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Abstract: This article addresses the problem of path following of marine vehicles along straight lines
in the presence of currents by resorting to an inner-outer control loop strategy, with due account for
the presence of currents. The inner-outer loop control structures exhibit a fast-slow temporal scale
separation that yields simple “rules of thumb” for controller tuning. Stated intuitively, the inner-loop
dynamics should be much faster than those of the outer loop. Conceptually, the procedure described
has three key advantages: (i) it decouples the design of the inner and outer control loops, (ii) the
structure of the outer-loop controller does not require exact knowledge of the vehicle dynamics,
and (iii) it provides practitioners a very convenient method to effectively implement path-following
controllers on a wide range of vehicles. The path-following controller discussed in this article
is designed at the kinematic outer loop that commands the inner loop with the desired heading
angles while the vehicle moves at an approximately constant speed. The key underlying idea is to
provide a seamless implementation of path-following control algorithms on heterogeneous vehicles,
which are often equipped with heading autopilots. To this end, we assume that the heading control
system is characterized in terms of an IOS-like relationship without detailed knowledge of vehicle
dynamics parameters. This paper quantitatively evaluates the combined inner-outer loop to obtain a
relationship for assessing the combined system’s stability. The methods used are based on nonlinear
control theory, wherein the cascade and feedback systems of interest are characterized in terms of
their IOS properties. We use the IOS small-gain theorem to obtain quantitative relationships for
controller tuning that are applicable to a broad range of marine vehicles. Tests with AUVs and one
ASV in real-life conditions have shown the efficacy of the path-following control structure developed.

Keywords: path following; inner-outer loop control; input-to-output stability; AUVs; ASVs

1. Introduction

The use of autonomous marine vehicles, including surface and underwater robots,
for various scientific and commercial applications at sea, has increased multi-fold in the
last decade. Missions of interest include, among others, bathymetric surveys, seabed
imaging, environmental monitoring, inspection of offshore critical infrastructures, and
marine archaeology studies. In most of these missions, marine vehicles are required
to follow spatial paths accurately. A representative example is the case where an AUV
(autonomous underwater vehicle) or an ASV (autonomous surface vehicle) is requested
to execute “lawn-mowing” maneuvers along desired paths in the presence of unknown
ocean currents.

We recall the crucial difference between trajectory tracking and path following. In the
latter, no explicit temporal constraints are imposed on the desired vehicle’s motion and a
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path is planned using spatial coordinates only, along with a reference speed profile that
may depend on where the vehicle is on the path. In contrast, in trajectory tracking, space
and time explicitly define the reference coordinates for the desired vehicle’s motion, that
is, the vehicle is required to track a 3D curve parameterized in time. This strategy is only
pursued in practice when simultaneous and temporal specifications play a decisive role.
However, in the process of tracking a desired inertia trajectory, a vehicle may be required
to reach a speed with respect to the water that may either be too small, leading to the loss
of surface control authority or too high, exceeding the capability of the propulsion system
installed onboard.

A properly designed path-following control systems can naturally lead to smoother
vehicle trajectories without pushing the control signals into saturation, in contrast to what
may happen when trajectory tracking controllers are used. The fundamental limitations of
trajectory tracking can be found in [1,2]. In [2], Aguiar studied performance limitations of
trajectory tracking strategies due to unstable zero-dynamics in terms of a lower bound on
L2-norm of the tracking error even if the control effort is unlimited. It was also shown that
path following is free from such a limitation. In [3], a hybrid solution to path following and
trajectory tracking problem for underactuated vehicles was discussed for 2D and a more
general 3D space. Aguiar and Hespanha in [3] followed a supervisory control architecture
in which a switching logic is used to adapt an adequate estimator and control law from
the family of estimators and candidate control laws. Supervisory control combined with
a nonlinear Lyapunov-based tracking control was demonstrated and its robustness to
parametric modeling uncertainties was shown with examples of a hovercraft and an
AUV. Marine vehicles suffer from disturbances induced by ocean currents. The issue of
disturbances was not addressed in [3]. The path following problem in 3D for an underwater
vehicle was also described in [4], where the controller design builds on the Lyapunov
theory and resorts to back-stepping techniques, demanding the knowledge of a complete
hydrodynamic model of the vehicle.

In [5], Indiveri described a 3D kinematical solution to path following by recalling
sliding-mode control techniques. Rather than designing the control input to drive a track-
ing error to zero, the sliding mode control uses the control input to drive and keep the
state on a surface where the error has stable dynamics. However, the authors did not
address the issues related to the vehicle dynamics and described the controller only at the
kinematic level.

Pioneering work in solving the path following problem for wheeled robots has been
addressed in [6,7]. Path-following problem for a car pulling several trailers is addressed
in [8]. In [9], Altafini provided local asymptotic stability for a path of non-constant cur-
vature for a trailer vehicle. More recently, in [10], a model predictive path-following
control of a laboratory tower crane has been described to move a load along a predefined
geometric path.

It is interesting to see in [11,12] that path following is at the core of cooperative motion
control for multiple vehicles where these vehicles are supposed to follow a set of fixed
spatial paths while holding a desired formation pattern. Each vehicle is equipped with
a path-following algorithm to maneuver along its assigned spatial path, whereas a dis-
tributed control law performs the formation control by adjusting the speeds of different
vehicles. It is therefore important to emphasize the need for a reliable path-following
method that is suitable for heterogeneous vehicles with little knowledge of their dynamics.
Cooperation among multiple vehicles with a view to performing different tasks plays
a critical role in executing a number of mission scenarios [13]. The GREX project is an
example of the use of cooperative-motion control strategies involving a number of vehicles
developed by different oceanographic institutions for their needs. Figure 1 illustrates the di-
versity in the marine vehicles used for cooperation during the sea trials of the GREX project.
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Figure 1. Heterogeneous vehicle used to demonstrate cooperative motion control during GREX trails
at Sesimbra, Portugal.

The EU-funded project MORPH (FP7-ICT-2011-7 GA 288704, 2012–2016) [14] advanced
the novel concept of an underwater robotic system composed of a number of spatially
separated mobile robot-modules, carrying distinct and yet complementary resources with
path-following algorithms implemented on every vehicle. MORPH provided the foun-
dation for efficient methods to survey the underwater environment with great accuracy,
especially in situations that defy classical technology. Namely, underwater surveys over
rugged terrain and near vertical cliffs.

The WiMUST project (H2020-ICT-2014-1, 2015–2018) [15] witnessed the development
of advanced cooperative and networked control/navigation systems to enable a group of
marine robots (both on the surface and submerged) equipped with acoustic sources and
towed acoustic streamers to perform geotechnical seismic surveys in a fully automatic
manner. For the first time worldwide, a mission was performed in 2018 at sea in Sines,
Portugal, with a fleet of seven autonomous marine robots performing high-resolution 3D
sub-bottom mapping in cooperation. Every individual vehicle was required to be equipped
with a path-following algorithm.

Path-following algorithms are fundamental for these vehicles to cooperate effectively.
The straight-line path following problem for formations of multiple under-actuated marine
surface vessels is addressed in [16]. The controller used is a combination of an LOS-based
path-following controller and a nonlinear synchronization controller for the along-path
synchronization of the vessels. The synchronization controller takes into account the loss of
controllability at velocities close to zero for under-actuated vehicles. A unified analysis of
stability properties of both the cross-track error dynamics and the synchronization error
dynamics are discussed by using the tools from the theory of nonlinear cascaded systems.
For the path-following controller of each vehicle, the authors used a line-of-sight guidance
law in combination with a stabilizing heading controller. The guidance law is a function of
cross-track error and look-ahead distance [17], which is an along-track distance between
the nearest point on the track and a point that lies ahead of the vehicle. The look-ahead
distance is used as design parameter. Depending on the damping on sway motion, the
look-ahead distance can be increased or reduced to impose restrictions on the commanded
yaw rate. However, the bound on the design parameter (look-ahead distance) requires the
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knowledge of the mass matrix and damping coefficients for surge and sway dynamics of
the vehicle and the proposed controller does not take ocean currents into account.

Similar work that takes ocean currents into account is reported in [18]. The control law
proposed to drive the cross-track error to zero is the same as that reported in [16] with an
extra term which is a function of the ocean currents. The ocean currents for an individual
vehicle are estimated using an adaptation law, which solves a differential Ricatti equation
that is again a function of the mass matrix and damping coefficients.

In [19], instead of estimating the currents, the authors used an integrator similar to
the work reported in this paper. Burger et al. introduced a conditional integrator to avoid
large overshoots during the saturation of the control signal. The conditional integrator
combines the benefits of integral action and sliding-mode control. It behaves either like a
PI controller or like a sliding-mode controller, depending on the magnitude of the control
signal to avoid the chattering caused by the sliding-mode control. However, the problem
of integrator windup can also be addressed by using a smooth anti-windup scheme.

The tools used for stability analysis in [16,18,20] are similar to the one reported in this
paper, which relies on the theory of interconnected and cascaded systems. In [20], path
following problems for more general spatial paths (with constraints on their curvature) in
the presence of constant ocean currents were addressed. The authors introduced a virtual
Serret–Frenet reference frame that is anchored on and propagates along the desired path.
When the vehicle reaches the vicinity of that point, the reference is updated, requesting
the vehicle to converge to another point further on the reference path. A Luenberger-type
observer is designed to estimate the currents by measuring the relative velocity of the
vehicle w.r.t the water. The proposed guidance law is a nonlinear function of surge and
sway velocities and involves solving a quadratic function of currents, cross-track error
and look-ahead distance. The estimation of ocean currents requires the measurement of
relative velocity from an Acoustic Doppler Current Profiler (ADCP). Most surface vehicles
are equipped only with GPS and cannot measure the relative velocity of the vehicle. In
the simplified case of [20], to follow straight lines while cruising at a constant speed, the
measurement of the relative velocity was critical to estimate currents. Again, the design of
the controller requires knowledge of surge and sway dynamics.

We now shift our attention to the importance of inner-outer loop control structures. In
the field of aircraft control, path following has been addressed as dynamic and kinematic
loop control structures similar to inner and outer loop in marine vehicles. In [21], path-
following control in 3D was built on a nonlinear control strategy that is first derived at
the kinematic level, followed by the design of a L1-adaptive output-feedback control law
that effectively augments an existing autopilot and yields an inner-outer loop control
structure with guaranteed performance whereas, multiple vehicle coordination is achieved
by enforcing temporal constraints on the speed profiles of the vehicles along their paths. A
survey and analysis of algorithms for path following reported in [22] showed how inner-
outer loop-based guidance schemes are implemented in most Unmanned Air Vehicles
(UAV) where practitioners used inexpensive open-source autopilots.

