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Abstract: This paper investigates the problem of distributed ellipsoidal intersection (DEI) fusion esti-
mation for linear time-varying multi-sensor complex systems with unknown input disturbances and
measurement data transmission delays. For the problem with external unknown input disturbance
signals, a non-informative prior distribution is used to model the problem. A set of independent
random variables obeying Bernoulli distribution is also used to describe the situation of measurement
data transmission delay caused by network channel congestion, and appropriate buffer areas are
added at the link nodes to retrieve the delayed transmission data values. For multi-sensor systems
with complex situations, a minimum mean square error (MMSE) local estimator is designed in a
Bayesian framework based on the maximum a posteriori (MAP) estimation criterion. In order to
deal with the unknown correlations among the local estimators and to select the fusion estimator
with lower computational complexity, the fusion estimator is designed using ellipsoidal intersec-
tion (EI) fusion technique, and the consistency of the estimator is demonstrated. In this paper, the
difference between DEI fusion and distributed covariance intersection (DCI) fusion and centralized
fusion estimation is analyzed by a numerical example, and the superiority of the DEI fusion method
is demonstrated.

Keywords: data fusion; unknown input interference; measure propagation delay; unknown correlation

1. Introduction

In recent years, multi-sensor systems have been widely used in sensor networks,
artificial intelligence, combinatorial navigation, and industrial control. Since multi-sensor
systems can provide more information for more accurate control of the system, it makes the
information fusion estimation techniques of multi-sensor systems receive wide attention
and have important research significance [1–7]. In complex systems with multiple sensors,
the methods of information fusion estimation are generally divided into centralized fusion
estimation and distributed fusion estimation. The principle is to fuse multiple estimates
into one highly reliable estimation method according to the corresponding fusion algo-
rithm [8]. In centralized fusion estimation, the measurement data from multiple sensors
are processed by using state measurement enhancement methods. In contrast, distributed
fusion estimation, with its unique parallel structure, puts the local state estimates of dif-
ferent sensors into the fusion center and follows the corresponding fusion rules for state
estimation [9].

The centralized fusion estimator can provide the best estimation accuracy when all
sensors are working properly. However, if the sensors fail in operation, the centralized
fusion estimator cannot detect and discard the faulty sensors in time, leading to a decrease
in the reliability of the fusion estimation results and an increase in the error. A suboptimal
distributed estimator with a parallel structure can solve this problem well. The presence of
a parallel structure makes it easy to detect and isolate the faulty sensors, so the distributed

Sensors 2022, 22, 4306. https://doi.org/10.3390/s22114306 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114306
https://doi.org/10.3390/s22114306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22114306
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114306?type=check_update&version=2


Sensors 2022, 22, 4306 2 of 16

estimator has good reliability and flexibility [10–12]. At the same time, in centralized
fusion estimators, the system incurs expensive computational costs as the number of
sensors continues to increase. Compared to centralized fusion estimation, distributed
fusion estimation has a much lower computational cost [13]. In multi-sensor complex
systems, the choice of an estimation algorithm with high accuracy and low computational
cost is crucial in the face of computational resource limitations and uncertainty in the
occurrence of system failures. Therefore, the use of a distributed fusion estimator is one of
the motivations of this paper.

1.1. Related Work

In a multi-sensor complex system, the system is affected by some network-induced
phenomena due to the uncertainty of the network heterogeneous model and the occurrence
of sensor failures. For example, unknown external information disturbances, random
delays in measurement data, and packet loss. For systems with unknown inputs or distur-
bances, these disturbances may be invariant, time-varying, or random [14,15]. In [16], the
problem of state estimation for systems subjected to unknown input disturbances during
sensor measurements is presented, an optimal state estimator is designed, and the results
are applied to generalized systems with unknown inputs [17,18]. In [17], good results
were obtained by using unbiased minimum variance (UMV) estimation for systems with
unknown inputs. Unlike other methods, in [19], the unknown input information is modeled
using a non-informative prior distribution, and a minimum mean square error (MMSE)
estimator is designed to estimate the system in a Bayesian framework.

Meanwhile, network congestion occurs due to limited communication bandwidths in
sensor networks. Random delays are inevitable when transmitting measurement data. The
delay phenomenon is inevitably accompanied by packet loss, which significantly affects the
performance of the network system [20]. When dealing with random delays in the trans-
mission of measurement data, a set of independent Bernoulli-distributed random variables
or a Markov chain can be used to describe the transmission random delay phenomenon.
In [21], the optimal filtering problem for systems with Markov chain communication delays
is studied. Meanwhile, in [16], a set of Bernoulli-distributed random variables is introduced
to describe the stochastic delay phenomenon. In order to avoid packet loss as much as pos-
sible, in [19], delay measurements are retrieved by introducing a finite length buffer at the
link nodes. In systems with delay phenomena, both measurement enhancement techniques
and replication retransmission can make good use of measurement delay data [22,23].

