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Abstract: Deep learning models have been used in several domains, however, adjusting is still
required to be applied in sensitive areas such as medical imaging. As the use of technology in the
medical domain is needed because of the time limit, the level of accuracy assures trustworthiness.
Because of privacy concerns, machine learning applications in the medical field are unable to use
medical data. For example, the lack of brain MRI images makes it difficult to classify brain tumors
using image-based classification. The solution to this challenge was achieved through the application
of Generative Adversarial Network (GAN)-based augmentation techniques. Deep Convolutional
GAN (DCGAN) and Vanilla GAN are two examples of GAN architectures used for image generation.
In this paper, a framework, denoted as BrainGAN, for generating and classifying brain MRI images
using GAN architectures and deep learning models was proposed. Consequently, this study proposed
an automatic way to check that generated images are satisfactory. It uses three models: CNN,
MobileNetV2, and ResNet152V2. Training the deep transfer models with images made by Vanilla
GAN and DCGAN, and then evaluating their performance on a test set composed of real brain MRI
images. From the results of the experiment, it was found that the ResNet152V2 model outperformed
the other two models. The ResNet152V2 achieved 99.09% accuracy, 99.12% precision, 99.08% recall,
99.51% area under the curve (AUC), and 0.196 loss based on the brain MRI images generated by
DCGAN architecture.

Keywords: brain MRI images; vanilla GANs; DCGANs; image generation; image classification;
deep learning

1. Introduction

Generative Adversarial Networks (GANs) are categorized as generative models that
use probability distributions to generate synthetic data [1]. GANs have two main parts,
generator and discriminator; the generator works as a producer for synthetic data along
with tacking random data as inputs, while the discriminator works as a classifier for the real
data of the generated ones. GANs have been used widely in healthcare technology, because
of their robustness and high performance. Moreover, the limited dataset has encouraged
using GANs to generate the needed number of images to support training processes, such
that it is highly important for getting more accurate results [2]. Detecting and classifying
tumors are a significant issue in the medical domain. Therefore, many researches focus on
various types of tumors especially the most critical and dangerous types.

Brain tumor is one of the diseases that are responsible for killing many people, adults,
and children too [3]. Around 11,700 people are diagnosed with a brain tumor, therefore, it is
mandatory to early detect tumors in the brain to increase the survival rate and improve the
life expectancy by applying proper treatment and accurate diagnostics [4]. Doctors have
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been using several methods to diagnose the brain tumors, such as Magnetic Resonance
Imaging (MRI) [5] and Nuclear Magnetic Resonance (NMR) imaging [6]. Yet, it takes time
for the radiologists to segment and annotates the images manually, therefore, it is ought
to use technology to help in this case, especially, in case of a lack of professionals in the
domain. Machine learning has shown great achievements in several fields including image
processing [2]. Deep learning, specifically, was applied in the medical industry which has
proven successful by delivering more accurate results. This study focuses on classifying
the MRI scan images into images that have a tumor, and those that do not. However, in
domains like medical image classification, one has to have enough dataset points—in this
case, MRI scan images—which reduce the error rate and lower the certainty of injury or
death. Accordingly, data augmentation is required to increase the instances of trainable
images, and thus, increase the classification accuracy.

The main contributions of this study are:

1. An expanded Brain MRI dataset that involves around 1400 images using two GAN
architectures: Vanilla GAN (original GAN) and Deep Conditional GAN (DCGAN).
The expanded dataset will enable us to develop more general and accurate deep
learning models for diagnosing brain MRI images for tumors.

2. A framework, denoted as BrainGAN, for generating brain MRI images using multiple
GAN architectures. This framework can be considered a guide for future experiments
in terms of GAN architecture and parameters’ configurations. To the best of our
knowledge. Generating two MRI dataset samples allows comparisons between the
different GAN architectures in generating brain MRI images that are more similar to
the real images.

3. A novel approach to automatically validate the images generated by GANs. Although
manual validation may be more accurate, however, it is time-consuming and may
not be practical due to the limited availability of MRI radiologists. Thus, this study
proposes an automatic validation of generated images using deep transfer learning
models, i.e., three models. The validation is performed by training the deep transfer
models with the generated images by the two GAN architectures, i.e., Vanilla GAN
and DCGAN, and then evaluating their performance on a test set composed of real
brain MRI images.

The remaining of the paper is outlined as follows: Section 2 presents a summary of the
literature review, Section 3 describes BrianGAN, the proposed framework, and Section 4
explains the experimental setup conducted to create the BrainGAN framework including
the dataset of the study, image augmentation using Vanilla GAN and DCGAN, and the
deep learning proposed classification models. Section 5 presents the results and discussions
while Section 6 illustrates the comparative analysis and discussion. Finally, Section 7
concludes the paper.

2. Literature Review

In this section, we introduce some related studies with GANs and brain tumor. Many
studies have been founded on the basis of GANs in the medical imaging domain. Some of
these will be mentioned below.

The study by Changhee Han and others [7] under the name Combining Noise-to-
Image and Image-to-Image GANs: Brain MR Image Augmentation for Tumor Detection
shows that applying two-step GANs to detect a tumor in the BRATS dataset has boosted
the sensitivity of the model from 93.67% to 97.48%. The same dataset was used in another
study in the same year (2019) by the same main author along with other authors [8] in
another study has used the Conditional Progressive Growing of GANs (CPGGANs) model
which improved the accuracy by improving by 0.64%, yet the test accuracy decreases with
almost 100% of sensitivity and 6.84% of specificity, this is because the classifier recognizes
the synthetic images.

On the other hand, a study in the year 2019 by Han and others [9] shows that the
Conditional Progressive Growing of GANs (CPGGANs) model has boosted the sensitivity
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by 10% in the diagnosis with clinically acceptable additional False Positives. In 2020 the En-
larged Training Dataset by Pairwise GANs for Molecular-Based Brain Tumor Classification
study by Ge and others [10] applies the pairwise GANs which is a sufficient choice when
the dataset is small to be used by deep learning models. The study used classification on the
dataset images, in addition to, the combination of both the dataset images and augmented
images, the latter has achieved higher performance.

