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Abstract: The communication system of urban rail transit is gradually changing from train-to-ground
(T2G) to train-to-train (T2T) communication. The subway can travel at speeds of up to 200 km/h
in the tunnel environment, and communication between trains can be conducted via millimeter
waves with minimum latency. A precise channel model is required to test the reliability of T2T
communication over a non-line-of-sight (NLoS) Doppler channel in a tunnel scenario. In this paper,
the description of the ray angle for a T2T communication terminal is established, and the mapping
relationship of the multipath signals from the transmitter to the receiver is established. The channel
parameters including the angle, amplitude, and mapping matrix from the transmitter to the receiver
are obtained by the ray-tracing method. In addition, the channel model for the T2T communication
system with multipath propagations is constructed. The Doppler spread simulation results in this
paper are consistent with the RT simulation results. A channel physics modelling approach using an
IQ vector phase shifter to achieve Doppler spread in the RF domain is proposed when paired with
the Doppler spread model.

Keywords: train-to-train (T2T) communication; doppler spread; channel simulation; metro tunnel

1. Introduction

With the development of vehicle-to-everything (V2X) communication technology,
intelligent transportation systems consisting of vehicle-to-vehicle (V2V) communication,
vehicle-to-infrastructure (V2I) communication, vehicle-to-pedestrian (V2P) communication,
and vehicle-to-cloud network (V2N) communication have been introduced [1,2]. V2X
communication technology mainly includes dedicated short-range communication (DSRC)-
based vehicle networks and cellular-based vehicle networks [3]. DSRC is a wireless access
solution based on the IEEE 802.11p standard with good distributed characteristics but
shortcomings including a limited coverage, low transmission rate, and inability to be used
in high-speed mobile environments. The cellular network-based wireless access technology
C-V2X developed by the Third Generation Partnership Project (3GPP) enables vehicles to
operate normally in scenarios with and without cellular network coverage [4]. In order to
improve the performance of V2X communication systems, 3GPP has successively released
the LTE-V2X network based on Long Term Evolution (LTE) and a 5G-V2X network for
fifth-generation new radio (5G NR) [5]. However, as the number of communication devices
and digital applications grows, communication systems face new challenges in terms of
data rate, latency, coverage, spectral efficiency, and security [6–8]. Industry 5.0 will have
access to sixth-generation (6G) wireless communication networks with data rates up to
0.1 TB/s and massive ultra-high-speed wireless access [9]. Wireless data sharing between
entities such as vehicles, trains, drones, infrastructure roadside units, traffic data centers,
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etc., can be further achieved with industry 5.0 [10]. Combine artificial intelligence, cloud
computing, block chain, and other emerging technologies to develop reliable autonomous
driving applications [11], reasonably plan vehicle routes and driving speeds, reduce vehicle
energy consumption and promote green development of traffic.

1.1. Related Literature

In the Orthogonal Multiple Access (OMA) technology used by existing networks,
the limitation of spectrum resources results in low access efficiency and low data rates
in dense vehicular networks. In the next generation of V2X communication, the efficient
utilization of radio resources by the multiplexing of transmitted signals and successive
interference cancellation (SIC) at the receiving end by using the Non-Orthogonal Mul-
tiple Access (NOMA) technique is proposed [12]. Reference [13] proposed a two-stage
scheme of centralized resource allocation and distributed power control strategy that
increased communication capacity by 5% while lowering transmission power usage by
36%. Reference [14] also verified that the system capacity can be improved by adopting
centralized resource allocation and distributed power control methods. In [15], a roadside
unit-based energy-saving power allocation scheme for NOMA was proposed, which an-
alyzed the energy efficiency maximization problem under the constraints of incomplete
channel state information (CSI), quality of service (QoS), and power constraints. Refer-
ence [16] proposed a cognitive radio-assisted NOMA-V2X system model and analyzed its
outage probability and throughput performance. Reference [17] provided a new approach
to improve spectrum utilization and system capacity, and it also addressed the near–far
problem of NOMA-enabled backscatter communication systems. Reference [18] proposed
an energy-efficient transmission optimization framework for V2X networks based on am-
bient backscatter communication and NOMA for imperfect CSI. Under the premise of
ensuring QoS, the total transmit power of the V2X network is minimized by optimizing
the power distribution of the base station and the reflection coefficient of the backscatter
sensor. Compared with the traditional NOMA-based V2X network, the V2X network using
the fusion of ambient backscatter communication and NOMA has advantages in terms
of energy efficiency. On the other hand, the deep integration of artificial intelligence (AI)
tools with wireless communication systems [19–21] can further improve network perfor-
mance [22,23] and plays an important role in channel estimation, scene recognition, velocity
prediction, channel characteristic prediction [24–26], and channel modeling [27–29]. The
control system based on T2T communication extends the T2G wireless communication
system between trains. The front and rear trains can interchange data immediately, al-
lowing the back train to acquire real-time position and speed information from the front
train. As a result, railway operations can be made safer and the safe spacing between trains
can be reduced. LTE wireless communication technology has the advantages of having
strong anti-interference ability, a high transmission rate, and low system delay. It can be
further applied to the train control system based on T2T communication [30]. However,
the Doppler shift induced by a high train speed and high signal frequency will have an
impact on the wireless communication system’s performance.