Facing the problem of computational resource limitations and system uncertainty in
complex systems with multiple sensors, a distributed fusion estimator is used to estimate
the system. Despite the rapid rise of the distributed fusion estimation in recent years, it is
often plagued by unknown correlation information in sensor networks, which prevents the
design of fusion estimators with high accuracy [24]. Currently, the main methods that can
solve fusion estimation with unknown correlations are: covariance intersection (CI) fusion
methods and ellipsoidal intersection (EI) fusion methods. In [25], the CI fusion method was
proposed. It parameterizes the fusion estimation by converting it into a convex combination
problem of two local estimates. Once the idea was proposed, it inspired many people in the
field to pursue it. Despite some improvements to the CI fusion method, the accuracy of the
fusion results still shows a decreasing trend. The reason for this decline is that the choice of
CI fusion parameterization is a fusion formula that directly bypasses the discussion of the
relevance of the local estimates and yields fusion results that are too conservative [26]. To
pursue higher accuracy to accurately control the system. In [27], the EI fusion method was
proposed to redefine a fusion parameterization. It expresses the correlation between the
local estimates in an algebraic formulation through the parameterization before deriving
the fusion estimates based on the conditions of the local estimates, and the algebraic fusion
formulation ensures that the EI fusion algorithm reduces the computational complexity.
In contrast, the EI fusion algorithm solves the difficult problem of unknown correlations
between local estimates more effectively [28,29].
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1.2. Paper Contributions

In this paper, we study the problem of data fusion estimation for a linear time-varying
multi-sensor complex system with two network-induced phenomena of both unknown
input disturbances and measurement transmission delays. In order to obtain a fusion
estimator with high accuracy and low computational cost, distributed fusion estimation is
used in this paper for the system estimation. In this case, the information of unknown input
perturbations is modeled by a non-informative prior distribution. All possible values are
described by using a probability density function. The randomness of the measured data
transmission delay is described by a set of independent random variables obeying Bernoulli
distribution, and a buffer of finite length is added at the link node to obtain the data set
for the delay measurement. For the design of the system local estimator, the MMSE local
estimator is designed in a Bayesian framework based on the nature of the state-conditional
distribution and the maximum a posteriori (MAP) estimation criterion. When fusion
processing is performed on the local estimates, the correlation between the local estimates
is unknown due to the randomness of the measurement data delay, which makes it difficult
to obtain fusion results with high accuracy. To solve the problem of fusion estimation with
unknown correlations between local estimates, a distributed ellipsoidal intersection (DEI)
fusion estimator is designed by analyzing the distributed fusion algorithms. Compared
with the distributed covariance intersection (DCI) fusion estimation, the problem of overly
conservative estimation results is solved, and the estimation accuracy is improved. The
parallel structure makes the designed estimator less computationally expensive and reduces
the computational complexity than the centralized fusion estimator.

1.3. Paper Outline

The structure of this paper is as follows. In Section 2, we describe two network-
induced phenomena in multi-sensor complex systems: unknown input interference and
measurement data transmission delay. Section 3 designs a local estimator for multi-sensor
complex systems based on the MMSE criterion. Section 4 determines the estimation of the
multi-sensor complex system using the DEI fusion estimator and shows the consistency of
the designed DEI fusion estimator. The numerical simulation results and computational
complexity analysis are given in Section 5. The conclusions are given in Section 6.

2. Problem Description

Let us consider a multi-sensor linear time-varying system disturbed by unknown
input information:

xk+1 = Akxk + Dkdk + ωk (1)

where xk ∈ Rn denotes the state estimation vector at moment k, Ak denotes the state matrix
that is time-varying and matches the dimensionality of xk, dk ∈ Rp denotes the external
input vector, Dk denotes the time-varying matrix that matches the dimensionality of dk, and
the process noise is described by ωk ∈ Rn, which has a mean of 0 and covariance matrix
of Qk > 0. Additionally, we give the measurement equations for the sensors in the system
that measure the data:

yi,k = Ci,kxk + vi,k, i = 1, . . . , L (2)

where yi,k ∈ Rmi denotes the measured data values in the ith network transmission channel
with the total number of sensors L. Ci,k denotes the time-varying matrix matching the
dimensionality of xk, and vi,k ∈ Rmi denotes the measurement noise with a mean of 0
and covariance of Ri,k > 0. The measurement noise of each measurement channel is
independent of each other, and the initial state x0, which obeys a Gaussian distribution, is
also uncorrelated with ωk and vi,k.