The highest accuracy achieved by far is reached 98.57% by a model suggested by
Ghassemi and others [11] which is using a pre-trained GAN model that was applied to two
datasets, Nanfang Hospital and General Hospital MRI brain images and Tianjin Medical
University in China for the years from 2005 to 2010. From the results, it can be seen that
this proposition has significantly improved the overall efficiency.

In the previous year, a study by Chenjie and others [12] aims to detect tumors of brain
MRI after applying a multi-scale gradient GAN (MSG-GAN) algorithm. The dataset under
study consisted of 231, 499, and 306 images from meningioma, glioma, and pituitary tumors
classes. After applying the concept of image synthesis and classification on images using
deep convolutional neural networks (CNNs) the model accuracy has reached 88.7%. This
has demonstrated that the MSG-GAN model has achieved its functionality of producing
images that are close to the real images of the dataset. The same goal for another study
in the same year by Sivadas, Deepak, and Ameer [12] using the Progressive Growing of
GANs (PGGANs) algorithm achieved 91.08%. This could be owing to the fact that the
study used Res-Net 50 to classify the synthesized images. This study has used the BRATS
dataset, which has 220 patient images divided into 154 images used in the training of the
model, 44 images for the validation, and the rest (22 images) used in the testing process.

A recent study which was conducted in 2021 by Changhee and others [13] and named
MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain
MRI slice reconstruction aims to detect anomalies in the MRI slices, the study was able
to detect anomalies using the Area Under the Curve (AUC) with 0.727 for the early stage
of Alzheimer’s disease and 0.894 for the mild cognitive impairment. Moreover, the study
detected brain metastases on the image scans with AUC 0.921.

In the same year, another algorithm called faster Regional CNNs was suggested by
Sandhiya and others [14] to identify tumors in the MRI brain images, this new approach has
allowed the model to reach 93% classification accuracy which is higher than the previous
studies on the same dataset. The study objective was to detect a tumor in an optimized
way, mainly to detect meningioma, glioma, pituitary tumors from the MRI brain images.
The optimization step comes from applying the faster CNN model to the dataset, this
new approach has been practiced into three levels of detection ratings, 89.23% and 96.28%
sensitivity for detecting glioma and pituitary tumors, respectively.

The result of this study [15] shows that the Glioma and Pituitary categories were
more accurate than Meningioma, due to fewer numbers of images under the Meningioma
category in the dataset.

A different technique has been used in [16], where the authors changed the MRI to the
gray-scale image as a preprocessing step then segmentation used FC algorithm to classify
a tumor and non-tumor images, after which feature extraction was performed to identify
the tumor shape and position. Finally, classifying the abnormality features in the brain
as a tumor, stroke, inflammatory disease, and degenerative. The result of this technique
succeeds in segmentation, classification, and determining the severity of the tumor. But it
fails in identifying the solid and necrotic tumors.

Also, Devanathan and Kamarasan proposed the RN-OKELM technique that performs
two steps of pre-processing the images such as image resizing and data augmentation,
the tumor identification in the brain image is conducted by morphological operations.
Furthermore, the feature extractor is applied by the residual network (Res2Net) model and
the classification is employed via OKELM model. Moreover, the parameter of OKELM has
been tuned effectively to WSA to improve the performance [17].
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In this study the authors classified the brain tumor into four categories (glioma, menin-
gioma, pituitary, and no tumor) by applying EfficientNet using min-max normalization,
they used Gaussian and Laplacian filter and fuzzy thresholding to perform a pre-processing
step, then the augmentation process with a dense-CNN model to enhance training [18].

Dhaniya et al. combined simple k-implies with SVM to get lower order error and
determine the tumor region by consolidating inherent picture structure progression and
factual order data [19] While this study focus on increasing the dataset size by using Cyclic
Generative Adversarial Networks to detect and classify tumor to the four categories [20].
Below we provide a summary of each of the studies listed in Table 1.

Table 1. A summary of brain-related studies based on MRI images.

Ref. Year Classification
Method Image Type Dataset Performance GAN

[7] 2019 Two-Step GANs MRI BRATS Sensitivity 93.67–97.48%
√

[8] 2019 CPGGANs MRI BRATS Accuracy 0.64%
Specificity 6.84%

√

[9] 2019 CPGGANs MRI Contrast-Enhanced T1-Weighted
(T1c) Brain Axial MR Images Sensitivity 10%

√

[10] 2020 Pairwise GANs MRI 3D Brain Volume Images from
TCGA-GBM and TCGA-LGG Average Accuracy 88.82%

√

[11] 2020 Pre-Trained GAN MRI

Nanfang Hospital General
Hospital MRI Brain Images Tianjin
Medical University in China
[2005–2010]

Accuracy 98.57%
√

[12] 2020 MSG-GAN MRI Figshare BRATS (220 Patient
Images) Accuracy 88.7%

√

[13] 2021 MADGAN MRI
1133 Healthy T1-Weighted (T1)
135 Healthy Contrast-Enhanced T1
(T1c)

AUC 0.921
√

[14] 2021 Faster
Regional CNNs MRI

3064 T1-Weighted and
Contrast-Enhanced Images
Glioma 1426, Pituitary 930 and
Meningioma 708 Images From 233
Patients

Accuracy 93%
Sensitivity 89.23% -

[15] 2021 VGG-19 MRI Figshare BRATS (220 Patient
Images)

Accuracy 94%
F1-score 94% -

[16] 2021

FCM-IWOA-
Based
RBNN
Classification

MRI
Dataset 1: Kaggle [21]
Dataset 2: Kaggle [22]
Dataset 3: BRATS [23]

Max. Specificity of 0.945
Max. Sensitivity of 0.96
Max. Accuracy of 0.951
Max. F1-Score of 0.961
Max. Precision of 0.96

-

[17] 2022 RN-OKELM MRI BT (98/155 Images)
Abnormal/Tumor Class.

Accuracy 97.93
Sensitivity 97.92
Specificity 97.98

-

[18] 2022 Dense
EfficientNet MRI

T1 Contrast Brain Tumors
Kaggle.com.
3260 Different Types of Brain MRI
Images

Accuracy 98.78%
Precision 98.75%
Recall 98.75%

-

[19] 2022 DA-SVM MRI
Publicly Datasets for Tumor
(Bakas et al. 2017a, b;
Tobon-gomez et al. 2015).

Accuracy 89.93
Sensitivity 88.96
Specificity 88.96

-

[20] 2022 C-GAN MRI Publicly datasets for Tumor
Detection and Classification.