There is extensive literature on the path following, displaying a vast choice of available
control laws based on linear and nonlinear techniques. Representative examples of path-
following controllers for marine vehicles can be found in [23–26]. Furthermore, in [27], the
authors described a nonlinear path-following guidance method in inner-outer loop form,
where the outer loop plays a role of a guidance scheme, generating lateral acceleration
commands, and the inner loop follows. This paper does not address the stability of the
outer loop in the presence of the inner loop. This topic was addressed in [28] with the
assumption that there is complete knowledge of the vehicle model parameters.

No reference in the literature, to the best of our knowledge, addresses the problem
of path following without prior knowledge of the inner loop dynamics. Path following is
either designed at a kinematic level only or demands complete knowledge of horizontal
plane dynamics.
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The scarcity of publications on nonlinear path following for ocean vehicles without
complete knowledge of vehicle dynamics somehow reflects the hardness of the problem
mainly due to the presence of a nonzero lateral velocity and shows the relevance of the
research topic here discussed. Motivated by the above considerations, this article addresses
the problem of path following for marine vehicles by resorting to inner-outer control
loops, with due account for the vehicle dynamics and currents. The inner-outer loop
control structures exhibit a fast-slow temporal scale separation that yields simple “rules
of thumb” for controller tuning. Stated intuitively, the inner loop dynamics should be
much faster than those of the outer loop. This qualitative result is well rooted in singular
perturbation theory [29]. Conceptually, the procedure described has three key advantages:
(i) it decouples the design of the inner and outer control loops, (ii) the structure of the
outer loop controller does not depend on the dynamics of the vehicle, and (iii) it provides
practitioners a very convenient method to effectively implement path-following controllers
on a wide range of vehicles.

The path-following controller discussed in this article is designed at the kinematic
outer loop that commands the inner loop with the desired heading angles while the
vehicle moves at an approximately constant speed. The idea is to provide a seamless
implementation of path-following control algorithms on heterogeneous vehicles that may
be pre-equipped with heading autopilots. To address this issue, we developed a novel
methodology for the design of path-following controllers for marine vehicles which uses a
simple characterization of the marine vehicle’s dynamics, in the form of input-output gains
or bandwidth-like characterization, without having to know the detailed dynamics of a
marine vehicle. This is the key contribution of this article,which is rooted in and extends
substantially the methodology described in [30]. The focus of the presentation is on AUVs;
however, the techniques can be easily extended to autonomous surface vehicles (ASVs).
The paper is organized as follows. We first discuss the nonlinear dynamics of two marine
vehicles used in experiments, followed by the formal proof of the stability of a simple
inner-loop PD controller applied to a nonlinear three-degree-of-freedom model. We then
tackle the problem of path following without considering the dynamics of the vehicle. In
Section 6.5, we consider path following for straight lines in 2D, propose an inner-outer
loop control structure for its solution, and provide the proof of the stability of the resulting
feedback control system. We describe the results of simulations and field tests performed
with real marine vehicles, summarize the main conclusions, and discuss problems that
warrant further research.

2. Notation and AUV Modeling

Depth and heading controllers are the core systems of autonomous marine. Depth
control is used to maintain the depth of an AUV at a desired value, whereas heading control
is used to steer both AUVs and ASVs along desired directions with respect to the magnetic
north. The design of such controllers varies from simple proportional-integral-derivative
(PID) and linear quadratic methods based on linearized dynamic models [31] to more
complex Lyapunov-based nonlinear control. Modeling the dynamics of a vehicle is critical
for its maneuvering, stabilization, and motion control. However, accurate modeling of
the dynamics of such vehicles is oftentimes painstaking, time consuming, and quite costly.
In [32], the hydrodynamic data required to model the Marius AUV have been determined
by full-scale tests, using a towing tank equipped with a Planar Motion Mechanism. There
are only a few test facilities of this kind which many researchers developing AUVs for
scientific needs cannot afford. To avoid such expensive and time-consuming methods of
determining the hydrodynamic coefficients, most of the users rely on semi-empirical and
analytical methods [33], together with CFD analysis. Later, the parameters of importance
in simplified models can be derived/verified by performing certain open loop maneuvers
in the water. One such example is the circular maneuver for horizontal plane models [34].
Vehicle models obtained using such techniques are necessarily simplified but, if properly
exploited, may be extremely useful in characterizing the system to be controlled in a form
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that is suitable for input-output stability analysis. A compelling example is the case where,
using nonlinear system analysis, the dynamics of a system may be characterized in terms
of parameters that play a role equivalent to static gain and bandwidth for first-order linear
systems. Such models can be used to design the controllers with a simple structure. In
what follows, the structure of a generic vehicle model that we adapt borrows from the work
of Fossen [34].

2.1. Vehicle Modeling

Following usual practice, we define two reference frames: a body-fixed reference
frame {B} in which the dynamics of the vehicle are naturally described and an earth-fixed
reference frame {I} in which the position and orientation of the vehicle are expressed (see
Figure 2). The following notation is required.

• ν1 = [u v w]T is the linear velocity of the origin of {B} with respect to {I} expressed
in {B} (i.e., body-fixed linear velocity).

• ν2 = [p q r]T is the angular velocity of {B} with respect to {I} expressed in {B} (i.e.,
body-fixed angular velocity).

• η1 = [x y z]T is the position of the origin of {B}measured in {I}.
• η2 = [φ θ ψ]T parameterizes locally the orientation of {B} with respect to {I}.

xI{ }Ι 2υ{ }
xB

2

yIz
)(rollφ1η

yIzI

{ } )( hθ

1υ

{ }B yB
)( pitchθ

yB

)(yawψ

zB
Figure 2. Notations and reference frames for an AUV.

An arbitrary vector BV ∈ IR3 expressed in {B} can be expressed in {I} as IV =I
�B

R�BV.

An important relation for IBR (abbreviated as R) [35] is RT R = I, implying that RT = R−1

and det(R) = 1. The matrix R ∈ IR3×3 can be described locally in terms of a sequence
of 3 transformations that take {B} to {I} by rotating it sequentially about its current
z→ y→ x axis through the Euler angles ψ—yaw (rotation about z-axis), θ—pitch (rotation
about y-axis) and φ—roll (rotation about x-axis) [34]. The final rotation matrix from {B} to
{I} parameterized by the Euler angles η2 = [φ θ ψ]T is given by

R(η2) =

cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ

, (1)

where s(.) = sin(.) and c(.) = cos(.).
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2.2. Kinematics

The kinematic equations that relate body-fixed with inertial linear and angular veloci-
ties are given by

η̇1 = R(η2)ν1, (2)

η̇2 = Q(η2)ν2. (3)

The transformation of body-fixed angular velocities is performed using the transformation
matrix Q(η2) given by

Q(η2) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

, (4)

where t(.) = tan(.). Note that Q is singular for θ = ±π/2 when using the above sequence
of Euler angles and can be avoided by using quaternions (see [34] for details). However,
for an AUV, an angle close to π/2 is practically not desirable and is avoided by design.
Thus, it is reasonable to assume that most AUVs operate with small pitch angle. Finally,
the combined 6-DOF kinematic equation can be written as[

η̇1
η̇2

]
=

[
R(η2) 0

0 Q(η2)

][
ν1
ν2

]
⇐⇒ η̇ = J(η)ν. (5)

An important relation for the derivative of a rotation matrix is given by

Ṙ(η2) = R(η2)S(ν2), (6)

where S is a skew-symmetric matrix, for an arbitrary vector u = [ux uy uz]T ∈ IR3, it takes
the form

S(u) =

 0 −uz uy
uz 0 −ux
−uy ux 0

. (7)

Furthermore,

ST = −S; S(u)v = −S(v)u; S(u)v = u× v. (8)

2.3. Dynamics

With the assumptions that the center of mass of the rigid body is coincident with the
origin of {B} and {I} is an inertial frame, Newton–Euler’s laws apply in the latter frame
and the dynamic equations for translation can be written as

∑ IFRB = m
d
dt

(
Iν1

)
= m

d
dt
(Rν1) (9)

= m
dR
dt

ν1 + mR
d
dt

ν1 (10)

= mRS(ν2)ν1 + mR
d
dt

ν1 (11)

where m is the mass matrix and ∑I FRB is the sum of external forces expressed in the
inertial reference frame. The dynamic equations for an AUV are usually expressed in the
body-fixed frame for convenience, where the inertia tensor is constant and the external
forces are more easily expressed. The sum of external forces expressed in {B} is given by
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∑ R−1IFRB = mR−1RS(ν2)ν1 + mR−1R
d
dt

ν1 (12)

∑ FRB = m[ν2 × ν1 + ν̇1], (13)

where FRB are the external forces measured in {B}. Similarly, applying Newton–Euler’s
laws in {B}, the dynamic equations for rotational motion can be written as

∑ INRB =
d
dt

(
IL
)
=

d
dt
(RIRBν2) (14)

= RS(ν2)IRBν2 + RIRB
d
dt

ν2, (15)

where IRB is the moment of inertia matrix and IL is the angular momentum measured
in {I}. Now, expressing the above dynamic equations in body-fixed reference frame
{B} yields

∑ R−1INRB = R−1RS(ν2)IRBν2 + R−1RIRB
d
dt

ν2 (16)

∑ NRB = IRBν̇2 + ν2 × IRBν2, (17)

where NRB includes the external torques measured in {B}.
Combining the equations for translation and rotational motion, a simplified vectorial

representation can be written as

MRBν̇ + CRB(ν)ν = τRB, (18)

where MRB is the rigid-body inertia matrix, which in the general case, is given by

MRB =

 mI3×3 −mS
(

rb
g

)
mS
(

rb
g

)
Io

 (19)

=



m 0 0 0 mzg −myg
0 m 0 −mzg 0 −mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Ixy Iy −Iyz
−myg mxg 0 −Izx −Izy Iz

, (20)

and satisfies the properties

• MRB = MT
RB > 0,

• ṀRB = 06×6,

where I3×3 is the identity matrix, Io = IT
o > 0 is the inertia matrix about O, and S

(
rb

g

)
in (19) is the matrix cross-product operator.