1.2. Motivation and Contributions

To verify the T2T communication’s reliability, the T2T communication channel model
must be implanted into a simulation platform of a physical channel with time varying traffic,
and the train control system must be combined to form a hardware-in-the-loop simulation
platform to complete the T2T communication performance verification. Therefore, it is
necessary to establish a channel simulation model of T2T communication, especially the
Doppler spread model caused by high-speed movement. Existing Doppler research on T2T
communication mainly focuses on ground scenarios [31–36] and V2V communication [37]
scenarios in highway tunnels. However, the subway tunnel is narrow and long, including
straight, curved, climbing, descending, and other scenarios, making it more challenging
than the ground tunnel. Trains using millimeter wave communications traveling at high



Sensors 2022, 22, 4289 3 of 13

speeds of more than 200 km/h along a given track in a tunnel environment cause higher
Doppler shifts. Thus far, the channel modeling work in subway tunnels has mainly studied
the influence of the LoS path, and the single-bounced and double-bounced signal on the
channel in the same coordinate space in the V2G communication scene [38–40]. In the
T2T communication system, the transceiver ends are located in different locations, so it
is difficult to apply the same coordinate space analysis. In addition, the movement of
the antenna causes rapid changes in the channel environment, complicating the signal
propagation process. The influence of multi-bounced signals and the movement of the
transceiver antenna on the Doppler shift must be considered, so a Doppler spread model
suited for the movement of two-terminal terminals in the tunnel must be established.

In this paper, the receiver (Rx) and transmitter (Tx) coordinate systems are established,
and the Doppler spread model of the multipath signals from the transmitter to the receiver
is established in their respective coordinate systems. The mapping matrix approach is
proposed as an innovative solution to the problem of signal matching at the receiver and
transmitter, as well as a method for obtaining the mapping matrix. In order to verify the
proposed Doppler model for T2T communication in the tunnel, the ray-tracing (RT) [41]
approach is utilized to obtain the angle and amplitude of the signals at the transmitting and
receiving ends. By comparing the simulation results of the RT approach with the simulation
results of the Doppler spread model, the validity of the Doppler spread model is proved. A
channel physical simulation method using IQ vector phase shifters [42,43] is proposed to
execute the T2T communication channel simulation in the tunnel environment, which can
be used for future tunnel environments when combined with the T2T channel model and
test data analysis in the tunnel [44–46]. It can provide a reference for 5G millimeter wave
physical channel simulation in the future tunnel environment.

1.3. Article Structure

The rest of this paper is organized as follows: In Section 2, the Doppler shift models for
transmitted and received signals are established, followed by the solution method for the
multipath signal mapping relationship at the transmit and receive ends and the multipath
signal’s Doppler spread model. In Section 3, the RT simulation method is used to obtain the
angle, amplitude, and mapping relationship of the transmitted and received signals, and
the Doppler spread simulation of the theoretical model is discussed. In Section 4, combined
with the analysis of the communication signal in the tunnel, a method to realize physical
channel simulation using an IQ vector phase shifter is proposed. Finally, Section 5 provides
the conclusion of this paper.