For the problem of data fusion estimation of a multi-sensor linear time-varying sys-
tem with unknown input disturbances and measurement data transmission delays, the
flow structure of the system is shown in Figure 1. The system works as follows: first,
the multi-sensor system subject to unknown external input disturbances is measured by



Sensors 2022, 22, 4306 4 of 16

a multi-sensor to obtain information about the system state at each moment. The ob-
tained measurement information is transmitted to the corresponding link nodes through
the network channel, and a series of local state estimates are generated in the designed
MMSE estimator. The local state estimates are fused at the fusion center to obtain the
estimation results.
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Since the external input vector dk is unknown and its information is not available,
it cannot participate in the design of the estimator. In order not to affect the design of
the estimator, it is guaranteed that the estimation accuracy will not be biased. In [19], an
assumption is adopted: the number of channels of external input disturbance is guaranteed
to be smaller than the number of channels of state estimation by controlling the rank of
the time-varying matrix Dk: rank(Dk) = p, p < n. The proposed assumption is guaranteed
by this intuitive formulation. Additionally, since all possible values of the unknown
input vector dk appear with equal probability, we model dk using a non-informative prior
distribution [16]. The probability density function of f is, i.e.,

f (dk) ∝ 1 (3)

Inspired by [16,19], for our proposed hypothesis, the matrix of unknown input coeffi-
cients Dk should strictly adhere to the matrix column full rank to ensure that the number
of channels of the external input disturbances is smaller than the number of channels of
the state estimation. Meanwhile, a new matrix D⊥k is constructed under the principle of
orthogonal complementation, such that matrix D⊥k satisfies the rules of

[
Dk D⊥k

]
∈ Rn×n,

rank
[
Dk D⊥k

]
= n, and DT

k D⊥k = 0.
When the measurement information is transmitted through the network channel, the

measurement delay occurs randomly, because the limited bandwidth of the network chan-
nel causes the channel congestion phenomenon. During transmission, if the measurement
information is not received by the link node within a given time interval, packet loss occurs,
so the packet loss phenomenon also exists at the same time [20]. Since the measurement
delay and packet loss occur randomly, we adopt the Bernoulli distribution random variable
approach to describe the phenomena triggering the measurement delay and packet loss [16].
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First, we assume that the measurement data yi,k is a delay in the network channel for θi,k
moments and θi,k is a random variable. We model the random variable θi,k by using the
probability mass function fi:

fi(j) = Pr[θi,k = j], i = 1, 2, · · · , L, j = 0, 1, 2, · · · (4)

where θi,k for different channels and different moments are independent of each other. If
no buffer exists at the link node, the transmission of measurement data from the sensor
to the link node is considered successful only if θi,k = 0; otherwise, the transmission
fails. Therefore, the process of measurement data yi,k from the sensor to the link node is
considered as a Bernoulli process. To solve the problem of the randomness of θi,k, we obtain
the information of the random variable θi,k by adding an appropriate buffer at the link node
and by measuring the time of data reacquisition from the buffer [19]. Here, we assume a
buffer of length εi(εi ≥ 2), so that the link node can receive all measurement data with a
delay time of k− εi + 1. The earliest measurement update value κi,k for the kth moment
and the ith buffer is defined as:

κi,k =

{
t, 0 < k− εi + 1 ≤ t < k

k, t ≥ k
(5)

The receipt of the measurement yi,k is indicated by introducing a sequence of binary
variables γi

t,k. When γi
t,k = 1, it indicates that the measurement is received at the kth

moment or before. When the delay time is equal to or greater than εi, the measurement
data will be discarded, and this case is considered as a packet loss phenomenon. We define
the set of measurements in the ith buffer at the kth moment by defining `i,k, i.e.,

`i,k ,
{
(γi,0yi,0), (γi,1yi,1), · · · , (γi,tyi,t), · · · , (γi,kyi,k)

}
(6)

where γi,t = γi
t,k, and our goal is to obtain an estimation problem for the state xk conditional

on the set of measurements `k ,
{
`1,k, `2,k, · · · , `L,k

}
.

3. Local Estimation of Complex Multi-Sensor Systems

In this section, in order to solve the problem of estimating the state xk conditional on
the measurement set `k, we need to design local estimators at each link node to obtain the
state estimates. Usually, the estimation for the state is often based on one observation, and
the estimator is often designed in a Bayesian framework. Since the state xk is estimated
based on the measurement set `k, the unknown input dk is modeled using a non-informative
prior distribution. According to the standard results of optimal estimation, the MMSE
estimate is equivalent to the mean of the state-conditional distribution conditional on the
measurement set, so the design of the local estimator can be performed using the MMSE
estimation approach. Our goal in designing the local estimator is to find the recursive problem
of the conditional distribution of the state xk conditional on the measurement set `k.

To ensure that the local estimator design is error-free, we have to verify that the
coefficient matrix rank(Dk) = p of the unknown input interference signal satisfies the
assumption that p < n. By introducing Tk ,

[
Dk D⊥k

]−1
and Lk ,

[
0 In−p

]
Tk, then using[

CT
i,k LT

k−1

]T
∈ R[m+(n−p)]×n to obtain m ≥ p, which leads to rank

[
CT

i,k LT
k−1

]T
= n, this

verifies the hypothesis that the number of independent measurement channels is not less
than the number of channels of the unknown external input by the rank of the coefficient
matrix Dk [19]. The above hypothesis will automatically hold when the measurement
matrix Ci,k satisfies the condition of full column rank. For the system that satisfies the
stated assumptions, we can verify the rank of matrix Dk by expressions based on the system
expressions, regardless of whether the system is time-varying or not, ensuring the accuracy
of the estimation results.
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For systems that satisfy the condition of rank(Dk) = p, we base the design of the
estimator of state xk on the condition of the measurement set `k by representing in a
Bayesian framework, i.e.,

PX|`(xk|`k) =
P`|X(`k|xk)pX(xk)

P`(`k)
(7)

where P`|X(`k|xk) denotes the likelihood probability distribution and pX(xk) denotes the
prior probability distribution.

