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Abstract: In this paper, we propose a crosstalk correction method for color filter array (CFA) image
sensors based on Lp-regularized multi-channel deconvolution. Most imaging systems with CFA
exhibit a crosstalk phenomenon caused by the physical limitations of the image sensor. In general,
this phenomenon produces both color degradation and spatial degradation, which are respectively
called desaturation and blurring. To improve the color fidelity and the spatial resolution in crosstalk
correction, the feasible solution of the ill-posed problem is regularized by image priors. First, the
crosstalk problem with complex spatial and spectral degradation is formulated as a multi-channel
degradation model. An objective function with a hyper-Laplacian prior is then designed for crosstalk
correction. This approach enables the simultaneous improvement of the color fidelity and the
sharpness restoration of the details without noise amplification. Furthermore, an efficient solver
minimizes the objective function for crosstalk correction consisting of Lp regularization terms. The
proposed method was verified on synthetic datasets according to various crosstalk and noise levels.
Experimental results demonstrated that the proposed method outperforms the conventional methods
in terms of the color peak signal-to-noise ratio and structural similarity index measure.

Keywords: crosstalk phenomenon; crosstalk correction; color filter array; multi-channel deconvolution;
Lp regularization

1. Introduction

Advancements in image acquisition devices, including camera imaging systems, have
continually opened new application areas. In recent years, the rapid development of
imaging systems fostered by mobile-camera technology has promoted the application of
imaging systems in many fields, such as security, military, aerial imaging, satellite imaging,
and autonomous vehicles. Accordingly, the demand for cost-effective high-performance
imaging using low computational power has increased. To fulfill this need for efficiency
in camera imaging systems, a single sensor based on a color filter array (CFA) is essential,
instead of using three sensors or optical beam splitters.

In response to consumer perceptions and expectations of digital color image contents,
attempts have been made to increase the spatial resolution engendered by the number
of pixels in a limited-sized imaging system. Many signal-processing-based methods for
single sensor architectures have been required to achieve high-resolution, high-sensitivity
imaging. Studies on CFAs [1–3] and demosaicing methods [4–8] have been conducted
to maximize CFA performance. To increase the spatial resolution in a limited-size image
sensor, the pixel size should be reduced. However, this approach can compromise the
sensitivity [9]. As a result, smaller pixels tend to generate more noise. Thus, denoising
algorithms [10,11] are needed to solve such problems, which often occur in low-light
situations. Although the effect on noise is minimized through signal processing, the issue
caused by the pixel size reduction remains.
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Another problem caused by the pixel size reduction is the crosstalk phenomenon.
Specifically, it is caused by the physical limitations of the image sensor, that is, the leakage
of photons and electrons between adjacent pixels [12,13]. As the pixel size continues to
shrink, crosstalk between adjacent pixels emerges. In CFA image sensors, photon and
electron leakage due to optical refraction and minority carriers inevitably occurs as the
geometric distance between adjacent pixels decreases. In the obtained image, crosstalk
typically generates two artifacts: desaturation and blurring. As shown in Figure 1, color
constancy and preservation of the spatial resolution of the image thus cannot be achieved.

(a) (b) (c)

Figure 1. Problems of imaging under the crosstalk condition in CFA: (a) Original image; (b) degraded
image by Gaussian kernel with σg = 0.45 and noise with σn = 0.01; (c) degraded image by Gaussian
kernel with σg = 0.6 and noise with σn = 0.01. As the standard deviation σg of the Gaussian kernel
increases, desaturation and blurring intensify owing to interference with neighboring channels.

Several attempts have been made to overcome this crosstalk phenomenon. The first
approach is based on the hardware design of the sensor or CFA. To achieve better color
reproduction, the CFA is designed to optimize the spectral responses of the entire imaging
system by compensating for the crosstalk effects [14]. Use of backside illumination technol-
ogy with a parabolic color filter decreases the crosstalk while increasing the efficiency [15].
New CFA patterns have been proposed to minimize crosstalk in a sensor with a small pixel
size using a combination of primary and complementary color filters, such as yellow, cyan,
and magenta, as in [12]. Although the crosstalk effect has been reduced through physical
improvements, the image sensors experience difficulties as the pixel size decreases.