2. Modeling of Wireless Channel for T2T Communication in Tunnel Scenario
2.1. Wireless Channel Model of T2T Communication

Figure 1 depicts a T2T communication scenario in which the front and rear trains
run through a tunnel with a width W and a height H. The complicated propagation
process of multipath signals through straight or curved tunnels, such as reflection and
scattering, is represented by the multipath link between two trains. The space where the
multipath link is located represents the complex channel environment, such as straight or
curved tunnels. A three-dimensional coordinate system is established at the transceiver
antennas, with the tunnel depth as the x-axis, the height as the z-axis, and the horizontal
direction as the y-axis. The downlink of the T2T communication consists of the transmitting
antenna Tx located in the rear train and the receiving antenna Rx located in the front
train. In addition, vt and vr represent the moving speed of the transmitting antenna
and the receiving antenna, and the moving direction follows the same path as the x-axis.
The received signal consists of the NLoS signal that reaches the receiving antenna after
multiple reflections and scattering. In the LoS scenario, it includes the LoS signal from
the transmitting antenna to the receiving antenna. In order to study the doppler spread of
T2T communication in the tunnel environment, it is assumed that the receiving and the
transmitting antennas are omnidirectional uniform antennas.
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Figure 1. Three-dimensional map of T2T communication in tunnel scenario. 
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Figure 2 shows the schematic diagram of the signal leaving the transmitting antenna
and arriving at the receiving antenna. θZOD,i and φAOD,i represent the zenith angle of depar-
ture (ZOD) and the azimuth angle of departure (AOD) of the i-th transmitted signal. θZOA,m
and φAOA,m represent the zenith angle of arrival (ZOA) and azimuth angle of arrival (AOA)
of the m-th received signal, where θZOD,i, θZOA,m ∈ [0, 180◦], φAOD,i, φAOA,m ∈ [0◦, 360◦),
1 ≤ i ≤ I, 1 ≤ m ≤ M, and I = M, I and M represent the number of multipaths of trans-
mitted and receiving signals. Let Pt,i denote the transmit power of the i-th path signal, and
Pr,m denote the receive power of the m-th path signal. Then the spherical coordinate form
of the transmitter signal and the receiver signal can be expressed as (Pt,i, θZOD,i, φAOD,i)
and (Pr,m, θZOA,m, φAOA,m). Due to the movement of the transmitting antenna, the Doppler
shift f i

d,t of the signal (Pt,i, θZOD,i, φAOD,i) can be expressed as

f i
d,t =

vt

λ0
cos(ψt,i) (1)

cos(ψt,i) = r̂T
t,i·v̂t (2)

r̂t,i =

sin(θZOD,i) cos(φAOD,i)
sin(θZOD,i) sin(φAOD,i)

cos(θZOD,i)

 (3)

v̂t = [1, 0, 0]T (4)

where ψt,i represents the angle between the signal (Pt,i, θZOD,i, φAOD,i) and the moving
direction of Tx. r̂t,i and v̂t represent the unit vector in the direction of the transmitted signal
and the unit vector in the direction of Tx movement. λ0 is the signal carrier wavelength,
and (·)T represents the transpose of the matrix. Due to the movement of the receiving
antenna, the Doppler shift f m

d,r of the signal (Pr,m, θZOA,m, φAOA,m) at the receiving end can
be expressed as

f m
d,r =

vr

λ0
cos(ψr,m) (5)

cos(ψr,m) = r̂T
r,m·v̂r (6)

r̂r,m =

sin(θZOA,m) cos(φAOA,m)
sin(θZOA,m) sin(φAOA,m)

cos(θZOA,m)

 (7)

v̂r = [1, 0, 0]T (8)

where ψr,m represents the angle between the signal (Pr,m, θZOA,m, φAOA,m) and the moving
direction of Rx. r̂r,m and v̂r represent the unit vector of the received signal direction and the
unit vector of the Rx moving direction.
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2.2. Matching of Receiving and Transmitting Rays

In the proposed system, the transmitted and the received signals have a one-to-one
mapping relationship, which means that for each received signal, a unique corresponding
transmitted signal can always be located, completing a full signal chain from Tx to Rx.
According to the roughness of the sidewall of the tunnel, the mapping relationship between
the transmitted and receiving signals can be solved by the spatial mirror method and the
random scatterer distribution method. The space mirror method is shown in Figure 3.
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For the NLoS propagation path in the tunnel, this method solely considers reflection,
and the mirror space is formed with the reflection surface as the axis. For the signal reflected
for k (k = 0, 1, 2, . . . , K) times, the mirror image point Tx’ of transmitting antenna Tx needs
to be obtained through k times of mirror image.