The set of measurements `i,k ,
{
(γi,0yi,0), (γi,1yi,1), · · · , (γi,tyi,t), · · · , (γi,kyi,k)

}
in the

buffer of the ith link node, the posterior probability distribution of the state xk conditional
on `i,k is:

PX|`(xk
∣∣γi,kyi,k) =

P`|X(γi,kyi,k
∣∣xk)pX(xk)

P`(γi,kyi,k)
(8)

The prior probability distribution pX(xk) = PX|`(xk
∣∣`i,k−1), due to the non-informative

prior distribution modeling the unknown input disturbance information dk, is obtained
according to the full probability formula:

PX|`(xk
∣∣`i,k−1) =

∫
RP

PX|`(xk
∣∣`i,k−1, dk−1)P(dk−1|`i,k−1)d dk−1 (9)

Converting Equation (9) to the Gaussian distribution form yields

PX|`(xk
∣∣`i,k−1) ∝

∫
RP

exp
[
−1

2

(
xk − x̂i,k|k−1

)T(
P̂i,k|k−1

)−1(
xk − x̂i,k|k−1

)]
ddk−1 (10)

where x̂i,k|k−1 = Ak−1 x̂i,k−1 +Dk−1dk−1 and the error covariance is P̂i,k|k−1 = Ak−1P̂i,k−1 AT
k−1

+Qk−1.
According to the nature of the marginal distribution of the multivariate Gaussian

distribution, Equation (10) is organized to obtain:

PX|`(xk
∣∣`i,k−1) ∝ exp

[
−1

2
(xk − Ak−1 x̂i,k−1)

T LT
k−1

(
Lk−1P̂i,k|k−1LT

k−1

)−1
Lk−1(xk − Ak−1 x̂i,k−1)

]
(11)

Based on Equation (11), it is known that the prior probability pX(xk) obeys a Gaussian
distribution, i.e.,

pX(xk) = N
(

xi,k, Pi,k
)

(12)

where xi,k = Ak−1 x̂i,k−1 and Pi,k =

[
LT

k−1

(
Lk−1P̂i,k|k−1LT

k−1

)−1
Lk−1

]−1
.

Under the condition that the prior probability distribution pX(xk) follows a Gaussian
distribution and the measurement noise also follows a Gaussian distribution, the MMSE
estimate is equivalent to the MAP estimate, so it can be converted to find the MAP estimate.
The posterior probability distribution is proportional to the product of the likelihood
probability and the prior probability, and since the prior distribution has been found, the
likelihood probability distribution P`|X(γi,kyi,k

∣∣xk) is calculated.

P`|X(γi,kyi,k
∣∣xk) ∝ exp

[
−1

2
(γi,kyi,k − γi,kCi,kxk)

Tγi,kR−1
i,k (γi,kyi,k − γi,kCi,kxk)

]
(13)

Based on the measurement set `i,k, the posterior probability distribution of the state xk is:

PX|`(xk
∣∣γi,kyi,k) ∝ P`|X(γi,kyi,k

∣∣xk)pX(xk) (14)
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The maximized posterior probability distribution function is:

x̂MAP(γi,kyi,k) = argmax PX|`(xk
∣∣γi,kyi,k)pX(xk) (15)

where x̂MAP(γi,kyi,k) is called the maximum a posteriori estimator of xk.
Substituting Equations (11) and (13) into (14), we obtain the posterior probability

distribution PX|`(xk
∣∣γi,kyi,k), satisfying the Gaussian distribution of the form:

PX|`(xk
∣∣γi,kyi,k) ∝ exp

[
−1

2
(xk − µi,k)

TΠ−1
i,k (xk − µi,k)

]
(16)

where x̂MAP = µi,k = Ak−1 x̂i,k−1 + γi,kΠi,k(CT
i,kyi,kR−1

i,k −CT
i,kR−1

i,k Ci,k Ak−1 x̂i,k−1), the covari-

ance matrix is Πi,k =

[
γi,kCT

i,kR−1
i,k Ci,k + LT

k−1

(
Lk−1P̂i,k|k−1LT

k−1

)−1
Lk−1

]−1
.