The second approach is based on signal processing. For example, the crosstalk phe-
nomenon was analyzed by Hirakawa et al. using a spatio-spectral sampling theory, which
was formulated by using a convolution operation [13]. This method assumes that the most
significant artifact is desaturation; thus, it focuses on color correction. However, the color
correction method that employs matrix inversion may have limitations owing to certain
issues, such as blurry artifacts and noise amplification under low-light conditions.

To solve the desaturation and blurring problem, joint decrosstalk and demosaicing
method was proposed [16]. This method is based on a piecewise autoregressive image
model. It performs demosaicing iteratively under crosstalk constraints. However, this
method is not practicable because it is difficult to utilize recently studied demosaicing
algorithms, such as ARI [8], and it requires considerable computation. In addition, because
this method focuses more on estimating the edge directional weight that is required for
demosaicing, it does not sufficiently preserve the edges in constraint. Therefore, we herein
propose a crosstalk correction method that is based on multi-channel deconvolution with a



Sensors 2022, 22, 4285 3 of 21

hyper-Laplacian prior. It restores the image spatial resolution and color fidelity without
producing obvious artifacts.

The main contributions of this study are the following:

• The crosstalk problem is formulated as a multi-channel degradation model;
• A multi-channel deconvolution method based on the objective function with a hyper-

Laplacian prior is designed. The proposed method utilizes Lp regularization to achieve
the estimated image with sharp edges and details, and it efficiently suppresses noise
amplification for each color component. Concurrently, intercolor regularization is em-
ployed to smooth the color difference components and to encourage the homogeneity
of the edges;

• An efficient algorithm based on alternating minimization is described. Experimental
results validate that the proposed method is more robust than conventional methods.

The remainder of this paper is organized as follows. Section 2 presents the crosstalk
analysis and problem formulation on the multi-channel degradation model. In Section 3,
the proposed method with a hyper-Laplacian prior is detailed. Section 4 presents the
experimental results. Finally, Section 6 concludes this paper.

2. Problem Formulation

An image sensor is based on either a charge-coupled device (CCD) or a complementary
metal-oxide-semiconductor (CMOS). By using CFA and a microlens array, the image sensor
converts the light received from the main lens into digital signals. As each color filter has
its own spectrum, only one piece of color information is obtained from one pixel.

To estimate an original color image from a subsampled image according to the
CFA pattern, demosaicing is used. It is intended to overcome the physical limitations
of a single-sensor imaging system. Consider an original discrete color image, x(n) =
[xR(n), xG(n), xB(n)], where n ∈ Z2, and xR(n), xG(n), and xB(n) are the three color com-
ponents for respective red (R), green (G), and blue (B) channels. The subsampled image
ys(n) according to the CFA pattern can be expressed as

ys(n) = ∑
k∈{R,G,B}

dk(n)xk(n) + e(n), (1)

where dk(n) is the subsampling function of CFA and k ∈ {R, G, B}. This function is
periodic, and dR(n) + dG(n) + dB(n) = 1 for each pixel. The term e(n) is the corresponding
signal-independent additive noise.