The rigid body Coriolis and centripetal matrix CRB(ν) can always be represented in
symmetric form, i.e., CRB(ν) = CT

RB(ν) ∀ν ∈ IR6. For the given inertia matrix,

MRB = MT
RB =

[
M11 M12
M21 M22

]
> 0, (21)

where M21 = MT
12, CRB(ν) can be written as

CRB(ν) =

 03×3 −mS(ν1)−mS
(

S(ν2)rb
g

)
−mS(ν1)−mS

(
S(ν2)rb

g

)
mS
(

S(ν1)rb
g

)
− S(Ioν2)

 (22)
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with S(ν1)ν1 = 0. All external forces and torques are represented as a generalized vector
τRB =

[
∑ FT

RB ∑ NT RB
]T

= [X Y Z K M N]T where [X Y Z]T are the external forces and
[K M N]T are the external torques both expressed in body {B}. To explicitly take into
account different types of external forces and torques, this vector can be decomposed as

τRB = τ + τA + τD + τR + τdist, (23)

where

• τ—control inputs (forces and torques due to thrusters/surfaces);
• τA = −MAν̇− CA(ν)ν—terms due to added masses;
• τD = −D(ν)ν—hydrodynamics terms due to lift, drag, skin friction, etc.;
• τR = −g(η)—restoring forces and torques due to the interplay between gravity and

buoyancy forces;
• τdist—terms due to external disturbances, e.g., waves, winds, etc.

Neglecting the term τdist, the final dynamic model of an AUV can be written as

[MRB + MA]ν̇ + [CRB(ν) + CA(ν)]ν + D(ν)ν + g(η) = τ (24)

⇔ Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ. (25)

3. Examples of Horizontal Plane Dynamics
3.1. 3-DOF Nonlinear Model

In what follows, we consider the horizontal plane dynamics of an underwater vehicle
with 3 degrees of freedom (surge, sway, and yaw rate). Assuming that the roll of the vehicle
is negligible and vertical and the horizontal plane dynamics are decoupled, and the {B}
frame coincides with the principal axes of inertia of the body, the corresponding nonlinear
equations of motion can be written as

muu̇−mvvr + duu = τu (26)

mvv̇ + muur + dvv = 0 (27)

mr ṙ−muvuv + drr = τr (28)

with

mu = m− Xu̇ mr = Iz − Nṙ du = −Xu − X|u|u|u| (29)

mv = m−Yv̇ muv = mu −mv dv = −Yv −Y|v|v|v| (30)

dr = −Nr − N|r|v|r|, (31)

where m is the mass, Izz is the moment of inertia about the vertical axis, Xu̇, Yv̇, and Nṙ are
added mass coefficients, Xu, Yv, and Nr are linear damping coefficients, and X|u|u, Y|v|v,
and N|r|r are the nonlinear damping coefficients of the AUV model. The compact form of
these equations describing the motion of a marine vehicle which is three-plane symmetric
can be written as [36]

Mν̇ + C(ν)ν + D(ν)ν = τ, (32)

where

ν = [u v r]T, τ = [τu 0 τr]
T, (33)

M =

mu 0 0
0 mv 0
0 0 mr

 > 0, (34)
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C(ν) =

 0 0 −mvv
0 0 muu

mvv −muu 0

, (35)

D(ν) =

du 0 0
0 dv 0
0 0 dr

 > 0, (36)

We shall now discuss the modeling of an underwater vehicle referring to two examples of
actual vehicles: (1) the MEDUSA vehicle in which yaw and heave motions are controlled
only by thrusters (see Figure 3), (2) Maya, a torpedo-shaped AUV where the yaw and
pitch motions are controlled using conventional rudders and fins while the vehicle cruises
propelled by a single thruster aligned with the x-axis of the body (see Figure 4). In this
model, the surge equations are not considered, and the vehicle is assumed to be cruising at
a constant speed uo [31].

Figure 3. Medusa Autonomous Marine Vehicles, developed at DSOR, IST, Lisbon.

tests at the Arabian sea

Figure 4. The MAYA Autonomous underwater vehicle developed at NIO, Goa.

3.2. MEDUSA-Class Vehicle as an Example

The MEDUSA-class vehicles are autonomous robotic marine vehicles, capable of
working both as surface and underwater robots, developed at the Dynamical Systems



Sensors 2022, 22, 4293 11 of 39

and Ocean Robotics group (DSOR) of Instituto de Sistemas e Robótica, Instituto Superior
Técnico (ISR-IST) [37]. The MEDUSA-class AUV is a twin hull vehicle separated by 150 mm
(see Figure 3). It weighs around 17 kg, is 1 m long, and with a hull diameter of 150 mm.
The two hulls contain the batteries, onboard electronics, sensors, and the main computer
running the Robot Operating System (ROS) .

The surface operating vehicles have two thrusters placed on each side of the vehicle
at 150 mm from the center line. The forward force τu = Fs + Fp is generated as a sum of
two forces generated by starboard (Fs ) and portside (Fp) thrusters and a yaw moment
τr = 0.15

(
Fs − Fp

)
. The restoring moments for the vehicle is large enough for the roll

and pitch motions to be neglected due to large separation between center of gravity and
center of buoyancy. The vehicles are not actuated in the sway axis (i.e., τv = 0) [38]. The
hydrodynamic parameters for Medusa are derived using the combination of semi-empirical
and analytical methods and experimental data in calm waters. The parameters are tabulated
in Table A1.

3.3. Maya AUV: An Example

The Maya AUV is an axis-symmetric underwater vehicle developed at the National
Institute of Oceanography (NIO), Goa, India. The Maya AUV [39] follows a low-drag hull
with a removable nose cone which carries scientific sensors (see Figures 2 and 4). It has a
single propeller for propulsion and two pairs of stern planes to control depth and heading.
The nose section can accommodate different sensors for specific missions at sea. The AUV
is equipped with an attitude and heading reference system (AHRS), a Doppler velocity log
(DVL) for navigation underwater, and GPS for surface navigation.

Based on the assumption that the complete six-degrees-of-freedom model for the AUV
can be split into two non-interacting models for the vertical and horizontal planes (see [40]),
the simplified sway and yaw dynamics at constant speed u0 are given by [36],

mv̇ + mu0r = Y (37)

Iz ṙ = N. (38)

For small roll and pitch angles,

ψ̇ =
sinθ

cosθ
q +

cosφ

cosθ
r ≈ r. (39)

The linear modeling of hydrodynamic damping, added mass, and rudder angle gives

Y = Yvv̇ + YR ṙ + Yvv + Yrr + Yδδr (40)

N = Nvv̇ + NR ṙ + Nvv + Nrr + Nδδr. (41)

The quadratic terms on damping are neglected because of limited magnitude of v and
r. The model is linearized about the nominal cruising speed of u0 = 1.2 m/s and the
linearized dynamic equations of motion for the horizontal plane represented in matrix form
is given by m−Yv̇ −Yṙ 0

−Nv̇ Iz − Nṙ 0
0 −1 1

 v̇
ṙ
ψ̇

+

 −Yv −Yr + mu0 0
−Nv −Nr 0

0 −1 0

 v
r
ψ

 =

 Yδ

Nδ

0

δr. (42)

The vehicle parameters were estimated by resorting to analytic and semi-empirical methods
for hydrodynamic parameter estimation (see [33]), and the details of the parameters for the
MAYA AUV are given in Table A2.

4. Heading Control for a 3-DOF Nonlinear Model

In preparation for the analysis of combined guidance and control systems for a marine
vehicle in 2D, we start by obtaining a compact description of the dynamics of a closed-loop
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yaw control system. This will serve as an important step to tackle the problem of path
following. Most surface and underwater vehicles use simple Proportional-Derivative (PD)
yaw controllers, oftentimes designed using a 3-DOF model linearized about a trimming
condition with a view to steering the vehicle along a straight line at a fixed forward speed.
However, there is no formal proof of stability for the convergence of the error (between
desired and true heading) to zero when the controller is applied to a nonlinear model.
This section provides proof of convergence for a PD controller coupled with the 3-DOF
nonlinear dynamics of a Medusa Class marine vehicle, using concepts from the Lyapunov
theory. We will be later using a simple characterization of the combination of the AUV
dynamics with a heading controller, in the form input-output gains or bandwidth-like
characterization and this is a key contribution of this article. The motion of an AUV in the
horizontal plane expressed in the body-fixed frame is given in (27), and is repeated here for
the reader’s convenience:

Mν̇ + C(ν)ν + D(ν)ν = τ, (43)

where ν = [u v r]T is the state vector; τ = [τu 0 τr]T is the control vector and

M =

 mu 0 0
0 mv 0
0 0 mr

 > 0,

C(ν) =

 0 0 −mvv
0 0 muu

mvv −muu 0

,

D(ν) =

 du 0 0
0 dv 0
0 0 dr

 > 0,

mu = m− Xu̇; mv = m−Yv̇; mr = Izz − Nṙ,
du = −Xu − X|u|u|u| = du1 + du2|u|,
dv = −Yv −Y|v|v|v| = dv1 + dv2|v|,
dr = −Nr − N|r|r|r| = dr1 + dr2|r|.

Considering practical issues, the following assumptions are made:

(a) The surge velocity u is much larger than the sway v so that u ≈ U is constant, where
U is the total speed of the vehicle w.r.t the fluid;

(b) The yaw rate and therefore yaw are controlled using a proportional-derivative control
law given by, i.e., τr = −Kψ̃− Kd(r− ψ̇d), where ψ̃ = ψ− ψd is the negative of the
yaw heading error, and ψd is the heading command;

(c) The dynamics of the heading is replaced by the dynamics of the heading error, i.e.,
˙̃ψ = ψ̇− ψ̇d.