Since the prior probability distribution and the measurement noise obey Gaussian
distribution, i.e.,

x̂MMSE = E[xk
∣∣γi,kyi,k] = x̂MAP (17)

Thus, we obtain a local estimator of the Gaussian distribution of state xk for a time-
varying linear multi-sensor complex system with unknown input disturbances and mea-
surement data transmission delays under the condition of a measurement set `i,k, satisfying
the condition of rank(Dk) = p:

x̂i,k = Ak−1 x̂i,k−1 + γi,k P̂i,k(CT
i,kyi,kR−1

i,k − CT
i,kR−1

i,k Ci,k Ak−1 x̂i,k−1) (18)

P̂i,k =

[
γi,kCT

i,kR−1
i,k Ci,k + LT

k−1

(
Lk−1P̂i,k|k−1LT

k−1

)−1
Lk−1

]−1
(19)

Our goal is to fuse the obtained local estimates at the fusion center to obtain estimation
results with high accuracy.

4. Distributed Ellipsoidal Intersection (DEI) Fusion Estimation for Multi-Sensor
Complex Systems

In this section, in order to solve the fusion problem of multi-sensor local estimation,
a distributed fusion estimation algorithm suitable for linear multi-sensor time-varying
discrete systems with unknown input disturbances and measurement transmission delays
is selected. When we fuse the local estimates, we first consider the optimal matrix-weighted
distributed fusion method for fusion estimation with the following fusion equation:

x̂k =
L

∑
i=1

Ωi,k x̂i,k, i = 1, . . . , L (20)

where Ωi,k denotes the optimal weight matrix and ∑L
i=1 Ωi,k = I. However, since the

optimal weight matrix depends on the information of the mutual covariance P̂i,j
k (i 6= j)

between multi-sensors, and the proposed multi-sensor system is the phenomenon of a
measurement transmission delay, the delay variables in the channel are all randomly
occurring, resulting in a correlation between sensors that cannot be obtained [24]. An
unknown correlation means that the mutual covariance cov

(
xi, xj

)
is not computable, so it

is difficult for us to obtain the analytic expression of the mutual covariance P̂i,j
k between

sensors, which causes some difficulties in the design of the fusion estimator.
Currently, a commonly used method in dealing with fusion estimation of unknown

correlations is the CI fusion technique, which parameterizes the fusion formula and avoids
the determination of the expression for the mutual correlation covariance cov

(
xi, xj

)
[25].

Although this approach is generally accepted, the CI fusion approach is suboptimal. Since
the CI fusion technique focuses on the analysis of the fusion formula rather than the
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correlation, it may lead to conservative results of a fusion [26]. Based on this situation,
there is another method that parameterizes the local estimates when dealing with the case
of unknown correlations: the EI fusion method. This parametric approach introduces three
new estimates that provide an explicit description of the correlation and expresses the
information about the correlation in an explicit expression. Both conservative estimations
are avoided, while the extraction of unknown correlation information is taken into account,
and the accuracy of the fusion is guaranteed [27].

Next, we analyze the EI fusion method. First, we consider two random vectors:
xi and xj ∈ Rn with Gaussian distribution characteristics, which are both two prior esti-
mates of the state vector x ∈ Rn, i.e.,

xi ∼ N (x̂i, Pi), xj ∼ N
(
x̂j, Pj

)
Our goal is to fuse the two prior estimates into a new estimate x f that also obeys a

Gaussian distribution, i.e.,
x f ∼ N

(
x̂ f , Pf

)
It is also important to ensure that the fusion results of these two prior estimates satisfy

the consistency of the fusion estimates, i.e., Pf 4 Pi and Pf 4 Pj.
To characterize the unknown correlation, the EI fusion technique is performed by

introducing three new two–two independent random vectors xii, xij, xjj ∈ Rn with a mean
of µii, γ, µjj ∈ Rn and variance of Φii, Γ, Φjj ∈ Rn×n, respectively. The priori estimates
xi, xj are represented by the information of xii, xij, xjj by constructing a new function Ψ:

xi := Ψ
(
xii, xij

)
=
(

Φ−1
ii + Γ−1

)−1(
Φ−1

ii µii + Γ−1γ
)

xj := Ψ
(
xjj, xij

)
=
(

Φ−1
jj + Γ−1

)−1(
Φ−1

jj µjj + Γ−1γ
) (21)

where
(

Φ−1
ii + Γ−1

)−1
is denoted as the variance Pi of the priori estimate xi and(

Φ−1
ii + Γ−1

)−1(
Φ−1

ii µii + Γ−1γ
)

is the mean x̂i.
According to the relationship between the random vectors xii, xij, xjj and the priori

estimates xi, xj, we can express the correlation covariance cov
(
xi, xj

)
of the priori estimates

xi, xj, i.e.,

cov
(
xi, xj

)
:= E

[
xixj

]T − E[xi]E
[
xj
]T

= PiΓ−1Pj (22)

Since the correlation is unknown, to obtain a description of an arbitrary correlation,
the information of the mutual correlation covariance cov

(
xi, xj

)
is maximized. Based on

the determinant of the mutual correlation covariance, it follows from Equation (22) that the
problem of maximizing cov

(
xi, xj

)
can be transformed into the problem of minimizing Γ, i.e.,

Γ := argmin log|T |
subject to T < Pi, T < Pj

(23)