Detection (Acc) 99%
Classification (Acc) 98%

√

Moreover, authors in [24] present a semantically consistent GAN framework in which
class identities of image segments in the source domain are used to define semantics as
they are called Sem-GAN framework. Their proposed framework includes consistency
constraints on the translation task that, along with GAN loss and cycle-constraints, enforces
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that translated images inherit the appearances of the target domain while (approximately)
maintaining their identities from the source domain. Sem-GAN improves the quality of
translated images by more than 20% on the FCN score, according to their experiments.
Semantic segmentation models trained with Sem-GAN images produce better segmentation
results than other variants. Their results show that semantic consistency, as proposed in
this paper, is crucial for translation quality.

For a no-reference stereoscopic image quality assessment, the authors propose StereoQA-
Net [25]. StereoQA-Net is an end-to-end dual-stream interactive network with left and
right view sub-networks. LIVE stereoscopic image quality databases are used to evaluate
our method. The proposed StereoQA-Net outperforms state-of-the-art algorithms on
symmetrically and asymmetrically distorted stereoscopic image pairs. StereoQA-Net can
predict local perceptual quality in general. Cross-dataset experiments show the algorithm’s
generalizability.

The authors in [26] propose an Unsupervised Deraining Generative Adversarial Net-
work (UD-GAN) to solve the problems by introducing self-supervised constraints from
unpaired rainy and clean images. Rain Guidance Module (RGM) and Background Guidance
Module (BGM) are designed to take advantage of rainy image characteristics. UD-GAN
outperforms state-of-the-art methods on various benchmarking datasets.

3. BrainGAN: The Proposed Framework

In this study, we propose BrainGAN, a framework for generating brain MRI images
based on Vanilla GAN (The original GAN is called a vanilla GAN) and DCGAN and
automatically validating the generated datasets using deep transfer learning models. The
validation is mainly based on the original images and the synthetic ones.

BrainGAN framework is shown in Figure 1 and contains four main phases: (1) Dataset
Collection, which aims to collect a dataset containing Brain MRI real images. As our image
validation phase is based on image classification, it was essential to have additional classes
besides the Brain tumor class., (2) Image Generation using Vanilla GAN and DCGAN
to increase the number of images, (3) Multiple deep transfer learning models, i.e., CNN,
MobileNetV2, and ResNet152V2, are applied to automatically validate the generated
images resulted by the Vanilla GAN and the DCGAN. and (4) Generated Image Validation.
Definitely, the model training is performed using the generated images of the two classes
(Tumor and No tumor), and then the model testing is performed using the original images.
By doing so, conclusions about the similarity between the real and generated images can
be made. The proposed framework steps are summarized in Figure 2.
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4. Experiment
4.1. Datasets of the Study

There are several types of brain tumors, for example, benign, malignant, and pituitary
tumors among others [27]. The dataset consists of 400 MRI images divided into 170 images
for a normal class, and 230 MRI images that contain cancer. This dataset was obtained
from Kaggle [28], which is a data science competition platform. The dataset is organized
into one folder (Braintumorimages) and contains two subfolders for each image category
(Normal/Tumor) with 400 magnetic resonance (MR) images. Specifically, it contains
170 Normal MRI images and 230Tumor MRI images. Figure 3 consists of 16 MRI scan
images for two classes, images that have tumors and others with no tumor, respectively.
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4.2. Image Augmentation Using Vanilla GAN and DCGAN

Every neural network learning model uses several techniques like forwarding pass and
backpropagation in finding the probability distribution that best represents the data. In fact,
deep learning models were able to find this probability distribution in more complicated
data, for example, audio and images. Regrettably, these concepts of neural network
models did not succeed in the applications of deep generative models as they did for the
previously mentioned models. This is due to the difficulty of approximating the maximum
likelihood since it has multiple probabilistic computations. The Generative Adversarial
Networks (GANs) study proposed architecture includes two models, the first one is called
the generator G, and the second one is called the discriminator D [29] The latter is a
predictive model, which is more common in machine learning where the model learns the
conditional probability of the target variable given the input variable.

When the generator wants to create new variables, afterwards, it uses the Bayes
theorem to calculate the conditional probability of target variable given the input variable.
Hence, in the generator, the model learns the distribution of the data, and thus, generates
new fake data points.

On the other hand, the discriminator classifies the data points as original or fake
(which are the data points created by the generator). Therefore, these two models work
in an adversarial setup, whereby they compete to get a better job. The objective of these
models is that the generator attempts to maximize its probability of generating data points
that are close to the original data points as much as possible, while the discriminator
attempts to reduce the probability of the generator.

The architecture explained in Figure 4 is called Vanilla GANs, which is the simplest
design for a generator model. It contains two models, the generator that is named the
generative network. The generator gets low dimensional latent space, which is the noise
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to construct new images or data points. Now, both the real images and the generated
fake images are passed to the discriminative network which decides if the image is real or
not [30].
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The generator network G is in charge of receiving an input z and producing synthetic
visuals using random noise (z). On the other hand, the discriminator network D receives
data from two different sources as its inputs: the real dataset’s original images, which are
denoted by x, and the synthesized images, which are denoted by z [31,32]. The discriminator
D works toward the maximization of a function known as the loss function, whereas the
generator G works toward the minimization of that function in the following manner:

min
G

max
D

V(D, G) = Ex∼Pdata (x)[log D(x)] + Ez∼Pz (z)[log(1− D(G(z)))] (1)

where D(x) is an estimate provided by the discriminator of the probability that real data
instance x actually exists, G(z) is the output of the generator when noise z is inputted, Ex
is the value that should be expected based on all actual data instances, D(G(z)) estimate by
a discriminator of how likely it is that a fake instance is real, and Ex is the expected value
of all of the random numbers that were put into the generator.