Thus, taking into account assumptions (a) to (c), the mathematical model of the system
that describes, for a fixed U, the evolution of the closed-loop system under PD control, is
given by  v̇

ṙ
˙̃ψ

 =

 − dv1
mv

−mu
mv

U 0
−mv−mu

mr
U − dr1+Kd

mr
− K

mr
0 1 0


︸ ︷︷ ︸

A

 v
r
ψ̃


︸ ︷︷ ︸

x

+ (44)

 −
dv2|v|

mv
0 0

0 − dr2|r|
mr

0
0 0 0


︸ ︷︷ ︸

G(x)

 v
r
ψ̃

+

 0
Kd
mr
−1


︸ ︷︷ ︸

B

ψ̇d
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Equation (44) can be rewritten as:

ẋ = Ax + G(x)x + Bu, u ∈ IR (45)

for x ∈ Dx = {v, r, ψ̃ ⊂ IR3 : |v| ≤ vmax |r| ≤ rmax, |ψ̃| ≤ ψ̃max} and u ∈ Du = {u ⊂
IR : |u| ≤ umax}. Notice that Equation (45) contains linear and nonlinear terms.

5. Analysis of the Stability of the Origin

The stability analysis of the origin of the mathematical model of the system (45) is
performed considering the influence of the vehicle speed U on the eigenvalues of matrix A,
once the values for K and Kd have been defined. To analyze the stability of the origin, we
use the properties of input-to-state (ISS) and input-output stability (IOS) of the control system.
Furthermore, this analysis is important because ISS and IOS properties of the system are
based on a Lyapunov equation that involves the matrix A. In what follows, we provide
definitions of ISS and IOS and essential theorems from [29] that will be used to perform
the stability analysis of the systems considered in this paper.

5.1. Input-to-State Stability (ISS)

Consider the system
ẋ = f (x, t, u) x(t0) = x0 (46)

where x(t) ∈ IRn and u(t) ∈ IRm denotes states and the input at time t ≥ 0. The function
f : [0, ∞]× IRn × IRm → IRn is piecewise continuous in t and locally Lipschitz in x and u.
The input u(t) is a piecewise continuous, bounded function of t for all t ≥ 0.

Definition 1. The system (46) is said to be input-to-state stable (ISS) if there exists a class
KL-function β and α class K-function, such that for any initial slate x(t0) and any bounded input
u(t), the solution x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x0‖, t− t0) + γ

(
sup

t0≤τ≤t
‖u(τ)‖

)
(47)

The function γ ∈ K describes the influence of the input on the solution of the system. The function
β ∈ KL describes the transient behavior of the system [29,41].

The Lyapunov-based technique for the ISS verification gives a sufficient condition for
input-to-state stability.

Theorem 1. Let V : [0, ∞)× IRn → IR be a continuously differentiable function such that

α1(‖x‖) ≤ V(t, x) ≤ α2(‖x‖) (48)

∂v
∂t

+
∂v
∂x

f (x, t, u) ≤ −W3(x), ∀ ‖x‖ ≥ ρ(‖u‖) > 0 (49)

∀(t, x, u)ε[0, ∞) × IRm × IRn, where α1, α2 are class K∞-functions, ρ is class K-function and
W3(x) is continuous definite function on IRn. Then, the system (46) is input-to-state stable with
γ = α−1

1 o α2 o ρ.

5.2. Input-Output Stability (IOS)

To understand the notion of input-output stability, we start by considering a system H
with input u and output y. The system H is a map between two signals spaces y = H(u).
The gain γ of H measures the largest amplification from u to y, where the magnitude of
the latter is computed using appropriate function norms, see [29]. H can be a constant, a
matrix, a linear system or a nonlinear system. The gain γ of H is defined as
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γ(H) = sup
u∈Lp

‖y‖p

‖u‖p
= sup

u∈Lp

‖H(u)‖p

‖u‖p
. (50)

The system H is finite-gain bounded-input bounded-output (BIBO) if γ(H) < ∞.
The above stability concept has been extended to capture the effect of initial conditions

and possible biases in the input-output operator, yielding the concept of input-to-output
(IOS) stability. The resulting concept and main stability result, taken from [29], are briefly
summarized next. In this context, Lyapunov stability tools can be used to establish the
IOS stability of nonlinear systems represented by state models. Consider a state model
presented in (46), together with output function

y = h(x, t, u) (51)

where h : [0, ∞] × D × Du → IRq is piecewise continuous in t and continuous in (x, u),
where D ⊂ IRn is a domain that contains x = 0, and Du ⊂ IRm is a domain that contains
u = 0. The following theorem states conditions under which, following the terminology in
Khalil, a system is L-stable or a small signal is L-stable for a given choice of signal space L.
Suppose x = 0 is an equilibrium point of the unforced system

ẋ = f (t, x, 0). (52)

Theorem 2. Consider the system (46) and (51) and take r > 0 and ru > 0 such that {‖x‖ ≤ r} ⊂
D and {‖u‖ ≤ ru} ⊂ Du. Suppose that

• x = 0 is an equilibrium point of (52), and there is Lyapunov function V(t, x) that satisfies

c1‖x‖2 ≤ V(t, x) ≤ c2‖x‖2 (53)

∂v
∂t

+
∂v
∂x

f (t, x, 0) ≤ −c3‖x‖2 (54)∥∥∥∥ ∂v
∂x

∥∥∥∥ ≤ c4‖x‖ (55)

for all (t, x) ∈ [0, ∞)× D for some positive constants c1, c2, c3, and c4.
• f and h satisfy the inequalities

‖ f (t, x, u) − f (t, x, 0)‖ ≤ L‖u‖ (56)

‖h(t, x, u)‖ ≤ η1‖x‖+ η2‖u‖ (57)

for all (t, x) ∈ [0, ∞)× D× Du for some non negative constants L, η1, and η2.

Then, for each x0 with ‖x‖ ≤ r
√

c1/c2, the system (46) and (51) is small-signal finite
gain Lp-stable for each p ∈ [1, ∞]. In particular, for each u ∈ Lpe with supt0≤τ≤t‖u(t)‖ ≤
min{ru, c1c3r/(c2c4L)}, the output y(t) satisfies

‖yτ‖ ≤ γ‖uτ‖Lp
+ β (58)

for all τ ∈ [0, ∞), with

γ = η2 +
η1c2c4L

c1c3
, (59)

β = η1‖x0‖
√

c2

c1
ρ, where ρ =

{
1 i f p = ∞( 2c2

c3 p
)(1/p), i f p ∈ [1, ∞)

(60)

Furthermore, if the origin is globally exponentially stable and the assumptions hold globally (with
D = IRn and Du = IRm), then, for each x0 ∈ IRn, the system (46) and (51) is finite gain Lp-stable
for each p ∈ [1, ∞].
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We refer the reader to explore [29] for details of the proof. ISS and IOS are the key
Lyapunov stability tools used further for the analysis of our system.

5.3. ISS Analysis

For ISS analysis, the system model should satisfy the following equations for a suitably
defined Lyapunov function candidate V(t, x):

α1(‖x‖) ≤ V(t, x) ≤ α2(‖x‖) (61)

∂V
∂t

+
∂V
∂x

f (t, x, u) ≤ −W3(x) ∀‖x‖ ≥ ρ(‖x‖) > 0. (62)

where in this particular case, f (t, x, u) is the right-hand side of (45). Then, the system is ISS
with, γ = α−1

1 ◦ α2 ◦ ρ (please refer to [29] for definitions and theorems mentioned from
now on).

Consider the following Lyapunov function candidate to check the ISS property of the
system, given by

V = xT Px (63)

where P is a nonsingular symmetric matrix.
Then,

λmin(P)‖x‖2 ≤ xT Px ≤ λmax(P)‖x‖2 (64)

Thus, comparing (61) with Equation (64), we conclude that

α1(‖x‖) = λmin(P)‖x‖2 (65)

α2(‖x‖) = λmax(P)‖x‖2 (66)

The derivative of V along the trajectories defined by Equation (45) is given by

V̇ = xT[A + G(x)]T P + P[A + G(x)
]
x + 2uBT Px (67)

Equation (67) can be rewritten as

V̇ = xT(AT P + PA)x + 2xT PG(x)x + 2uBT Px. (68)

The matrix product PG(x) results in

F = PG =

 −p1,1d1|x1| −p1,2d2|x2| 0
−p1,2d1|x1| −p2,2d2|x2| 0
−p1,3d1|x1| −p2,3d2|x2| 0

 =

 f̄1,1|x1| f̄1,2|x2| 0
f̄2,1|x1| f̄2,2|x2| 0
f̄3,1|x1| f̄3,2|x2| 0

 (69)

where d1 = dv2
mv

and d2 = dr2
mr

, and pij is the entry i, j of P. Inserting both the Lyapunov
equation AT P + PA = −Q and xT Fx into Equation (68) yields

V̇ =− xTQx + 2
[

f̄1,1|x1|x2
1 + f̄2,2|x2|x2

2 + ( f̄2,1|x1|+ f̄1,2|x2|)x1x2 + f̄3,1|x1|x3x1

+ f̄3,2|x2|x3x2
]
+ 2uBT Px (70)

The following inequalities can be used in Equation (70):

(I) f̄1,1|x1|x2
1 ≤ 0 and f̄2,2|x2|x2

2 ≤ 0 because p1,1 ≥ 0 and p2,2 ≥ 0;

(II) x1x2 + x1x3 + x2x3 ≤ x2
1 + x2

2 + x2
3 = ‖x‖2.

This follows from the inequality (x1 − x2)
2 + (x1 − x3)

2 + (x2 − x3)
2 ≥ 0.