For random vectors N(x̂, P), obeying Gaussian distribution can all be represented
by the sublevel set
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x̂,P =
{

x ∈ Rn
∣∣∣(x− x̂)T P−1(x− x̂) ≤ 1

}
. To represent minimal Γ

intuitively, minimally Γ is characterized as the minimal ellipse containing
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x̂j ,Pj .
Since the prior estimates can be described by the introduced random variables, the

fusion of the prior estimates is equivalent to the fusion of the introduced random variables,
and by conditioning the function of Ψ, the fusion results are presented, i.e.,

x f := Ψ
(
xi, xj

)
= Ψ

(
Ψ
(
xii, xij

)
, xjj
)

(24)
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Substituting Equation (21) and the variable information into Equation (24), it is ob-
tained that

Pf =
(

P−1
i + P−1

j − Γ−1
)−1

x̂ f = Pf

(
P−1

i x̂i + P−1
j x̂j − Γ−1γ

) (25)

In order to pursue a computationally inexpensive fusion algorithm, the mean γ and
variance Γ of the random variable xij are represented with the information of a priori
estimate [27], i.e.,

Γ = SiD
1
2
i SjDΓS−1

j D
1
2
i S−1

i

γ =
(

P−1
i + P−1

j − 2Γ−1 + 2η I
)−1
×
(
(P−1

j − Γ−1 + η I)x̂i +
(

P−1
i − Γ−1 + η I

)
x̂j

) (26)

where [DΓ]qq = max
{

1,
[
Dj
]

qq

}
, q = 1, · · · , n. The eigenvalue decomposition Pi = SiDiS−1

i
of the matrix Pi yields the eigenvector matrix Si and the eigendiagonal matrix Di. The
positive definite matrix can be the square root decomposed as A = LLT . According to the

transformation relation in [28], it is obtained that D−
1
2

i S−1
i PjSiD

− 1
2

i = SjDjS−1
j . Since the

minimization Γ is the shape of the minimum ellipsoid of Pi and Pj, DΓ = max
{

1, Dj
}

. This
gives an algebraic expression for the correlation information between the local estimates.

Based on the above description, it can be seen that the EI fusion technique provides
both an explicit description of the unknown correlation between the priori estimates and a
parameterization of the fusion formula to ensure the accuracy and computational cost of
the fusion results.

Since the obtained local estimates obey a Gaussian distribution, we use the EI fusion
algorithm to design the estimator. In order to reduce the computational complexity of the fusion
estimator, we use the method of fusing the local estimates in two by following the sequential
fusion and obtain the final fusion estimate by performing the EI fusion process L – 1 times [15].
The distributed sequential EI fusion estimator is as follows:

x0
s,k = x̂i,k, P0

s,k = P̂1,k

xi
s,k = Pi

s,k

((
Pi−1

s,k

)−1
xi−1

s,k + P̂−1
i+1,k x̂i,k − Γ−1

i γi

)
Pi

s,k =

((
Pi−1

s,k

)−1
+ P̂−1

i+1,k − Γ−1
i

)−1

Γi = Si−1
s,k

(
Di−1

s,k

)− 1
2 Si+1,kDΓS−1

i+1,k

(
Di−1

s,k

) 1
2
(

Si−1
s,k

)−1

γi =

((
Pi−1

s,k

)−1
+ P̂−1

i+1,k − 2Γ−1
i + 2ηi I

)−1
×
((

P̂−1
i+1,k − Γ−1

i + ηi I
)

xi−1
s,k +

((
Pi−1

s,k

)−1
− Γ−1

i + ηi I
)

x̂i+1,k

)
(27)

The mean of the DEI fusion estimation result is x̂k = xL−1
s,k , and the error covariance is

P̂k = PL−1
s,k .

In order to visually compare the superiority of EI fusion technique, we analyze the CI
fusion, EI fusion technique, and minimization Γ by a simple numerical example. Suppose
the two prior estimates x1, x2 obey the Gaussian distribution with a mean of 0 and covari-

ance matrix P1 =

[
2 −1
−1 1

]
and P2 =

[
1/3 0

0 2

]
, respectively. By converting the Gaussian

distribution into a sublevel set for the ellipsoid description, the obtained results are shown
in Figure 2. The red curve indicates the ellipsoidal results of CI fusion, the green curve
indicates the ellipsoidal results of EI fusion, and the blue zone line indicates the ellipsoid
enclosed by the minimization Γ. The results show that the area enclosed by the CI fusion
algorithm is larger than the area where the two local estimates intersect, and the estimation
results are too conservative, while the EI fusion algorithm is within the area where the two
local estimates intersect, and the fusion results are more accurate.
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Here, we discuss the consistency of the designed EI fusion estimator, inspired by [15],
based on local estimates obeying the Gaussian distribution; we take the results of the fusion
of local estimates of sensors 1 and 2 for analysis. The local estimates, after EI fusion, are
obtained according to Equation (23) as follows:

P̂1,k 4 Γ1, P̂2,k 4 Γ1 (28)

Taking the inverse of both sides of the symbol simultaneously yields

Γ−1
1 4 P̂−1

1,k (29)

which further implies that
P̂−1

1,k − Γ−1
1 < 0 (30)

By adding P̂−1
2,k to both sides of the symbol simultaneously, we obtain

P̂−1
2,k + P̂−1

1,k − Γ−1
1 < P̂−1

2,k (31)

According to Equation (25), the first fusion result of P1
s,k 4 P̂2,k and, similarly, P1

s,k 4

P̂1,k.
According to (27) and (28), we obtain

P2
s,k 4 P1

s,k, P2
s,k 4 P̂3,k,

The following conclusions can be drawn from the collation.