The Deep Convolutional Generative Adversarial Networks or DCGANs, in short, is a
different architecture that overachieved the GANs architecture in the study proposed by
Alec Radford, Luke Metz and Soumith Chintala in 2016 [33]. The main idea of DCGANs is
to use the convolutional-transpose layers in the generator and the convolutional layers in
the discriminator. In the generator, also there are batch norm layers and ReLU activations,
which with the convolutional transpose allow transferring the latent space which is derived
from the normal distribution of the data, as illustrated in Figure 5.
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As discussed, the classification method was applied to the dataset after applying
augmentation using Vanilla GANs and DCGANs. After applying the Vanilla GANs method
new images were obtained, with total 1400 images classified as 700 MRI scan images that
have a tumor and 700 MRI scan images with no tumor. Figure 6 demonstrates 16 MRI
scan images that are generated by applying Vanilla GANs for both no tumor and tumor
class. Moreover, Figure 7 demonstrates 16 MRI scan images that are generated by applying
DCGANs for both tumor and no tumor classes.

Both models were run for 1000 epochs, and they took more than 12 h to run on a
high-performance personal computer. We use the early stopping technique in choosing the
number of epochs by set the number of epochs to a very high number and we turned off
the training when the improvement over the next epochs was not satisfying and did not
meet our expectations. To generate brain MRI images, the Vanilla GAN and the DCGAN
were trained with the training options presented in Table 2. To get benefit of the DCGAN
features, there should be multiple classes in the dataset. In our dataset, we have two classes:
tumor and no tumor.
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Table 2. Parameter configurations are used to train the Vanilla GAN and the DGAN.

Parameter Vanilla GAN DCGAN

Mini Batch Size 128 64

Number of Epochs 1000 2000

Discriminator Learning rate 0.0001 0.0001

Generator Learning rate 0.0002 0.0002

Optimizer Adam Adam

4.3. Deep Learning Proposed Classification Models

As machine learning focuses on solving various problems like regression, reinforce-
ment learning, and classification, the last-mentioned technique can be applied to numerous
classes of data including images [34]. The classification problem is a type of supervised
learning class of machine learning, which is to say that input and output samples should
be available to be provided to the machine learning model for the training process. This
type of dataset is called labeled data [35]. The goal of supervised learning is to find the
mapping function between the input and output. Following that, a testing process will be
passed to the model to see how well it learns; this is performed by providing the model
with inputs and letting it predicts their labels.

The CNNs models which are used in the image’s classification aim to understand the
features of the provided images with their labels and use them to identify the labels of the
images in the testing process. This study applies CNN, MobileNetV2, and ResNet152V2 to
classify MRI images in the dataset augmented by Vanilla GANs and DCGANs.

The metrics utilized in this study are the most common ones, which are accuracy,
precision, recall, loss, and AUC, which are often used for evaluating multi-label classi-
fiers [36]. All these metrics depend on true positive (TP) and true negative (TN) which
denote the number of negative and positive instances that are correctly classified, and false
positive (FP) and false-negative (FN), which denote the number of misclassified negative
and positive instances. In this study, the following measures will be used to evaluate the
deep transfer learning model. The formulas of the performance metrics used in this study
are presented below:

Accuracy = (TP + TN)/(TP + FN + TN + FP) (2)
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Precision = TP/TP + FP (3)

Recall = TP/TP + FN (4)

As a feature extraction and classification method, deep neural networks using convo-
lutional neural networks (CNNs) are used to determine the classification of brain MRI. It
is composed of three layers: input, feature extraction, and classification. The input layer
contains a breast image measuring 224 × 224 × 3. Four CNN blocks comprise the feature
extraction section. Each of these blocks is composed of three layers: convolution, batch
normalization, and Rectified Linear Unit (ReLU). As illustrated in Figure 2, it may include
a maximum pooling layer and a dropout layer. The result of the feature extraction step is
then transmitted to the Flatten layer, which converts it to a one-dimensional data vector, the
proper format for the classification dense layer. We employ two thick layers and dropout
layers in this case. The final output is generated by a dense layer activated in a sigmoid
fashion. Table 3 summarizes the proposed CNN model design. The total amount of model
parameters is 27,430,058: 27,429,828 are trainable, whereas 230 are not trainable.

Table 3. The proposed CNN model architecture.

Layer (Type) Output Shape Parameters

conv2d_1 (Conv2D) (None, 224, 224, 16) 438

activation_1 (Activation) (None, 224, 224, 16) 0

batch_normalization_1 (Batch) (None, 224, 224, 16) 64

conv2d_2 (Conv2D) (None, 224, 224, 32) 4630

activation_2 (Activation) (None, 224, 224, 32) 0

max_pooling2d_1 (MaxPooling2d) (None, 74, 74, 32) 0

dropout_1 (Dropout) (None, 74, 74, 32) 0

conv2d_3 (Conv2D) (None, 72, 72, 64) 18,486

activation_3 (Activation) (None, 72, 72, 64) 0

batch_normalization_2 (Batch) (None, 72, 72, 64) 256

conv2d_4 (Conv2D) (None, 71, 71, 128) 32,896

max_pooling2d_2 (MaxPooling2d) (None, 24, 24, 128) 0

dropout_2 (Dropout) (None, 24, 24, 128) 0

flatten_1 (Flatten) (None, 73728) 0

dense_1 (Dense) (None, 512) 27,649,248

dropout_1 (Dropout) (None, 512) 0

dense_2 (Dense) (None, 1000) 413,000

dropout_2 (Dropout) (None, 1000) 0

dense_0 (Dense) (None, 1) 1001

activation_4 (Activation) (None, 1) 0

Additionally, the feature extraction models ResNet152V2 and MobileNetV2 are used.
These models are capable of being taught using their pre-trained initial weights. This strat-
egy increases training and coverage while maintaining a high level of accuracy. Following
these models, reshaping, flattening, dense, dropout, a dense output layer with sigmoid
activation function are performed. Their distinct architectures are depicted in Tables 4 and 5.
The ResNet152V2 has a total of 73,032,244 parameters: 72,931,029 trainable parameters
and 101,215 non-trainable parameters. For MobileNetV2, the trainable and non-trainable
parameters are 54,382,533: 54,359,423 and 23,110, respectively.
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Table 4. The pre-trained ResNet152V2 model architecture.

Layer (Type) Output Shape Parameters

resnet152v2 (Model) (None, 4, 4, 2048) 54,331,648

reshape_2 (Reshape) (None, 4, 4, 2048) 0

flatten_2 (Flatten) (None, 100352) 0

dense_3 (Dense) (None, 256) 25,690,368

dropout_2 (Dropout) (None, 256) 0

dense_4 (Dense) (None, 1) 257

Table 5. The pre-trained MobileNetV2 model architecture.