The scatterers’ location at the tunnel’s size wall follows a uniform random distribution,
as shown in Figure 4. In this model, scatterers are randomly distributed along the inner
wall of the tunnel. When the NLoS signal passes through the scatterer, the rough scatterer
surface leads to a certain randomness in the direction of the secondary radiation wave.
When the signal is repeatedly scattered, the mapping between the transmitted signal and
the received signal can be considered as random mapping.
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The mapping relationship between the transmitter multipath signal and the receiver
multipath signal can be expressed as

Γ =


Γ1
Γ2
...

ΓI

 = ANT =


a11 a12 · · · a1M
a21 a22 · · · a2M

...
...

. . .
...

aI1 aI2 · · · aIM




1
2
...

M

 (9)

A =


a11 a12 · · · a1M
a21 a22 · · · a2M

...
...

. . .
...

aI1 aI2 · · · aIM


I×M

(10)

N =
(
1 2 · · · M

)
1×M (11)

where A is the mapping matrix with I rows and M columns. The element aim in the mapping
matrix represents the mapping relationship between the signal (Pr,m, θZOA,m, φAOA,m) at the
receiving end and the signal (Pt,i, θZOD,i, φAOD,i) at the transmitting end. Let the transmitter
signal (Pt,x, θZOD,x, φAOD,x) and the receiver signal

(
Pr,y, θZOA,y, φAOA,y

)
be the same signal,

where 1 ≤ x ≤ M, 1 ≤ y ≤ M, then the element aim is

aim =

{
1, i = x, m = y
0, i = x, m 6= y

(12)

The matrix N is the subscript matrix of the multipath signal at the receiving end. After
rearranging the mapping matrix, the subscript matrix Γ corresponding to the signal at the
transmitting end is obtained.

2.3. Doppler Effect at the Transmitter and Receiver

Rearrange the Doppler shifts of each ray at the receiver so that they are in the same
order as the corresponding ray at the transmitter

f f i
d,r = f Γi

d,r (13)

When both the receiving and transmitting ends move, the Doppler shift f i
d of the

communication signal can be expressed as

f i
d = f i

d,t + f f i
d,r (14)

Assuming that the transmitted signal is xp(t) = cos(2π fct), the bandpass form Ri
p(t)

of the i-th path received signal can be expressed as

Ri
p(t) = ci cos

[
2π
(

fc + f i
d

)
(t− τi)

]
(15)
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where ci and τi represent the power normalized amplitude and time delay of the i-th path
signal, so the baseband form Ri

b(t) of the i-th path received signal is expressed as

Ri
b(t) = ciej2π( f i

dt− f i
dτi− fcτi) = cie−jϕi ej2π f i

dt (16)

where ϕi = 2π
(

f i
dτi + fcτi

)
, when fc � f i

d, ϕi ≈ 2π fcτi; thus, the baseband form of the
multipath received signal can be expressed as

Rb(t) =
I

∑
i=1

cie−jϕi ej2π f i
dt (17)

When the number of rays I → ∞ , the received signal can be expressed as the integral
function of all frequency components from the minimum Doppler frequency fd,min to the
maximum Doppler frequency fd,max

Rb(t) =
∫ fd,max

fd,min

√
P( fd)e−jϕi ej2π fdt d fd (18)

where P( fd) represents the continuous Doppler spectral function.

3. Doppler Spread Simulation and Results
3.1. Simulation Model and Parameter Settings of RT

In order to verify the Doppler model proposed in this paper, the RT simulation method
is used in the Wireless Insite (WI) simulation software to obtain the angle and amplitude
characteristics of the transmitted and received signals, and the mapping relationship of the
transmitted and received signals is extracted. The 3D model of the tunnel is built using
the 3D modeling software Inventor. The tunnel is a rectangular straight tunnel with a
length of 300 m, a width of 5 m, and a height of 5 m. In the simulation, the signal carrier
frequency is 28 GHz, and both the transmitting antenna and the receiving antenna are
omnidirectional antennas, located in the center of the tunnel 100 m and 200 m away from
the tunnel entrance. The distance between the antenna and the tunnel ground is 2 m, as
shown in Figure 5. The tunnel structure and transmit and receive antenna parameters are
listed in Table 1.
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Figure 5. Schematic diagram of WI simulation tunnel.