P2
s,k 4 P̂i,k, i = 1, 2, 3,

In the L − 1 times of the fusion process, based on mathematical induction, it is
obtained that

PL−1
s,k 4 P̂i,k, i = 1, 2, 3 · · · , L (32)

In summary, the distributed ellipsoid (DEI) fusion estimator designed in the paper
has good consistency, and the fusion estimator outperforms the individual local estimators.
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5. Numerical Examples

In this section, the proposed DEI fusion is validated by a numerical example in order
to intuitively obtain a fusion estimation problem consistent with being able to solve the
unknown correlation in a complex multi-sensor system with unknown input disturbances
and measurement data transmission delays. First, consider a complex multi-sensor linear
time-varying system with unknown external inputs and measurement data transmission
delays with the expression:

xk+1 = Akxk + Dkdk + ωk

yi,k = Ci,kxk + vi,k , i = 1, 2, 3,

where the state matrix A =

a11,k
a21,k
a31,k

a12,k
a22,k
a32,k

a13,k
a23,k
a33,k

. dk is a Rayleigh distributed random

number obeying parameter 3.
The expression for each element in the state matrix is:

a11,k = exp[−h + sin(kh)− sin(kh− h)], a12,k = 0, a13,k = 0

a21,k = 2sinh
(

h
2

)
exp

[
− 3h

2 + sin(kh)− sin(kh− h)
]

a22,k = exp[−2h + sin(kh)− sin(kh− h)]
a23,k = 0, a31,k = 0, a32,k = 0

a33,k = exp[−2h + sin(kh)− sin(kh− h)]

The respective measurement matrices of the three sensors are as follows:

C1,k =
[
1 cos(kh) sin(kh)

]
C2,k = [sin(kh) 2 cos(kh)]

C3,k =

[
cos(kh) sin(kh) 1.5

1 sin(2kh) cos(2kh)

]
The unknown input coefficient matrix is Dk =

[
0.1 sin(kh) 0.3 0.2

]T . In all formulas,
h is 0.2. The covariance matrix of measurement noise is Q = diag{1, 1, 1}. The process noise
in the measurement equations for the three sensors is:R1,k = 0.2, R2,k = 0.3, and R3,k =
[0.3 0.1; 0.1 0.25]. Similar to [26], the time of the measurement data transmission delay
is described by a random Poisson distribution with parameters λi(i = 1, 2, 3), and its
probability density function is fi(j):

fi(j) =
λ

j
ie
−λi

j!
, j = 0, 1, · · ·

The mean value of the Poisson distribution obeyed by each channel delay time is
λ1 = 5, λ2 = 6, λ3 = 5.The buffer length used by each node is ε1 = ε2 = ε3 = 7. The mean
and covariance of the initial state are set as:

x0 =
[
0.1 0.1 0.1

]T , P0 = diag{0.1, 0.1, 0.1}

Figure 3 represents the state estimation plots of the DEI fusion estimation for state 1,
state 2, and state 3. The black curve indicates the state values without disturbance from the
external inputs, the red curve indicates the actual state values of the complex system, and
the blue curve indicates the estimated values of the DEI fusion estimator, which shows that
the designed DEI fusion estimator can estimate the complex multi-sensor system well.
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Based on the property that any Gaussian distribution can be described by the sub-
level set
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Gaussian distribution, i.e., 𝑥 ∼ 𝒩 𝑥 , 𝑃  

It is also important to ensure that the fusion results of these two prior estimates sat-
isfy the consistency of the fusion estimates, i.e., 𝑃 ≼ 𝑃  and 𝑃 ≼ 𝑃 . 