Layer (Type) Output Shape Parameters

mobilenetv2_1.00_224 (Model) (None, 7, 7, 1280) 2,257,984

reshape_2 (Reshape) (None, 7, 7, 1280) 0

flatten_2 (Flatten) (None, 62720) 0

dense_3 (Dense) (None, 512) 33,113,152

dropout_2 (Dropout) (None, 512) 0

dense_4 (Dense) (None, 1) 513

To investigate the performance of deep learning frameworks for brain tumor classifi-
cation, the Python programming language is utilized in conjunction with Keras [37]. In the
training and validation phases, Google Colab [38] makes use of the Graphics Processing
Unit (GPU) runtime. The experiments were carried out on a computer device with Intel
i-7 9700K 3.6 GHzCPU, 16 GB RAM, and NVIDIA GeForce RTX 2060 8 GB GPU. For the
hidden and output layers, respectively, ReLU and Sigmoid activation functions are utilized.
For both the training and validation phases, the number of epochs is 300, and the batch
size is 32. Finally, Table 6 contains the learning rate (LR) and network parameters for each
model.

Table 6. Models training parameters.

Models Optimizer LR Total Number of
Parameters

ResNet152V2 SGD 0.0001 54,382,533

MobileNetV2 SGD 0.0001 34,371,649

CNN Adamax 0.00003 27,429,828

5. Results and Discussions

This study covers the application of two main generative models, Vanilla GANs and
DCGANs, with the goal to generate more MRI scan images, which increases the datasets,
and therefore, gets better results. Thus, the validation of generated images is applied using
deep transfer learning models CNN, MobileNetV2, and ResNet152V2 models. A confusion
matrix is used to check the effectiveness of the classification and the accuracy score for the
output. We build the confusion matrix for the CNN proposed model using Vanilla GAN
and DCGAN generated images as in Figure 8. The figure shows that the CNN model can
successfully classify the two brain status (Tumor and No-Tumor) with the highest ratio by
the No-Tumor images (0.955) and total accuracy of 0.9484 and a misclass value of 0.0516 for
Vanilla GAN generated images as in Figure 8a while the highest ratio using the DCGAN
generated images is for the Tumor images (0.978) with total accuracy 0.9663 and misclass
value of 0.0337 as in Figure 8b. This result assures that the classification is performed
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correctly and the DCGAN generated images outperformed the Vanilla GAN generated
images. In addition, the loss, AUC, precision, recall, and accuracy between the training and
validation phases are depicted in Figure 9 as a function of the number of epochs in each
phase for the CNN model.
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Figure 10 displays the confusion matrix for the MobileNetV2 model which demon-
strates that the model can classify the two brain status (Tumor and No-Tumor) with the
highest ratio to the Tumor images (0.947) and total accuracy of 0.9327 and misclass value of
0.0673 for Vanilla GAN generated images as in Figure 10a whereas the highest ratio using
the DCGAN generated images is for the Tumor images (0.961) with total accuracy 0.9584
and misclass value of 0.0416 as in Figure 10b. This result promises that the classification is
performed correctly and the DCGAN generated images outperformed the Vanilla GAN
generated images. In addition, Figure 11 shows the loss, AUC, precision, recall, and accu-
racy between the training and validation phases as a function of the number of epochs in
each phase for the MobileNetV2 model.

Similarly, in Figure 12, the confusion matrix of the ResNet152V2 model shows that the
brain tumor and No-Tumor classification statues with the highest ratio to the Tumor images
(0.987) and total accuracy of 0.9794 and misclass value of 0.0206 for Vanilla GAN generated
images as in Figure 12a whereas the highest ratio using the DCGAN generated images is
for the Tumor images (0.993) with total accuracy 0.9909 and misclass value of 0.0091 as in
Figure 12b. For the ResNet152V2 model, Figure 13 plots the loss in AUC, precision, recall,
and accuracy as a function of the number of training and validation epochs in each phase.



Sensors 2022, 22, 4297 14 of 21

Sensors 2022, 22, x FOR PEER REVIEW 15 of 24 
 

 

  

(a) (b) 

Figure 8. Confusion matrix for the proposed CNN model: (a) using Vanilla GAN image generated; 
(b) using DCGAN image generated. 

 
Figure 9. Loss, AUC, precision, recall, and accuracy between the training and validation phases with 
the number of epochs for the CNN model using DCGAN image generated. 
Figure 9. Loss, AUC, precision, recall, and accuracy between the training and validation phases with
the number of epochs for the CNN model using DCGAN image generated.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 24 
 

 

Figure 10 displays the confusion matrix for the MobileNetV2 model which demon-
strates that the model can classify the two brain status (Tumor and No-Tumor) with the 
highest ratio to the Tumor images (0.947) and total accuracy of 0.9327 and misclass value 
of 0.0673 for Vanilla GAN generated images as in Figure 10a whereas the highest ratio 
using the DCGAN generated images is for the Tumor images (0.961) with total accuracy 
0.9584 and misclass value of 0.0416 as in Figure 10b. This result promises that the classifi-
cation is performed correctly and the DCGAN generated images outperformed the Va-
nilla GAN generated images. In addition, Figure 11 shows the loss, AUC, precision, recall, 
and accuracy between the training and validation phases as a function of the number of 
epochs in each phase for the MobileNetV2 model. 

(a) (b) 

Figure 10. Confusion matrix for the proposed MobileNetV2 model: (a) using Vanilla GAN image 
generated; (b) using DCGAN image generated. 
Figure 10. Confusion matrix for the proposed MobileNetV2 model: (a) using Vanilla GAN image
generated; (b) using DCGAN image generated.



Sensors 2022, 22, 4297 15 of 21Sensors 2022, 22, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 11. Loss, AUC, precision, recall, and accuracy between the training and validation phases 
with the number of epochs for the MobileNetV2 model using DCGAN image generated. 

Similarly, in Figure 12, the confusion matrix of the ResNet152V2 model shows that 
the brain tumor and No-Tumor classification statues with the highest ratio to the Tumor 
images (0.987) and total accuracy of 0.9794 and misclass value of 0.0206 for Vanilla GAN 
generated images as in Figure 12a whereas the highest ratio using the DCGAN generated 
images is for the Tumor images (0.993) with total accuracy 0.9909 and misclass value of 
0.0091 as in Figure 12b. For the ResNet152V2 model, Figure 13 plots the loss in AUC, pre-
cision, recall, and accuracy as a function of the number of training and validation epochs 
in each phase. 