Taking into account inequality I in Equation (70) yields
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V̇ ≤− xTQx + 2
[
|( f̄2,1|x1|+ f̄1,2|x2|)||x1x2|+ | f̄3,1||x1||x3x1|+ | f̄3,2||x2||x3x2|

]
+ 2‖u‖‖BT‖‖P‖‖x‖ (71)

Now, inserting inequality II into Equation (71) leads to

V̇ ≤ −λmin(Q)‖x‖2 + 2
[
(| f̄2,1|+ | f̄3,1|)|x1|+ (| f̄1,2|+ | f̄3,2|)|x2|

]
‖x‖2 + 2‖u‖‖BT‖‖P‖‖x‖. (72)

Concisely, Equation (72) can be expressed as:

V̇ ≤ −λmin(Q)‖x‖2 + 2|F̄(x)|‖x‖2 + 2‖u‖‖BT‖‖P‖‖x‖ (73)

where
F̄(x) =

(
| f̄2,1|+ | f̄3,1|

)
|x1|+

(
| f̄1,2|+ | f̄3,2|

)
|x2|

=
[
| f̄2,1|+ | f̄3,1| | f̄1,2|+ | f̄3,2| 0

]︸ ︷︷ ︸
F′

 |x1|
|x2|
|x3|


︸ ︷︷ ︸

x′

= F′x′ (74)

Then, using the fact that ‖x′‖ = ‖x‖, yields

V̇ ≤ −
(
λmin(Q)− 2|F̄(x)|

)
‖x‖2 + 2‖u‖‖BT‖‖P‖‖x‖

≤ −
(
λmin(Q)− 2‖F′‖‖x′‖

)
‖x‖2 + 2‖u‖‖BT‖‖P‖‖x‖

≤ −
(
λmin(Q)− 2‖F′‖‖x‖

)
‖x‖2 + 2‖u‖‖BT‖‖P‖‖x‖

(75)

Notice that for a given δ, there exists some r > 0 such that

|F̄(x)| < δ, ∀‖x‖ < r (76)

Equation (75) can be rewritten as

V̇ ≤ −
(
1− θ

)[
λmin(Q)− 2δ

]
‖x‖2−

[
θ
(
λmin(Q)− 2δ

)
‖x‖2

− 2|u|‖B‖‖P‖‖x‖
]
∀ 0 < θ < 1

(77)

Then,
V̇ ≤ −(1− θ)

[
λmin(Q)− 2δ

]
‖x‖2 (78)

for

δ <
λmin(Q)

2
(79)

and

‖x‖ > 2|u|‖BT‖‖P‖
θ
[
λmin(Q)− 2δ

] .

As a consequence, the system with closed-loop dynamics defined by Equation (44) is
ISS with

W3 = (1− θ)
[
λmin(Q)− 2δ

]
,

ρ =
2|u|‖BT‖‖P‖

θ
[
λmin(Q)− 2δ

] ,

and

γ =
λmax(P)
λmin(P)

2|u|‖BT‖‖P‖
θ
[
λmin(Q)− 2δ

] .
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5.4. IOS Analysis

The proof of the IOS property of the same system (represented by (44)) is based on
Theorem 2 [29]. Consider the system

ẋ = f (x, u), x(0) = x0 (80)

y = h(x) (81)

According to Theorem 2, if the system (80) and (81) satisfies the conditions shown
below, then the system is small-signal finite-gain Lp-stable for each p ∈ [1, ∞]. In particular,
for each u ∈ Lpe with sup0≤t≤τ‖u(t)‖ ≤ min{ru, c1c3r/(c2c4L)}, the output satisfies

‖yτ‖Lp ≤ γ‖uτ‖Lp + β (82)

where the parameters γ and β are given by

γ = η2 +
η1c2c4

c1c3
, (83)

and

β = η1‖x0‖
√

c2

c1
ρ, where ρ =

{
1 i f p = ∞( 2c2

c3 p
)(1/p) i f p ∈ [1, ∞)

. (84)

The parameters c1, c2, c3, c4, η1, and η2 are determined from inequalities in Theorem 2.
For the particular case of the system under consideration, Equations (80) and (81) are

given as
ẋ = f (x) = Ax + G(x)x + Bu; x(0) = x0 (85)

y = h(x) = Hx (86)

where
H =

[
0 0 1

]
(87)

Thus, considering the Lyapunov function defined by Equation (63) yields the follow-
ing sequence of partial results.

• From inequality (53)

λmin(P)‖x‖2 ≤ xT Px ≤ λmax(P)‖x‖2 (88)

Thus,
c1 = λmin(P) and c2 = λmax(P)

• From inequality (54)

∂V
∂x

f (x, 0) ≤ −
[
λmin(Q)− 2δ

]
‖x‖2 (89)

and therefore
c3 =

[
λmin(Q)− 2δ

]
• From inequality (55)

‖∂V
∂x
‖ = 2‖xT P‖ ≤ 2λmax(P)‖x‖ (90)

Thus, c4 = 2λmax(P)

• From inequality (56)

‖ f (t, x, u)− f (t, x, 0)‖ = ‖Bu‖ ≤ ‖B‖‖u‖ (91)
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and therefore L = ‖B‖ =
√

λmax(BT B).
• From inequality (57)

‖h(x)‖ ≤ ‖H‖‖x‖, (92)

we obtain that
η1 = ‖H‖ =

√
λmax(HT H) and η2 = 0

From the above, the parameters γ f = γ and β f = β for the Medusa model are given by

γ f =
η1c2c4

c1c3
=
‖H‖λ2

max(P)2
√

λmax(BT B)
λmin(P)

[
λmin(Q)− 2δ

] (93)

β f = η1‖x0‖
√

c2

c1
ρ = ‖H‖‖x0‖

√
λmax(P)

λmin(P)
f or p = ∞ (94)

Remark 1. From a mathematical standpoint, the machinery adopted for the description of the
systems under study, that is, inner (dynamic) and outer (kinematic) dynamics, is rooted in their
characterization as ISS (input-to-state stable) or IOS (input-to-output stable) systems. This allows
us to use powerful tools of nonlinear stability analysis. The core mathematical characterization of
IOS and ISS hinges on the assumption that all functions involved in the description of the systems
of interest are piecewise continuous in time and locally Lipschitz in the state and input variables.
This is clearly indicated in the results on ISS described in Sections 5.1 and 5.2, as applied to the
system described by Equation (44). Clearly, all functions involved (which capture the physical
description of the vehicle) satisfy the conditions stated above. Identical comments apply to the results
on IOS described in Sections 5.3 and 5.4, as applied to the system described by Equations (85)–(87),
consisting of Equation (44) together with the trivial output function h(x) = Hx, H = [0 0 1]
described in Equations (86) and (87). Again, all functions involved satisfy the conditions stated above
(see Equation (56). In addition, h(x) satisfies the extra output-related conditions in Equation (57).

6. Path Following Problem

Equipped with the above mathematical definitions and results, we now tackle the
problem of path following. In the current setup, we design the kinematic (outer) loop
without considering the dynamic (inner) loop or by assuming the inner loop is infinitely fast,
which is not valid in practice. Moreover, the characteristics of inner loop controllers (such
as heading and speed controllers) for many vehicles are provided in very general terms
by their vendors. An example of these characteristics in a linear case is the approximate
bandwidth and input-to-output stability gain (IOS) in the case of a nonlinear system [29].
Therefore, it is required for the system engineers to design or tune the outer-loop controller
by considering these characteristics, such that the overall combined system is stable with the
desired performance. However, this step necessitates going beyond qualitative assertions
about the fast-slow temporal scale separation and quantitatively evaluating the combined
inner-outer loop to obtain a relationship for assessing the combined system’s stability. The
methods used are based on nonlinear control theory, wherein the cascade and feedback
systems of interest are characterized in terms of their IOS properties. We use the IOS
small-gain theorem to obtain quantitative relationships for best controller tuning applicable
to a broad range of marine vehicles.

The path-following controller discussed in this article is designed at the kinematic
outer-loop that commands the inner-loop with the desired heading angles while the vehicle
moves at an approximately constant speed. The idea is to provide a seamless implemen-
tation of the path-following control algorithms on the heterogeneous vehicles, which are
pre-equipped with heading autopilots. To this effect, we assume that the heading control
system is characterized only in terms of an IOS-like relationship without knowing detailed
vehicle dynamic parameters.
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6.1. Path Following: Straight Lines Problem

Figure 5 shows the path following problem for straight lines. In the figure,
{I} = {xI , yI} represents the inertial reference frame, and {B} = {xB, yB} denotes a
body reference frame fixed to the vehicle. Let us denote the position of the vehicle as vector
P expressed in {I}. We assume that the ocean current velocity represented by Vc expressed
in {I} is constant. The velocity of the vehicle expressed in {I} is given by

Ṗ = R(ψ)Vw + Vc,

where ψ is the yaw angle, Vw denotes the velocity of the vehicle with respect to the water
expressed in {B}, and R(.) is the rotation matrix from {B} to {I}, parameterized by
ψ. Equivalently,

Ṗ = R(ψ + β)[‖Vw‖ 0]T + Vc,

where β is the sideslip angle. Without any loss of generality, the straight-line path to be
followed can be assumed to be along the x-axis of the inertial reference frame {I}. The
evolution of the cross-track error e is given by

ė = sin(ψ + β)‖Vw‖+ vcy,

where vcy denotes the component of Vc along the unit vector yI . The total speed of the
vehicle is set by an equivalent speed of rotation of the stern propeller(s) and the heading of
the vehicle is controlled either by differential mode of two stern propellers or by the stern
rudders operated in common mode.

Figure 5. Marine vehicle body reference frame showing the cross-track error.

We assume that the total speed ‖Vw‖ = U > ‖Vc‖ is constant. The objective is to
command the heading angle which the vehicle can follow to drive the e to zero. In the
following section, as a first step, we design an outer-loop controller at the kinematic level
and show the convergence of the cross-track error to zero. In the second step, we include
the yaw control dynamics (inner-loop) and determine the conditions and outer-loop tuning
rules such that the complete inner-outer loop system is stable.

6.2. Path-Following Algorithm

To explain the rationale for the control law, we simplify the case by considering zero
sideslip angle (this assumption will be lifted afterwards). In this case, the error dynamics
are given by

ė = U sin(ψ) + vcy. (95)

If we consider vcy to be zero, then (95) can be re-written as

ė = Uu,

with u = sin(ψ). The choice of the control law u = −(K1/U)e would now ensure that e
converges asymptotically and exponentially to the origin. In order to compensate for a
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fixed ocean current (bias) vcy, an integral term is introduced in the virtual input u, which is
now re-rewritten as

u = − 1
U

K1e + K2

t∫
0

e(τ) dτ

.

As a consequence, the dynamics of e become

ė + K1e + K2

t∫
0

e(τ) dτ =0

Let

ς =

t∫
0

e(τ) dτ.

Then,

ς̈ + K1ς̇ + K2ς = 0 (96)

The gains K1 and K2 can now be chosen so as to obtain a desired natural frequency and a
desired damping factor in the above second-order system. The desired heading command
obtained from the above virtual control is written as

ψd = sin−1(σe(u)),

where σe is a differentiable saturation function [42] bounded between ±es with 0 < es < 1,
defined as

σe($) =


$ if |$| < es − ε

+es if $ > es + ε
−es if $ < −es − ε

p1($) = −c1$2 + c2$− c3 if $ ∈ ]es − ε, es + ε]
p2($) = c1$2 + c2$ + c3 if $ ∈ [−es − ε,−es + ε[

(97)

where 0 < ε < es can be arbitrarily small, with c1 = 1
4ε , c2 = 1

2 + es
2ε , and c3 = ε2−2εes+e2

s
4ε .