To characterize the unknown correlation, the EI fusion technique is performed by 
introducing three new two–two independent random vectors 𝑥 , 𝑥 , 𝑥 ∈ 𝑅  with a 
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where (Φ + Γ )  is denoted as the variance 𝑃  of the priori estimate 𝑥  and (Φ + Γ ) (Φ 𝜇 + Γ 𝛾) is the mean 𝑥 . 
According to the relationship between the random vectors 𝑥 , 𝑥 , 𝑥  and the priori 

estimates 𝑥 , 𝑥 , we can express the correlation covariance cov(𝑥 , 𝑥 ) of the priori esti-
mates 𝑥 , 𝑥 , i.e., cov 𝑥 , 𝑥 : = 𝐸 𝑥 𝑥 − 𝐸[𝑥 ]𝐸 𝑥 = 𝑃 Γ 𝑃  (22) 

Since the correlation is unknown, to obtain a description of an arbitrary correlation, 
the information of the mutual correlation covariance cov(𝑥 , 𝑥 ) is maximized. Based on 
the determinant of the mutual correlation covariance, it follows from Equation (22) that 
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(23) 

For random vectors 𝑁(𝑥, P), obeying Gaussian distribution can all be represented by 
the sublevel set ℇ , = {𝑥 ∈ 𝑅𝑛|(𝑥 − 𝑥) 𝑃 (𝑥 − 𝑥) ≤ 1} . To represent minimal Γ  intui-
tively, minimally Γ is characterized as the minimal ellipse containing ℇ , ∪ ℇ , . 

Since the prior estimates can be described by the introduced random variables, the 
fusion of the prior estimates is equivalent to the fusion of the introduced random varia-
bles, and by conditioning the function of Ψ, the fusion results are presented, i.e., 𝑥 : = Ψ 𝑥 , 𝑥 = Ψ Ψ 𝑥 , 𝑥 , 𝑥  (24) 

Substituting Equation (21) and the variable information into Equation (24), it is ob-
tained that 𝑃 = (𝑃 + 𝑃 − Γ )  𝑥 = 𝑃 𝑃 𝑥 + 𝑃 𝑥 − Γ 𝛾  

(25) 

x̂,P =
{

x ∈ Rn
∣∣∣(x− x̂)T P−1(x− x̂) ≤ 1

}
, the superiority of the DEI estimator is

verified by comparing the area enclosed by the results of the DCI fusion and DEI fusion
performances [30].

Figure 4 represents two local estimates (x1, x2) of the 3D image represented by a
sublevel set, and the fusion algorithm estimates the area enclosed by the two ellipsoids.
Figure 5 shows the results of the volume of the enclosed region for both fusion algorithms.
It can be seen that the conservative estimation of the DCI fusion results in a larger result for
the volume of the enclosed region than the DEI fusion result, which validates the superior
performance of the DEI fusion estimator.
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Next, let us discuss the computational cost of the designed DEI fusion estimator and
compare the computational complexity of the centralized estimator with that of the DEI
fusion estimator. First, we unify the dimensions of the different measurement equations, i.e.,
yi,k ∈ Rmi . It easily follows that the computational magnitude of the centralized estimator

is O
(
(Lmi)

3
)

, and the computational magnitude of the DEI estimator is O
(

Lm3
i
)
. Since L

is a positive integer greater than 1, L < L3, it can be seen that the computational cost of the
DEI estimator algorithm is smaller than that of the centralized algorithm.

In the centralized fusion estimation, the state estimation is handled using the state aug-
mentation method, and the state transfer matrix is an invertible, sparse matrix. According to
the nature of a computational complexity analysis, the computational order of magnitude
of the centralized fusion estimator is obtained as O

(
2L2n3 + 3(Ln)2mi + 2Lnm2

i + m3
i

)
,

while the computational order of magnitude of the designed DEI fusion estimator is
O
(
2n3 + 3n2mi + 5nm2

i + m3
i + (L− 1)

(
n2mi + nmi

))
. When mi = 1, the computational

complexity analysis of the designed numerical example shows that the computational
order of magnitude of the centralized fusion estimator is O(748) and that of the DEI fusion
estimator is O(148). It can be seen that the designed DEI fusion estimator significantly
reduces the computational cost.

From the analysis of the above results, it can be concluded that the designed DEI
fusion estimator solves the problem of low computational cost that centralized fusion does
not have and the problem that DCI fusion estimation is too conservative and verifies the
superiority of the designed fusion algorithm. Although the distributed fusion algorithm is
suboptimal, the proposed DEI fusion estimator with good accuracy and low computational
cost is preferred for the estimation of multi-sensor complex systems.

6. Conclusions

In this paper, we studied the problem of data fusion estimation for a complex multi-
sensor system with two network-induced phenomena of both unknown input disturbances
and measurement transmission delays. By treating the unknown input disturbance as a
non-informative prior distribution, the measured data transmission delay was represented
by a set of independent stochastic Bernoulli processes, and a finite length buffer was
added at the link nodes to retrieve the delayed data set. In analyzing the data fusion
estimation problem, the MMSE local estimator was designed with a Bayesian framework
for a multi-sensor complex system. For the problem of an unknown correlation between
local estimates, a DEI fusion estimator that could solve arbitrary correlation was designed,
and the consistency of the fusion estimator was demonstrated. In the paper, the superior
tracking performance of the designed DEI fusion estimator was analyzed by simulation
examples, and the problems of conservative estimation in DCI fusion estimations and high
computational costs in centralized fusion were solved. Although information fusion is
developing rapidly in this era of rapid development, the research on information fusion
estimation needs further efforts.
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