Figure 11. Loss, AUC, precision, recall, and accuracy between the training and validation phases
with the number of epochs for the MobileNetV2 model using DCGAN image generated.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 24 
 

 

(a) (b) 

Figure 12. Confusion matrix for the proposed ResNet152V2 model: (a) using Vanilla GAN image 
generated; (b) using DCGAN image generated. 

 
Figure 13. Loss, AUC, precision, recall, and accuracy between the training and validation phases 
with the number of epochs for the ResNet152V2 model using DCGAN image generated. 

Figure 12. Confusion matrix for the proposed ResNet152V2 model: (a) using Vanilla GAN image
generated; (b) using DCGAN image generated.



Sensors 2022, 22, 4297 16 of 21

Sensors 2022, 22, x FOR PEER REVIEW 18 of 24 
 

 

(a) (b) 

Figure 12. Confusion matrix for the proposed ResNet152V2 model: (a) using Vanilla GAN image 
generated; (b) using DCGAN image generated. 

 
Figure 13. Loss, AUC, precision, recall, and accuracy between the training and validation phases 
with the number of epochs for the ResNet152V2 model using DCGAN image generated. 
Figure 13. Loss, AUC, precision, recall, and accuracy between the training and validation phases
with the number of epochs for the ResNet152V2 model using DCGAN image generated.

An interesting result that we came up, the models achieved higher accuracy when they
were trained on the images generated by the DCGAN as compared to the Vanilla GAN.
In particular, the ResNet152V2 had the highest accuracy, with 99.09 using DCGAN. This
indicated that the generated images by the DCGAN are more similar to the real images
than those generated by the Vanilla GAN.

6. Comparative Analysis and Discussion

The dataset contains 1400 images of the two classes: Tumor and No-Tumor brain MRI
images. Each class contains 700 images. These images were generated in the previous
phase using Vanilla GAN and DCGAN architectures. Three deep transfer learning models
have been selected for validation. After the three models have been trained using the
generated images, the models are tested with a dataset of 400 MRI real images for the two
classes. Table 7 presents the performance metrics of the three validation models in terms of
loss, accuracy, precision, recall, and AUC. The table presents the models’ performance once
when they are trained on images generated by the Vanilla GAN and another when they are
trained on images generated by the DCGAN. The bolded values show a higher value of all
the metrics loss, accuracy, precision, recall, and AUC.
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Table 7. Evaluation metrics for the different models using Vanilla GAN and DCGAN image generated.

Model
Vanilla GAN DCGAN

Loss Accuracy Precision Recall AUC Loss Accuracy Precision Recall AUC

CNN 0.42 94.84% 93.24% 95.49% 95.29% 0.37 96.63% 97.01% 96.83% 98.14%

MobileNetV2 0.39 93.27% 92.19% 95.57% 96.92% 0.33 95.84% 96.48% 95.68% 97.50%

ResNet152V2 0.32 97.94% 96.91% 97.03% 96.65% 0.19 99.09% 99.12% 99.08% 99.51%

Using ResNet152V2 model, we can conclude that the images generated by DCGAN for
the three classes were more alike to the real images as compared to the images generated
by the Vanilla GAN. As shown in Figure 14, the models achieved lower loss when they
were trained on the images generated by the DCGAN as compared to the Vanilla GAN.
In particular, the ResNet152V2 had the lowest loss, with 0.19 using DCGAN. Moreover,
Figure 15 demonstrates that the ResNet152V2 model achieved higher values in all the met-
rics; accuracy, precision, recall, and AUC when they were trained on the images generated
by both the Vanilla GAN and the DCGAN. In particular, the DCGAN outperformed the
Vanilla GAN in the all the performance metrics.

A comparison between the proposed completed work of this paper and the validation
results of the other recent works which are introduced based on brain MRI dataset images
is illustrated in Table 8. Researches [11], and [20] reported only one performance metric:
accuracy. Accuracy, precision, and recall were measured in research [18]. As clearly shown
in Table 8, it is evident that our proposed ResNet152V2 model achieves the highest results
for all used performance measurement metrics in comparison with the previous works.
Also, all our proposed models exceed the recently introduced methods in the literature.
Figures 16–18 illustrate the performance metrics comparison between our proposed models
and previous studies for the accuracy, precision, and recall, respectively.
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Table 8. Comparison with related works.

Research Author Accuracy Precision Recall

[11] Ghassemi & Rouhani (2020) 98.57% – –

[18] Nayak, et al. (2022) 98.78% 98.75% 98.75%

[20] Gupta, et al. (2022) 99% – –

The proposed
models using

DCGAN

CNN 96.63% 97.01% 96.83%

MobileNetV2 95.84% 96.48% 95.68%

ResNet152V2 99.09% 99.12% 99.08%

Sensors 2022, 22, x FOR PEER REVIEW 21 of 24 

previous works. Also, all our proposed models exceed the recently introduced methods 

in the literature. Figures 16–18 illustrate the performance metrics comparison between our 

proposed models and previous studies for the accuracy, precision, and recall, respectively. 

Table 8. Comparison with related works. 

Research Author Accuracy Precision Recall 

[11] 
Ghassemi & Rouhani 

(2020) 
98.57% -- -- 

[18] Nayak, et al. (2022) 98.78% 98.75% 98.75% 

[20] Gupta, et al. (2022) 99% -- -- 

The proposed models using 

DCGAN 

CNN 96.63% 97.01% 96.83% 

MobileNetV2 95.84% 96.48% 95.68% 

ResNet152V2 99.09% 99.12% 99.08% 

Figure 16. Accuracy performance metrics comparison between our proposed models and 

previous studies [11,18,20]. 

Figure 17. Precision performance metrics comparison between our proposed models and 

previous studies [18]. 