The saturation function is introduced to guarantee that the argument of sin−1(.) lies in the
interval [−1,+1], see Figure 6.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5
Differentiable Saturation Function

-es- -es+ es- es+

Figure 6. Differentiable saturation function.
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With the introduction of integrator in the control law, it is important to have an anti-
windup mechanism in the integral term of u. Thus, the final form of the control law for ψd
involves a new definition of u and is given in terms of the operator f : e→ ψd defined by

ψd = sin−1(σe(u)); u =

(
−K1e

U
− K2

U
ς

)
(98)

where ς is the output of the dynamical system faw(e) : e→ ς with realization

ς̇ = e + Ka

[
−K1e

U
− K2ς

U
− σe

(
−K1e

U
− K2ς

U

)]
, (99)

and Ka is an anti-windup gain to control the integrator’s charge and discharge rate. In what
follows, we show with the help of Lyapunov-based analysis tools that using the above
control law, the cross-track error converges to zero if the actual vehicle heading ψ equals ψd.

6.3. Convergence of Cross-Track Error without the Inner Loop Dynamics

Using the control law mentioned in (98) and (99), and Ka = U
K1

, the closed-loop
kinematic equations can now be written as,

ė = Uσe

(
−K1e

U
− K2ς

U

)
+ Vyc (100)

ς̇ = −K2

K1
ς− U

K1
σe

(
−K1e

U
− K2ς

U

)
, (101)

Define the new set of variables
x1 = e

x2 = ς− K,
(102)

where K is a constant.
The equations of motion can then be written as

ẋ1 = Uσe

(
−K1x1

U
− K2x2

U
− KK2

U

)
+ Vyc (103)

ẋ2 = −K2

K1
x2 −

K2

K1
K− U

K1
σe

(
−K1x1

U
− K2x2

U
− KK2

U

)
. (104)

We define another set of variables as

rly1 =
K1x1

U
+

K2x2

U
r

y2 =
K2x2

U
,

(105)

In terms of the new variables above,

ẏ1 = −K1σe

(
y1 +

KK2

U

)
+ K1

Vyc

U
+ ẏ2

ẏ2 = −K2

K1
y2 −

K2

K1

KK2

U
+

K2

K1
σe

(
y1 +

KK2

U

)
, (106)

At this point, we explore an important property of the σe function defined in (97).

Property 1.

σe(Z + x)− Z = σus
ls
(x) ∀ |Z| < es,

where ls = −es − |Z| and us = es − |Z|.
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To simplify the notation, we use σ instead of σus
ls

from here on. Using this property, we
can write

σe

(
y1 +

KK2

U

)
− KK2

U
= σ(y1), ∀

∣∣∣∣KK2

U

∣∣∣∣ < es, (107)

and later in the proof, it will be evident that
∣∣∣KK2

U

∣∣∣ < es. Thus, by simplifying further, we get

ẏ1 = −K1σ(y1)− K1
KK2

U
+ K1

Vyc

U
+ ẏ2

ẏ2 =
K2

K1
σ(y1)−

K2

K1
y2 (108)

Choosing V(y1, y2) =
y1∫
0

σ(η)dη + 1
2 y2

2 as a Lyapunov candidate function yields

V̇ = σ(y1)ẏ1 + y2ẏ2

= σ(y1)

[
−K1σ(y1)− K1

KK2

U
+

K1
Vyc

U
+

K2

K1
σ(y1)−

K2

K1
y2

]
= −

(
K1 −

K2

K1

)
σ2(y1)−

K2

K1
y2

2+

σ(y1)

[
K1

Vyc

U
− K1

KK2

U

]
.

Making

K =
Vyc

K2
(109)

yields

V̇ = −
(

K1 −
K2

K1

)
σ2(y1)−

K2

K1
y2

2 (110)

At this point, it is reasonable to assume that the vehicle speed with respect to water is larger
than the intensity of the ocean current, that is,

U >
1
es
‖Vc‖. (111)

Using the above assumption, it is now straightforward to show that
∣∣∣KK2

U

∣∣∣ < es.
Thus,

V̇ < 0 ∀ K1 >
K2

K1
. (112)

We therefore conclude that the origin y1 = y2 = 0 is asymptotically stable. It is now trivial
to show that the cross-track error e will tend to zero and the integrator ς will charge up to
Vyc
K2

, in order to “learn” the currents as time increases.

6.4. Inner-Loop Dynamics

The key goal of this paper is to show that “identical behavior” is obtained when the
dynamics of the heading autopilot (inner loop) and the sideslip of the vehicle are taken
into account. In particular, we show that the basic structure and the simplicity of the outer-loop
control law are preserved. The theoretical machinery used to prove stability borrows from
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IOS concepts and a related small-gain theorem. See [29] for a fast-paced introduction to
the subject and [43,44] for interesting applications of control techniques that bear affinity
with inner-outer loop control structures. Here, we indicate briefly how the existence of
the heading autopilot is taken into account without having to change the structure of the
outer-loop described before. The resulting control scheme is depicted in Figure 7, where
the heading autopilot plays the role of an inner loop.

U

Figure 7. Path-following controller with two-scale inner-outer loop approach.

This section addresses explicitly the inclusion of the inner-loop dynamics, thus lifting
the assumption that the actual heading ψ equals the desired heading ψd. Let

ψ̃ = ψ− ψd

be the mismatch between actual and desired heading angles. We assume that the autopilot
characteristics can be described in very general terms as an IOS system, see [29]. In order
to understand the rationale for this characterization, notice that if the inner-loop dynamics
are linear with static gain equal to 1, then its dynamics admit a realization of the form

ẋ = Ax + Bψd

ψ = Cx

with CA−1B = 1. In this case, the coordinate transformation η = x + A−1Bψd yields
the realization

η̇ = Aη + A−1Bψ̇d

ỹ = Cη

for the operator from ψ̇ to ỹ, with ỹ = ψ̃ + β that characterizes the inner-loop dynamics,
where β is sideslip angle and the output ỹ is the sum of the heading angle and sideslip
angle. An IOS characterization of the loop can be easily derived from the above system
matrices [29]. Notice, however, that this type of description applies also to general nonlinear
systems of the form

η̇ = g(η, ψ̇d)

ỹ = h(η, ψ̇d)

and allows for a somewhat loose, yet quantifiable description of the inner-loop dynamics.
This justifies the IOS characterization of the inner loop dynamics as

‖ỹ(t)‖ ≤ γ f ‖ψ̇d(t)‖+ β f , (113)

where γ f and β f are nonnegative constants. The above characterization captures in a
rigorous mathematical framework simple physical facts about the inner-loop control sys-
tem. Namely, (i) if the time-derivative of the heading reference ψd is bounded, then the
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heading-tracking error is bounded and (ii) the dynamics of the inner-loop system can be
characterized in terms of bandwidth-like characteristics that are reflected in β f and γ f ,
see [29]. A simple exercise with a first-order system will convince the reader that as the
bandwidth of the system increases, γ f will decrease. For practical purposes, the latter
can be viewed as a “tuning knob” during the path-following controller design phase. For
analysis purposes, it is also required to ensure that not only ỹ but also the remaining
variables in the inner loop be bounded in response to ψ̇d. This fact can be easily captured
with an ISS condition of the type

‖η(t)‖ ≤ βg(‖η(0)‖, t) + γg

(
sup

t0≤τ≤t
‖ψ̇d(τ)‖

)
, (114)

for some βg ∈ KL and γg ∈ K. We have shown before that such a condition holds. At this
point, we make the key observation that the complete path-following control system can be
represented as the interconnected structure depicted in Figure 8. The latter can be further
abstracted to the scheme in Figure 9 consisting of blocks H1 : ỹ→ ψ̇d and H2 : ψ̇d → ỹ, a
description of which is given next. To this effect, using the control law mentioned in (98)
and (99), the system H1 clearly admits the following representation

ė = U sin(ỹ + ψd) + vcy, (115)

ς̇ = −K2

K1
ς− U

K1
σe

(
−K1e

U
− K2ς

U

)
ψd = sin−1

(
σe

(
−K1e

U
− K2

U
ς

))
,

and H2 satisfies the IOS stability condition in (113).

U sin(.) ò dt ede/dt

Inner Loop Dynamics

yd

vcy

desired heading

(.)d
dt

dyd /dt!"

!" ≤ $% '̇((*) + -%

'( = /(0)

Figure 8. IOS characterization of inner-outer loop.

Figure 9. General feedback interconnection.
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6.5. Convergence: Realistic Inner-Loop Dynamics

The proof that H1 is IOS hinges on the facts that H1 is the composition of two auxiliary
systems Ha1 : ỹ→ e and Ha2 : e→ ψ̇ and that both are IOS. This is done next. Expanding
Equation (115) and following the transformation of variables as mentioned in (105), the
equation of motion can be rewritten as

ẏ1 = −K1 cos ỹσe

(
y1 +

KK2

U

)
+ K1 sin ỹ cos ψd +

K1

U
Vyc + ẏ2

ẏ2 =
K2

K1

[
σe

(
y1 +

KK2

U

)
− KK2

U
− K2

K1
y2

]
,

(116)

By adding and subtracting the term K1 cos ỹ KK2
U , and by using the special property of the

function σe in (107), we can write

ẏ1 = −K1 cos ỹσ(y1) + K1 sin ỹ cos ψd +
K1

U
Vyc

− K1 cos ỹ
KK2

U
+

K2

K1
σ(y1)−

K2

K1
y2

ẏ2 =
K2

K1
σ(y1)−

K2

K1
y2

(117)

Choosing the same Lyapunov function as in Section 6.3 yields

V̇ = σ(y1)ẏ1 + y2ẏ2

= σ(y1)[−K1 cos ỹσ(y1) + K1 sin ỹ cos ψd

+
K1

U
Vyc − K1 cos ỹ

KK2

U
+

K2

K1
σ(y1)−

K2

K1
y2

]
+ y2

[
K2

K1
σ(y1)−

K2

K1
y2

]
= −K1 cos ỹσ2(y1)−

K2

K1
y2

2

+ σ(y1)

[
K1 sin ỹ cos ψd +

K1

U
Vyc − K1 cos ỹ

KK2

U

]
+

K2

K1
σ2(y1)

= −
(

K1 cos ỹ− K2

K1

)
σ2(y1)−

K2

K1
y2

2

+ σ(y1)

[
K1 sin ỹ cos ψd +

K1

U
Vyc − K1 cos ỹ

KK2

U

]
,

(118)

Now, substituting K from (109), we obtain

V̇ = −
(

K1 cos ỹ− K2

K1

)
σ2(y1)−

K2

K1
y2

2

+ σ(y1)

[
K1 sin ỹ cos ψd +

K1

U
Vyc(1− cos ỹ)

]
.

