒𝑞 = (𝑃𝑡𝑜𝑡𝑎𝑙@100𝑀𝐻𝑧 𝑥 𝑃𝑆𝑡𝑎𝑡𝑖𝑐) + (𝑃𝑡𝑜𝑡𝑎𝑙@100𝑀𝐻𝑧 𝑥 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑥
𝐹𝑟𝑒𝑞

100𝑀𝐻𝑧
)  (18) 

 

Figure 9. Power consumption across the different operating frequencies. 

37.60%

63.38%

72.63%

0% 10% 20% 30% 40% 50% 60% 70% 80%

32 × 32 Image Size

64 × 64 Image Size

96 × 96 Image Size

MAC Utilization

0.093
0.162

0.239
0.316

0.393
0.469

0.546
0.623

0.700
0.777

0.853

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90 100

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

m
W

)

Operating Frequency (MHz)

Figure 9. Power consumption across the different operating frequencies.

5.5. Energy Consumption per Inference

Energy consumption per inference is measured to calculate how much energy is
required in the proposed design system to perform one cycle of the inference process.
The energy consumption per inference can be obtained by using Equation (19) below.
We compare the result of the energy consumption of inference across different operating
frequencies and image sizes. Figure 10 shows the comparison of its utilization.

Energy Consumption per In f erence =
Power Consumption× Total Cycles

Operating Frequency
(19)
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6. Discussion

We use the CIM (computing-in-memory) mechanism to overcome the Von Neumann
bottleneck issue. The bottleneck is mainly summed up by three aspects: data movement
between memory arrays and the processing unit results in non-negligible latency; data
movement in memory hierarchies is greatly limited by bandwidth; high energy consump-
tion, such as the power consumption of moving data between computing and off-chip
memory units, is 100 times more than floating point computing. To overcome such prob-
lems, CIM technology is proposed. The key idea of the proposed technology is to bring
memory and computing closer instead of separating them, therefore improving the effi-
ciency of the data movement. Our proposed model is based on the difference between
the ideal CIM macro and the taped-out one. The ideal CIM macro usually has a large
capacity that does not bring multiple reloading during calculation and is able to perform
high-precision calculations. However, the taped-out CIM macro has a limited capacity, has
low-precision calculations, and must regard the analog-to-digital converter (ADC) number
and its variation caused by the BL current. The proposed CIM-based architecture in this
work is aimed at optimization based on the limitation of the taped-out CIM macro by
proposing a hardware and software co-design.

Our profile tool is very simple and restricted (narrowed to our architecture). One of
the well-developed profilers for the CIM hardware accelerator is NeuroSim [32]. However,
the reason why we do not use the existing profiling tool is that our architecture design
focus is on CIM macro development. Moreover, several inputs to the simulator are differ-
ent, including memory types, nonideal device parameters, transistor technology nodes,
network topology and sub-array size, and training datasets and traces. None of the other
CIM simulators have been validated with the actual silicon data (although NeuroSim has
been validated with SPICE simulations using the PTM model and FreePDK. It is known
that the PTM model and FreePDK are for educational purposes rather than for foundry
fabrication purposes).

We can explore further the algorithm, data movement, and circuit design perspective
to reduce the computational cost in the future. From the algorithm perspective, in the
current state, we only applied the quantization method. In the future, we are planning to
use the pruning algorithm to enable the sparsity of connections. Therefore, we can reduce
the data movement due to the lesser connections. This also makes it possible to achieve a
reduction in area and energy consumption in the circuit design [33].

7. Conclusions

This article proposed a software and hardware co-design to design a CIM-aware
model quantization algorithm and an SRAM-based CIM accelerator. In the design, the
CIM-aware algorithm with 4-bit activation and 8-bit weight is examined on hand gesture
and CIFAR-10 datasets, and determined to have 99.70% and 70.58% accuracy, respectively.
A profiling tool to analyze the proposed design is also developed to measure how efficient
our architecture design is. The proposed design system utilizes the operating frequency of
100 MHz, hand gesture and CIFAR-10 as the datasets, and nine CNNs and one FC layer
as its network, resulting in a frame rate of 662 FPS, 37.6% processing unit utilization, and
power consumption of 0.853 mW.
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