Ghassemi & Rouhani  Nayak, et al. Gupta, et al. CNN MobileNetV2 ResNet152V2

Accuracy 98.57% 98.78% 99% 96.63% 95.84% 99.09%

93%

94%

95%

96%

97%

98%

99%

100%

A
cc

u
ra

cy
 (

%
)

Accuracy 

Nayak, et al. CNN MobileNetV2 ResNet152V2

Precision 98.75% 97.01% 96.48% 99.12%

94%

95%

96%

97%

98%

99%

100%

P
re

ci
si

o
n

 (
%

)

Precision 

Figure 16. Accuracy performance metrics comparison between our proposed models and previous
studies [11,18,20].
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Figure 18. Recall performance metrics comparison between our proposed models and previous
studies [18].

7. Conclusions and Future Work

It was proposed in this paper to use GAN architectures and deep learning models to
generate and categorize brain MRI images. The framework is referred to as BrainGAN and
it is described in detail. Thus, this research presented an automated method of determining
whether or not the images generated are satisfactory. It employs three models: CNN,
MobileNetV2, and ResNet152V2. Deep transfer models are trained with images created by
Vanilla GAN and DCGAN, and their performance is then evaluated on a test set comprising
of real brain MRI scans, as described in detail below. The results of the experiment revealed
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that the ResNet152V2 model outperformed the other two models in terms of overall
performance. Based on the brain MRI pictures generated by the DCGAN architecture, the
ResNet152V2 obtained 99.09 percent accuracy, 99.12 percent precision, 99.08 percent recall,
99.51 percent area under the curve (AUC), and 0.196 loss. An interesting result that we
came up, the models achieved higher accuracy when they were trained on the images
generated by the DCGAN as compared to the Vanilla GAN. In particular, the ResNet152V2
had the highest accuracy, with 99.09 using DCGAN. This indicated that the generated
images by the DCGAN are more similar to the real images than those generated by the
Vanilla GAN.

Ongoing work intends to enhance the performance of the proposed model by raising
the number of images in the used datasets, increasing the training epochs and using
other deep learning techniques and other GAN architectures in both classification and
augmentation.

Author Contributions: Conceptualization, D.M.I., M.A.A.H., H.H.N.A. and A.F.A.; Data Curation,
D.M.I. and M.A.A.H.; methodology, H.H.N.A. and A.F.A.; software, D.M.I.; validation, H.H.N.A.,
A.F.A., D.M.I. and M.A.A.H.; formal analysis, D.M.I.; investigation, M.A.A.H.; writing—original
draft preparation, H.H.N.A., A.F.A., D.M.I. and M.A.A.H.; writing—review and editing, D.M.I. and
M.A.A.H.; visualization, H.H.N.A. and A.F.A.; supervision, D.M.I. and M.A.A.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. Adv. Neural Inf. Process. Syst. 2014, 3, 2672–2680.
2. Kumar, S.; Dabas, C.; Godara, S. Classification of brain MRI tumor images: A hybrid approach. Procedia Comput. Sci. 2017, 122,

510–517. [CrossRef]
3. Gab Allah, A.M.; Sarhan, A.M.; Elshennawy, N.M. Classification of Brain MRI Tumor Images Based on Deep Learning PGGAN

Augmentation. Diagnostics 2021, 11, 2343. [CrossRef] [PubMed]
4. Wu, D.; Rice, C.M.; Wang, X. Cancer bioinformatics: A new approach to systems clinical medicine. BMC Bioinform. 2012, 13, S7.

[CrossRef] [PubMed]
5. Brain MRI Segmentation. 2019. Available online: https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation (accessed on 5

March 2022).
6. Ahmad, R.; Bouman, C.A.; Buzzard, G.T.; Chan, S.; Liu, S.; Reehorst, E.T.; Schniter, P. Plug-and-play methods for magnetic

resonance imaging: Using denoisers for image recovery. IEEE Signal Process. Mag. 2020, 37, 105–116. [CrossRef] [PubMed]
7. Han, C.; Rundo, L.; Araki, R.; Nagano, Y.; Furukawa, Y.; Mauri, G.; Nakayama, H.; Hayashi, H. Combining noise-to-image and

image-to-image GANs: Brain MR image augmentation for tumor detection. IEEE Access 2019, 7, 156966–156977. [CrossRef]
8. Han, C.; Rundo, L.; Araki, R.; Furukawa, Y.; Mauri, G.; Nakayama, H.; Hayashi, H. Infinite brain MR images: PGGAN-based data

augmentation for tumor detection. In Neural Approaches to Dynamics of Signal Exchanges; Springer: Singapore, 2020; pp. 291–303.
9. Han, C.; Murao, K.; Noguchi, T.; Kawata, Y.; Uchiyama, F.; Rundo, L.; Nakayama, H.; Satoh, S.I. Learning more with less:

Conditional PGGAN-based data augmentation for brain metastases detection using highly-rough annotation on MR images.
In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7
November 2019; pp. 119–127.

10. Ge, C.; Gu IY, H.; Jakola, A.S.; Yang, J. Enlarged training dataset by pairwise gans for molecular-based brain tumor classification.
IEEE Access 2020, 8, 22560–22570. [CrossRef]

11. Ghassemi, N.; Shoeibi, A.; Rouhani, M. Deep neural network with generative adversarial networks pre-training for brain tumor
classification based on MR images. Biomed. Signal Process. Control 2020, 57, 101678. [CrossRef]

12. Deepak, S.; Ameer, P.M. MSG-GAN Based Synthesis of Brain MRI with Meningioma for Data Augmentation. In Proceedings of
the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore,
India, 2–4 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

13. Han, C.; Rundo, L.; Murao, K.; Noguchi, T.; Shimahara, Y.; Milacski, Z.Á.; Koshino, S.; Sala, E.; Nakayama, H.; Satoh, S.I.
MADGAN: Unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC
Bioinform. 2021, 22, 1–20. [CrossRef] [PubMed]

http://doi.org/10.1016/j.procs.2017.11.400
http://doi.org/10.3390/diagnostics11122343
http://www.ncbi.nlm.nih.gov/pubmed/34943580
http://doi.org/10.1186/1471-2105-13-71
http://www.ncbi.nlm.nih.gov/pubmed/22549015
https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
http://doi.org/10.1109/MSP.2019.2949470
http://www.ncbi.nlm.nih.gov/pubmed/33953526
http://doi.org/10.1109/ACCESS.2019.2947606
http://doi.org/10.1109/ACCESS.2020.2969805
http://doi.org/10.1016/j.bspc.2019.101678
http://doi.org/10.1186/s12859-020-03936-1
http://www.ncbi.nlm.nih.gov/pubmed/33902457


Sensors 2022, 22, 4297 21 of 21

14. Sandhiya, B.; Priyatharshini, R.; Ramya, B.; Monish, S.; Raja, G.R.S. Reconstruction, Identification and Classification of Brain
Tumor Using Gan and Faster Regional-CNN. In Proceedings of the 2021 3rd International Conference on Signal Processing and
Communication (ICPSC), Coimbatore, India, 13–14 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 238–242.