For

K1 cos ỹ ≥ K2

K1
+ δ, with 0 < δ ≤ K1 −

K2

K1
, (119)

we can further simplify the equations as
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V̇ ≤ −δσ2(y1)−
K2

K1
y2

2

+ σ(y1)

[
K1 sin ỹ cos ψd +

K1

U
Vyc(1− cos ỹ)

]
,

= −δσ2(y1)−
K2

K1
y2

2

+ |σ(y1)|
[
|K1 sin ỹ cos ψd|+

∣∣∣∣K1

U
Vyc

∣∣∣∣|1− cos ỹ|
]

,

= −δσ2(y1)−
K2

K1
y2

2

+ |σ(y1)|K1

[∣∣∣∣Vyc

U

∣∣∣∣|1− cos ỹ|+ |sin ỹ|
]

,

= −δ(1− θ)σ2(y1)− δθσ2(y1)−
K2

K1
y2

2

+ |σ(y1)|K1

[∣∣∣∣Vyc

U

∣∣∣∣|1− cos ỹ|+ |sin ỹ|
]

,

where 0 < θ < 1.
This implies that

V̇ < −δ(1− θ)σ2(y1)−
K2

K1
y2

2

∀|σ(y1)| >
K1

δθ

(∣∣∣∣Vyc

U

∣∣∣∣|1− cos ỹ|+ |sin ỹ|
)

.
(120)

Since
(∣∣∣Vyc

U

∣∣∣|1− cos ỹ|+ |sin ỹ|
)

is bounded by
(∣∣∣Vyc

U

∣∣∣+ 1
)
(|ỹ|), it follows that

V̇ < 0 ∀|σ(y1)| >
K1

δθ

(∣∣∣∣Vyc

U

∣∣∣∣+ 1
)
|ỹ| (121)

thus showing that y = [y1 y2]
T is ISS with restriction given by (119) on the input. Thus,

from the definition of ISS, we obtain

‖y(t)‖ ≤ βl(‖y(0)‖, t) + γl

(
sup

0≤τ6t
|ỹ(τ)|

)
∀ t ≥ 0, (122)

where βl is a class KL-function, and γl is a class K-function. To show that H1 : ỹ→ ψ̇d is
IOS, we start by computing ψ̇d. The control law ψd is given by

ψd = sin−1
{

σe

(
−K1e

U
− K2

U
ς

)}
. (123)

Using (105), the above can be written as

ψd = sin−1
{

σe

(
−y1 −

KK2

U

)}
. (124)

Defining ξ = −y1 − KK2
U , the time derivative of ψd is given by

dψd
dt

=
dψd

dσe(ξ)

dσe(ξ)

dξ

dξ

dt

= −ẏ1
d

dξ
σe(ξ)

[
1−

{
σe

(
−y1 −

KK2

U

)}2
]− 1

2

(125)
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with [
1−

{
σe

(
−y1 −

KK2

U

)}2
]− 1

2

≤ η (126)

where η = 1

(1−e2
s )

1
2

.

From the definition of σe(.) , d
dξ σe(ξ) is bounded by 1. Thus, ψ̇d in (125) is bounded by

|ψ̇d| ≤ η|ẏ1|. (127)

Equipped with the above result and the one in (122), we will now show that the system H1
is IOS.

From Equation (117), we have

ẏ1 = −K1 cos ỹσ(y1) + K1 sin ỹ cos ψd +
K1

U
Vyc−

K1 cos ỹ
KK2

U
+

K2

K1
σ(y1)−

K2

K1
y2.

With K =
Vyc
K2

,

ẏ1 = −K1 cos ỹσ(y1) +
K2

K1
σ(y1)−

K2

K1
y2+

K1

[
sin ỹ cos ψd +

Vyc

U
(1− cos ỹ)

]
.

Taking the absolute value of both sides yields

|ẏ1| ≤
(

K1 +
K2

K1

)
|σ(y1)|+

K2

K1
|y2|+

K1

[
|sin ỹ|+

Vyc

U
|(1− cos ỹ)|

]
|ẏ1| ≤

(
K1 +

K2

K1

)
|σ(y1)|+

K2

K1
|y2|+ K1

(
1 +

Vyc

U

)
|ỹ|

Thus,

|ψ̇d| ≤ C1|σ(y1)|+ C2|y2|+ C3|ỹ|

where C1 = η
(

K1 +
K2
K1

)
, C2 = η K2

K1
, and C3 = ηK1

(
1 + Vyc

U

)
. Using the fact |y1|+ |y2| =

‖y‖1 and |σ(y1)| ≤ |y1|, we can state that

C1|σ(y1)|+ C2|y2| ≤ max(C1, C2)‖y‖1 ≤ C1‖y‖1.

Thus,

|ψ̇d| ≤ β1 + γ1|ỹ| (128)

where β1 = C1βl and γ1 = C1γl + C3 (using the conditions in Theorem 2 and
Equation (121)) is given by

γ1 = ηK1

(
Vyc

U
+ 1
)[

1
δθ

(
K1 +

K2

K1

)
+ 1
]

, (129)

with γ1 showing explicit dependence on K1, K2. In conclusion, the systems H1 and H2 are
both IOS. It can now be shown, using the small gain theorem in [29], that the interconnected
system is stable if γ1γ f < 1. This result yields a rule for the choice of gains K1, K2 (as
functions of the inner-loop dynamic parameters) so that stability is obtained. Hence, we
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show using a small gain theorem that the above interconnected system is closed-loop-stable
and all signals are bounded.

Notice that for restriction (119) to be feasible, it is important that K1 > K2
K1

. In other words, if
we choose K1 = 2ξωn and K2 = ω2

n, where ξ and ωn are damping factor and natural frequency,
respectively, then ξ > 0.5 must be used as design parameter.

6.6. An Example

Let us take a simple illustrative example, considering that the sideslip angle β is zero.
In this situation, the inner Loop (Heading control) is characterized in terms of an IOS
relationship given in (113) with ỹ = ψ̃, where ψ̃ = ψ− ψd, see (44). For such a system, it is
straightforward to show that the system is finite-gain L∞-stable, that is,

‖ψ̃‖∞ ≤ γ f ‖ψ̇d‖∞ + β f (130)

with the gain γ f given by

γ f =
2λ2

max(Q)
∥∥A−1B

∥∥
2‖C‖2

λmin(Q)
, (131)

where Q is the solution of the Lyapunov equation QA + ATQ = −I. Approximating the
inner loop as a first-order system with dynamics given by

ψ̇ = −aψ + aψd. (132)

y2 = ψ (133)

it follows that

γ f =
2( 1

2a )
2

( 1
2a )

(134)

γ f =
1
a

, (135)

yielding the stability condition

γ1 < a. (136)

From (129), we have

ηK1

(
Vyc

U
+ 1
)[

1
δθ

(
K1 +

K2

K1

)
+ 1
]
< a. (137)

For an inner-loop bandwidth a = 1 rad/s, using the parameters mentioned in Table 1
and equating γ1 to a, the natural frequency ωn for the outer loop should not be more than
0.095 rad/s.

Table 1. Parameters to design outer loop.

Parameters Value

Speed U 1 m/s
y-component of current Vyc 0.1 m/s
saturation es 0.8

Parameters used for with K2 = ω2
n

outer loop design and K1 = 2ξωn

damping factor ξ 0.8
δ 0.083
θ 0.99
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Thus, in terms of bandwidth-like characterization, the inner loop bandwidth should
be approximately 10 times higher than outer-loop bandwidth. The parameters δ and θ
chosen in Table 1 impose a restriction of ψ̃ < 20.7 degrees.

6.7. Relation between Outer-Loop Path Following and Using a Variable Look-Ahead Visibility
Distance Line-of-Sight Guidance

Consider a case of simple path-following controller without the integral term, such
that the control law can be written as

ψd = sin−1
(
−K1e

U

)
, (138)

whereas, in the case of look-ahead distance line-of-sight guidance, the control law is given by

ψd = tan−1
(
− e

∆d

)
, (139)

where ∆d is the look-ahead distance as shown in Figure 10.

ΔdΔ

yI
e

{ }B{ }I { }{ }I

xI

Figure 10. Line-of-sight guidance using look-ahead distance.

By equating Equations (138) and (139), we get a relationship between gain K1 and the
look-ahead distance ∆d as follows:

−K1e
U

= sin
(

tan−1
(
− e

∆d

))
(140)

K1 =
U(

∆2
d + e2

) 1
2

(141)

⇒ ∆d = ± 1
K1

(
U2 − K2

1e2
) 1

2 (142)

Figure 11 shows the variation of look-ahead distance with cross-track error at different
bandwidth in the above example. Notice that the look-ahead distance is a function of
cross-track error (not fixed in this setup), and increases as the gain K1 is reduced.
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Figure 11. Look-ahead distance plotted against the cross-track error with different gains.

7. Path Following Problem: Arcs

Let Pa be the position of the vehicle (see Figure 12) in an inertial reference frame {I}
and the associated Seret–Frenet frame T defined on the curve such that its origin (Ps) is
the orthogonal projection of the point Pa onto curve; thus, e is the cross-track error with
the coordinates of vehicle (0, e) in {T}. With U as the speed of the vehicle, the kinematic
equation for the evolution of e is given by

ė = U sin(ψ− θc) (143)

where ψ is the vehicle orientation with respect to the {I}, θc is the angle of tangent at point
Ps measured from abscissa of {I}, and Rc(Ps) is the radius of curvature at {T} (see [6]).
Note that θ̇c becomes infinite when the Rc(Ps) = e, which in turn means that the vehicle is
positioned exactly at the center of the circle with radius Rc and a tangent at {T}. However,
for most of the practical applications, the reference paths to follow are curves with slowly
varying curvature, this problem is unlikely to occur.