Table 1. Parametric structure of transmitted and receiving antennas in tunnel.

Parameter Value

fc (GHz) 28
(L, W, H) (m) (300,5,5)
(xt, yt, zt) (m) (100,0,2)
(xr, yr, zr) (m) (200,0,2)
(vt, vr) (km/h) (160,80), (160,160)

The tunnel material and simulation ray parameter settings are shown in Table 2. The
tunnel material is concrete, and the parameters such as the permittivity and conductivity
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of the tunnel material are calibrated according to the measured data of Shanghai Metro
Line 7 [10]. Moreover, the signal’s maximum reflection time in the tunnel is set to 10, its
maximum scattering time is set to 2, and its transmission time is set to 0.

Table 2. WI simulation parameter settings.

Tunnel Parameters
Material Permittivity Conductivity (S/m) Thickness (m) Roughness (m)

Concrete 5.31 0.48 0.5 0.005

Ray Parameters Reflections Times Transmission Times Scattering Times Interval of Rays Number of Rays
10 0 2 0.25◦ 250

3.2. Simulation Results and Analysis

The angles and powers of 250 multipath signals are obtained through the RT sim-
ulation, and the propagation paths of the multipath signals in the tunnel are shown in
Figure 6. The polar coordinate form of the multipath signal angle is shown in Figure 7, in
which the pitch departure angle and pitch arrival angle are concentrated around 90◦, while
the horizontal departure angle and horizontal arrival angle are around 0◦ and 180◦. The
angular range of the arrival angle is greater than the angular range of the departure angle.
The angles and powers of the five largest energy paths in the simulation results are shown
in Table 3.
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Figure 7. Angle and power of multipath signals (a) ZOD, (b) AOD, (c) ZOA, and (d) AOA.

Table 3. Angle and power of 5 maximum energy paths.

Number of Multipath φAOD (◦) θZOD (◦) φAOA (◦) θZOA (◦) Pr (dBm)

1 0 90 −180 90 −39.8109
2 −2.86241 90 −177.138 90 −40.3604
3 2.86241 90 177.138 90 −40.3604
4 −5.71059 90 174.289 90 −41.6511
5 5.71059 90 −174.289 90 −41.6511
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The transceiver signal mapping matrix extracted from the RT simulation results can
be represented as an identity matrix with 250 rows and 250 columns

A =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


250×250

(19)

In order to verify the spatial mirroring method proposed in this paper and the random
matching method for scattered signals, after randomly arranging the transmitted signals,
first determine the mapping relationship of the reflected signals between the transceivers
according to the spatial mirroring principle, and then perform random matching on the
unmatched signals. The complete transceiver signal mapping matrix is shown in Figure 8.
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After obtaining the angle, power information, and mapping relationship of the trans-
mitting and receiving signals, the normalized Doppler power spectrum of the transmitting
and receiving antennas at different moving speeds is obtained through the Doppler model,
as shown in Figure 9. The normalized amplitude in the graph is defined as the ratio of the
power of each single path to the total power of the multipath. When the moving speeds
of the receiving and transmitting antennas are 160 km/h and 80 km/h, the Doppler shift
of the LoS signal in the RT simulation results is 2.074 KHz, and the Doppler spread is
2.516 KHz. The Doppler shift of the LoS signal is 2.074 KHz and the Doppler spread is
2.542 KHz in the simulation results of the image space method and the random matching
method of scattered signals. When the receiving and transmitting antennas travel in the
same direction at the same speed, the Doppler shift of the LoS signal in the RT simulation
is 0 Hz, and the Doppler spread is 4.702 KHz. The Doppler shift of the LoS signal is 0 Hz
and the Doppler spread is 4.783 KHz in the simulation results of the image space method
and the random matching method of scattered signals. The Doppler frequency component
to the right of the LoS path is the scattered signal component. The simulation results of the
Doppler spread simulation model in this paper are consistent with the simulation results of
RT, which verifies the availability of the Doppler spread model. The simulation results also
show that in the T2T communication scenario, the Doppler spread of the signal is not only
related to the antenna moving speed, but also to the departure and arrival angles. Due to
the inconsistent angular ranges of the arrival and departure angles of the scattered signals,
the extent of the Doppler frequency spreading to the right of the LoS path is increased.
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√2
+ 𝑗𝐴𝑄