15. Mondal, M.; Faruk, M.F.; Raihan, N.; Ahammed, P. Deep Transfer Learning Based Multi-Class Brain Tumors Classification Using
MRI Images. In Proceedings of the 2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE), Rajshahi,
Bangladesh, 22–24 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 73–76.

16. Dixit, A.; Nanda, A. An improved whale optimization algorithm-based radial neural network for multi-grade brain tumor
classification. Vis. Comput. 2021, 1–16. [CrossRef]

17. Devanathan, B.; Kamarasan, M. Automated Brain Tumor Diagnosis using Residual Network with Optimal Kernel Extreme
Learning Machine. In Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT),
Tirunelveli, India, 20–22 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 860–865.

18. Nayak, D.R.; Padhy, N.; Mallick, P.K.; Zymbler, M.; Kumar, S. Brain Tumor Classification Using Dense Efficient-Net. Axioms 2022,
11, 34. [CrossRef]

19. Dhaniya, R.D.; Umamaheswari, K.M. Brain tumor identification and classification of MRI images using data augmented support
vector machine. Cogn. Neurodyn. 2022, 1–11. [CrossRef]

20. Gupta, R.K.; Bharti, S.; Kunhare, N.; Sahu, Y.; Pathik, N. Brain Tumor Detection and Classification Using Cycle Generative
Adversarial Networks. Interdiscip. Sci. Comput. Life Sci. 2022, 14, 485–502. [CrossRef] [PubMed]

21. Kaggle. Available online: https://www.kaggle.com/navoneel/brainmri-images-for-brain-tumor-detection (accessed on 26 May
2022).

22. Kaggle. Available online: https://www.kaggle.com/simeondee/brain-tumor-images-dataset (accessed on 26 May 2022).
23. BRATS. Available online: https://www.smir.ch/BRATS/Start2015 (accessed on 26 May 2022).
24. Cherian, A.; Sullivan, A. Sem-GAN: Semantically-consistent image-to-image translation. In Proceedings of the 2019 IEEE Winter

Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11 January 2019; IEEE: Piscataway, NJ, USA,
2019; pp. 1797–1806. [CrossRef]

25. Zhou, W.; Chen, Z.; Li, W. Dual-stream interactive networks for no-reference stereoscopic image quality assessment. IEEE Trans.
Image Process. 2019, 28, 3946–3958. [CrossRef] [PubMed]

26. Jin, X.; Chen, Z.; Lin, J.; Chen, Z.; Zhou, W. Unsupervised single image deraining with self-supervised constraints. In Proceedings
of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 2761–2765. [CrossRef]

27. Brain Tumor Classification (MRI). 2019. Available online: https://www.kaggle.com/sartajbhuvaji/brain-tumor-classification-mri
(accessed on 3 May 2022).

28. MRI Based Brain Tumor Images. 2021. Available online: https://www.kaggle.com/mhantor/mri-based-brain-tumor-images
(accessed on 3 May 2022).

29. Cai, L.; Chen, Y.; Cai, N.; Cheng, W.; Wang, H. Utilizing amari-alpha divergence to stabilize the training of generative adversarial
networks. Entropy 2020, 22, 410. [CrossRef] [PubMed]

30. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv 2016, arXiv:1511.06434.

31. Huang, H.; Yu, P.S.; Wang, C. An Introduction to Image Synthesis with Generative Adversarial Nets. arXiv 2018, arXiv:1803.04469.
32. Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative Adversarial Networks: An

Overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [CrossRef]
33. Kotsiantis, S.; Zaharakis, I.; Pintelas, P. Machine learning: A review of classification and combining techniques. Artif. Intell. Rev.

2006, 26, 159–190. [CrossRef]
34. Image ClassifierUsing Cnn Image Classifier Using Convolutional Neural Networks 2021. Available online: https://www.

geeksforgeeks.org/image-classifier-using-cnn/ (accessed on 3 May 2022).
35. Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Lecture

Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3408, pp. 345–359. [CrossRef]
36. Gulli, A.; Sujit, P. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017.
37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
38. Bisong, E. Google Colaboratory in Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer:

Berlin/Heidelberg, Germany, 2019; pp. 59–64.

http://doi.org/10.1007/s00371-021-02176-5
http://doi.org/10.3390/axioms11010034
http://doi.org/10.1007/s11571-021-09774-y
http://doi.org/10.1007/s12539-022-00502-6
http://www.ncbi.nlm.nih.gov/pubmed/35137330
https://www.kaggle.com/navoneel/brainmri-images-for-brain-tumor-detection
https://www.kaggle.com/simeondee/brain-tumor-images-dataset
https://www.smir.ch/BRATS/Start2015
http://doi.org/10.1109/WACV.2019.00196
http://doi.org/10.1109/TIP.2019.2902831
http://www.ncbi.nlm.nih.gov/pubmed/30843835
http://doi.org/10.1109/ICIP.2019.8803238
https://www.kaggle.com/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/mhantor/mri-based-brain-tumor-images
http://doi.org/10.3390/e22040410
http://www.ncbi.nlm.nih.gov/pubmed/33286184
http://doi.org/10.1109/MSP.2017.2765202
http://doi.org/10.1007/s10462-007-9052-3
https://www.geeksforgeeks.org/image-classifier-using-cnn/
https://www.geeksforgeeks.org/image-classifier-using-cnn/
http://doi.org/10.1007/978-3-540-31865-1_25

	Introduction 
	Literature Review 
	BrainGAN: The Proposed Framework 
	Experiment 
	Datasets of the Study 
	Image Augmentation Using Vanilla GAN and DCGAN 
	Deep Learning Proposed Classification Models 

	Results and Discussions 
	Comparative Analysis and Discussion 
	Conclusions and Future Work 
	References