ψ

β

VB

Pa

cross –track
error e

T
xI

yTxT θc

Path to be followed (C)Ps
T

yII

Figure 12. Cross-track error for straight-line following.
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Following an approach similar to that in Section 6.2, the most suitable choice for the
desired heading ψd will be

ψd = sin−1
{

σe

(
−K1e

U

)}
+ θc. (144)

In order to follow a circumference, we compute at each instant the tangent to the path and
act as if we were following a straight line. The algorithm applies to the case of straight lines
and yields automatic compensation of the effect of unknown but constant currents. The
methodology does not go through for the case of general paths even if we restrict ourselves
to constant currents. Interestingly enough, as far as we know, this combined problem has
not been solved yet. In the paper, we proposed a simple extension of the method to follow
arcs of circumference that showed acceptable performance (small steady-state track error)
in simulations and real test with the Medusa vehicle (figures are explained in next section);
however, a general theoretical result is not available at this point [45].

8. Implementation and Field Test Results

The previous sections described the rationale and provided the mathematical machin-
ery required for the study of a path-following controller for marine vehicles that relies on
a two-scale inner-outer loop architecture. This approach effectively decouples the design
of the inner and outer control loops, the combination of the two being studied at a later
stage. The tools derived borrow extensively from nonlinear control theory and make use of
the ISS and IOS characterization of dynamical systems. In this context, the analysis of the
combined inner-outer loop structure is done using an appropriate small gain theorem [29].
For inner-loop controller design, the technique described in Section 4 was used, yielding a
simple proportional and derivative control law that is pervasive in heading autopilots. In
what concerns outer-loop design and stability analysis, despite the apparent complexity
of the methodology adopted, the resulting outer-loop controller lends itself to the sim-
ple implementation structure shown in Equations (98) and (99) and depicted in Figure 13,
where an anti-windup scheme is implemented using the so-called D-methodology introduced
in [46]. Clearly, the implementation of the outer-loop controller does not require intensive
computational power. We recall that the gains K1 and K2 can easily be computed by solving
the characteristic Equation (96) for a choice of natural frequency ωn, with K1 = 2ξωn and
K2 = ω2

n, where ξ is the damping factor.

Heading 
Autopilot

ò

dt
d

aK

1K

2K

e cross track error

e cross track error

+
-

+--
1
" arcsin(. )

,-

Figure 13. Implementation of the path-following algorithm using an anti-windup technique scheme
that includes the so-called D-methodology in [46].

The algorithm for path following described was implemented and fully tested with
success in three types of vehicles: the DELFIMx ASV, the MAYA AUV, and several vehicles
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of the MEDUSA class. The first is an autonomous surface vehicle that is the property of the
Instituto Superior Tecnico, Lisbon, Portugal (see Figure 14). The second is an autonomous
underwater vehicle (see Figure 15) described in Section 3.3. Implementation issues and
results of tests carried out with the MAYA AUV are briefly discussed in [45]. The algorithm
is also an part of the several MEDUSA class vehicles developed by IST, Lisbon. The results
are shown for one of the MEDUSA class marine vehicle described in Section 3.2.

Figure 14. The DELFIMx ASV.

Figure 15. The MAYA AUV.

Prior to testing the path-following algorithm on the DELFIMx ASV, simulations were
done with a full nonlinear model of the vessel. The outer-loop controller parameters were
tuned based on the bandwidth of the linearized equations of motion of the vessel about
1.6 m/s. We call attention to the fact that we did not measure the ocean current during the
sea trials of DELFIMx. However, an estimate was obtained using the difference between
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the heading and course angles of the vehicle along the straight line components of the
path. The estimated current of 0.2 m/s with direction from southwest to northeast was
introduced in the simulation to allow for a fair comparison of real and simulated data.

We include both the results of simulations and actual tests at sea. Namely,
Figures 16 and 17 show the results of simulations of a lawn-mowing maneuver for the
ASV. Figure 16 illustrates the complete maneuver, whereas Figure 17 shows the cross error
observed. The corresponding plots for real tests are shown in Figures 18 and 19, respectively.
Clearly, the results of simulations and the real data are very similar, thus confirming the
adequacy of the new method developed for path following. Notice in particular how both
in simulated and related data the cross-track error converges to approximately zero over
similar portions of the path (straight line segments), in the presence of a constant current.
The variation in the cross-track error after the convergence at 300 s and 700 s are due to the
transition from straight line to the arc and vice versa which is reflected in both simulations
and the real tests. Notice that the heading of the vehicle (represented by a the symbol of
ASV with the triangular-shaped head (see legend in Figure 18)) is different from course of
the vehicle. This shows that the algorithm has learned the ocean currents and adjusted the
heading accordingly.
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Figure 16. Simulated lawnmowing maneuver of the DELFIMx vehicle in the presence of ocean currents.
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Figure 17. Cross-track error for the simulated track.
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Figure 18. Delfimx performing a lawn-mowing maneuver in the Azores, PT.

0 100 200 300 400 500 600 700 800 900 1000
Time (sec)

-5

0

5

10

15

20

25

30

35

40

45

co
rs

s 
tr

ac
k 

er
ro

r (
m

)

Cross Track Error

Figure 19. Delfimx cross-track error during the real mission.

Another test was conducted using the MAYA AUV at a lake to map chlorophyll at
three different depths. The path-following algorithm used for these tests shows how the
AUV was able to follow a path in a real environment independent of the depth control. The
results are shown in Figure 20.

Figure 20. Square mission of MAYA at surface, 3 m and 5 m depth at Supa Dam, India.

The efficacy of the path following for straight lines was also shown during a real test
with a Medusa class vehicle. The vehicle’s GPS track and the reference path for the test
performed are shown in Figure 21. It can be inferred from the fact that the course angle
available from GPS and the vehicle angles were not the same that the vehicle was under
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the influence of an ocean current, see Figure 22. This figure shows clearly the role of the
integrator to “learn” the constant ocean current and offset the heading angle accordingly.
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Figure 21. Medusa Vehicle performing lawnmower at Expo Site, Lisbon, Portugal.
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Figure 22. Heading and Course of the Medusa Vehicle Showing the effect of ocean currents.

The simulation results in Figures 23 and 24 illustrate the case where the MAYA vehicle
is requested to follow a segment of a circular path. The results show that in the presence
of currents, the vehicle follows the arc with an error (i.e., the cross-track error will not
converge to zero but to a neighborhood of zero). The convergence of the cross-track error
to a neighborhood of zero along segments of arc is also captured in the sea tests performed
by DELFIMx and MEDUSA vehicles, as shown in Figures 18 and 21.
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Figure 23. Simulation result of arc following.
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Figure 24. Evolution of cross-track error during arc following.

9. Conclusions and Future Work

This paper introduced an inner-outer control structure for marine vehicle path follow-
ing in 2D, with due account for the vehicle dynamics and ocean currents. The structure is
simple to implement and provides system designers a convenient way of tuning the outer-
loop control law parameters as functions of a “bandwidth-like” characterization of the
inner loop. Stability of the complete path-following control system was proven for straight
paths, by resorting to nonlinear control theoretical tools that borrow from input-to-output
stability concepts and a related small gain theorem. The efficacy of the inner-outer control
structure adopted was shown during the rigorous tests with AUVs and ASVs at sea. These
algorithms are now integral part of many autonomous marine vehicles used at NIO and
IST. Moreover, the problem of cooperative control and navigation works on the assumption
that the single vehicle is able to follow a desired path (without any temporal constraints).

The applications of this strategy include: (i) single-vehicle path following for a number
of missions that include environmental surveying, seabed habitat mapping, and critical
infrastructures security, and (ii) cooperative path following, which aims to steer a number of
vehicles along pre-determined paths in a synchronized manner, with a view to overcoming
the limitations imposed by the use of a single vehicle, effectively allowing for ocean
exploration at unprecedented temporal and spatial scales. The method is easily extended
to fully actuated or overly actuated vehicles where, besides having the center of mass of the
vehicle follow a desired path, it is also required for the vehicle to track an arbitrary heading
reference (that is, complete pose control). An obvious desired extension (pointed out before)
is to derive a path-following controller capable of ensuring precise path following of general
paths in the presence of constant currents. We conjecture that some form of an internal
model principle should be used, which provides a good ground for future extension of the
present work, see, for example, Refs. [47–49] and the references therein.

We also remark that we have addressed explicitly the effect of unknown but constant
currents and showed how the path-following control law adopted allows for the rejection
of this type of disturbance. We did not address the impact of waves, which cause first-order
(oscillating) and second-order (drift) effects. We conjecture that the influence of waves may
be studied by modeling (as is customary in the literature) their effect as a bounded output
disturbance dw, and characterizing the closed-loop operator with input dw and output e
(cross-track error) in terms of its input-output characteristics (IOS analysis).
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Appendix A. Vehicle Parameters

Table A1. Mass, inertia and hydrodynamics coefficients for a MEDUSA vehicle.

m = 17 kg Iz = 1 kg·m2

Xu̇ = −20 kg Yv̇ = −30 kg Nṙ = −8.69 kg·m2

Xu = −0.2 kg/s Yv = −50 kg/s Nr = −4.14 kg·m2/s
X|u|u = −25 kg/m Y|v|v = −0.01 kg/m N|r|r = −6.23 kg·m2

Table A2. Vehicle parameters of MAYA AUV.

Physical Parameters

Vehicle Speed (u0) : 1.2 m/s
Reynolds Number : 1.6692× 106

Sea Water Density(ρ) : 1025 kg/m3

Vehicle Parameters

Length
(

Lpp
)

: 1.8 m
Center of mass

(
zg
)

: 0.52× 10−2 m (w.r.t body geometric axis)
Center of Buoyancy (zb) : −0.172× 10−2 m (w.r.t body geometric axis)
Weight (W) : 53 × 9.8 kgf
Buoyancy (B) : 53.4 × 9.8 kgf

Hydrodynamic Parameters

Moments Coeff. Force Coeff.

Nr = −41.4397 kg·m2/s Yr = 70.4195 kg·m/s
Nδ = −33.8563 kg·m2/s2 Yδ = 96.3191 kg·m/s2

Nv = −29.8727 kg·m/s Yv = −204.698 kg/s
Nṙ = −41.4397 kg·m2 Yṙ = 70.4195 kg·m
Nv̇ = −29.8727 kg·m Yv̇ = −204.698 kg
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