𝑅𝐹𝑖𝑛

√2
 (22) 

where the gain range of VGA is {−1,1}, the amplitude of the output signal 𝑅𝐹𝑜𝑢𝑡 and the 

input signal 𝑅𝐹𝑖𝑛  remain unchanged, and phase difference ∆𝜑 = tan−1(𝐴𝐼 𝐴𝑄⁄ ). Com-
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4. Physical Simulation Model of T2T Communication Channel in Tunnel

In a complex propagation environment, two kinds of fading channels will be generated
due to the delay spreading effect of multipath channels, namely, the frequency flat fading
channel and the frequency selective fading channel. Multipath effects cause the amplitude
of the received signal to shift over time when the signal bandwidth Bs is smaller than the
coherence bandwidth Bc, but the signal spectrum does not. In this case, the duration of the
symbol Ts is greater than the maximum time delay τmax of multipaths, and this channel is
called the flat fading channel. In a flat fading channel, the influence of the time delay on
the communication system can be ignored. Existing test results show that the multipath
delay in tunnel scenarios is tens of nanoseconds [11–14], that is, τmax < Ts, so the bandpass
form of Equation (17) can be expressed as the product of the bandpass transmit signal xp(t)
and the multiplicative spreading factor H(t)

R(t) = Re
{

xp(t)H(t)
}
= Re

{
xp(t)

I

∑
i=1

ciej2π f i
dt

}
(20)

where xp(t) = xp,I(t) + jxp,Q(t), H(t) = |H(t)|ejϕ(t) = HI(t) + jHQ(t), then Equation (20)
can be expressed as

R(t) = Re
{

xp(t)|H(t)|ejϕ(t)
}
= xp,I(t)HI(t)− xp,Q(t)HQ(t) (21)

where ϕ(t) = tan−1(HI(t)/HQ(t)
)

is the phase shift caused by the Doppler shift of multipaths.
The circuit structure of the IQ vector phase shifter [15,16] is shown in Figure 10.

The phase shifter circuit consists of a quadrature splitter (QS), a variable gain amplifier
(VGA), and a quadrature combiner (QC). The input RF signal RFin generates the in−phase
component VI = RFin/

√
2 and the quadrature component VQ = jRFin/

√
2 after passing

through the quadrature splitter. After VI and VQ pass through independent VGAs, they are
summed in the combiner, and the output signal RFout is a function of the VGA gains AI
and AQ

RFout = AIVI + AQVQ = AI
RFin√

2
+ jAQ

RFin√
2

(22)

where the gain range of VGA is {−1,1}, the amplitude of the output signal RFout and
the input signal RFin remain unchanged, and phase difference ∆ϕ = tan−1(AI/AQ

)
.

Compared to (21) and (22), make xp = RFin, then xp,I = RFin/
√

2, xp,Q = jRFin/
√

2,
AI = HI , AQ = −HQ. Therefore, the physical simulation of the channel can be theoretically
realized by using the program-controlled IQ vector phase shifter. The physical simulation
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model is shown in Figure 11. In Figure 11, the IQ vector phase shifter is a program-
controlled phase shifter that can be controlled in real time.
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5. Conclusions

In this paper, the Doppler shift and Doppler spread of T2T communication in a tunnel
environment are studied. Independent coordinate systems are established at the receiving
and transmitting antennas. According to the angle and amplitude characteristics of the
receiving and transmitting signals, the Doppler spread caused by the movement of the
receiving and transmitting antennas is analyzed. The use of the mapping matrix approach
to solve the matching problem of the transmitting and receiving signals is presented as
an innovative solution, and two methods for obtaining the mapping matrix are described
and verified. In order to verify the T2T Doppler spread simulation model proposed in this
paper, the RT method is used to simulate the T2T communication channel in the tunnel, and
the angle and amplitude information of the transmitted and received signals are obtained.
By comparing the Doppler results of the simulation model with those of WI simulation, the
correctness of the T2T Doppler spread simulation model is proved. Based on the Doppler
spread model, a physical channel simulation method using an IQ vector phase shifter to
complete T2T communication in a tunnel environment is proposed, which can provide
a reference for the physical channel simulation of 5G mmWave T2T communication in a
tunnel environment in the future.
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