During the process of obtaining a subsampled image, desaturation and blurring occur
as a result of the crosstalk phenomenon. Figure 2 illustrates the structure of the imaging
system. The light entering through the camera’s main lens sequentially passes through
the microlens and color filter and reaches the imaging sensor. In this process, interference
occurs on account of optical diffraction and minority carriers caused by the surrounding
pixels. Therefore, the image acquired by the imaging sensor suffers simultaneously from
spatial and spectral degradation. As shown in Figure 2c, the spectral sensitivity shifts
owing to crosstalk inside the imaging sensor. The observation model with the crosstalk
phenomenon can be represented as follows:

yct(n) = ∑
m

b(n, m)ys(n) + e(n)

= ∑
m

∑
k∈{R,G,B}

b(n, m)dk(n)xk(n) + e(n), (2)

where yct(n) is the subsampled image under the crosstalk phenomenon and b(n, m) is
the crosstalk function. This function represents a combination of optical diffraction and
minority carriers. We assume that the crosstalk function is space-invariant. Using matrix
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notation, the relation between the subsampled image and the original image is rewritten
as follows:

yct = BDx + e, (3)

where x denotes the three color component vectors of the original color image with M
rows and N columns; that is, xT = [xT

R, xT
G, xT

B]. Moreover, y denotes the observed image
acquired by the sensor according to the CFA, and e is corresponding additive noise. Vector
x has dimensions 3MN, and each vector y and e is a vector of dimensions MN. Matrix B
has dimensions MN ×MN and denotes a crosstalk function, while D is a subsampling
operator with dimensions MN × 3MN.

Imaging Sensor

Bayer Color Filter Array

(a)

Color Filter Array

Imaging Sensor
(Photodiode)

Microlens Array
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(b)
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Figure 2. Bayer CFA and characteristics of crosstalk phenomenon: (a) Bayer CFA structure. The Bayer
CFA consists of three filters for respective R, G, and B channels. (b) Schematic image of crosstalk
inside the imaging sensor. (c) Example of the spectral sensitivity of the camera imaging system
in a crosstalk-free condition (solid lines) and in a crosstalk condition (dashed lines). The spectral
sensitivity shift is caused by crosstalk inside the imaging sensor.

In general, it is important to solve the inverse problem according to the degradation
model. If the observation model of Equation (3) is a linear shift-invariant (LSI) system, BD
can be replaced with DB since the commutative property is established. The special type
of matrix associated with LSI systems is known as the Toeplitz matrix. In the above system,
B satisfies this matrix; however D is not a Toeplitz matrix. In other words, subsampling op-
erator D violates the commutative property of convolution. Thus, to solve the Equation (3)
problem, the inverse problem with respect to matrix D should be solved sequentially after
solving the inverse problem in terms of matrix B and considering noise e.

On the other hand, the crosstalk degradation is solved by focusing on color fidelity
in [13] after solving the D matrix, which relates to subsampling through demosaicing.
As this method performs demosaicing first, it is not suitable for handling the modeling
presented in Equation (3). Alternatively, a method of performing deconvolution (B−1) in
the subsampled domain should be considered prior to demosaicing (D−1). It is important
to solve the problems sequentially according to modeling. However, performing deconvo-
lution in the subsampled domain causes another problem. Although the method can solve
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the blur phenomenon in Equation (3), it does not sufficiently separate mixing between color
channels. Furthermore, an iterative approach is used that repeatedly performs demosaicing
and deconvolution in the subsampled domain to overcome blur artifacts and maintain
color fidelity in [16].

The crosstalk function is not a simple low-pass filter. Rather, it is a complex process
in which the spectral information of three color components is mixed and the spatial
information of the surrounding pixels are simultaneously mixed in the subsampled domain,
as shown in Figure 3. In particular, as the standard deviation of the Gaussian kernel
increases, the image degradation due to the crosstalk phenomenon increases. As the noise
increases, it becomes difficult to improve the color fidelity. Therefore, a new formulation is
needed to solve the problem based on a multi-channel degradation model. The following
multi-channel degradation model is considered:

y = DHx + e, (4)

where the condition BD = DH should be satisfied, and multi-channel degradation matrix
H is defined by

H =

HRR HRG HRB
HGR HGG HGB
HBR HBG HBB

. (5)

Here, Hkl is the dimension MN ×MN for (k, l) ∈ {R, G, B}. Diagonal matrices Hkk
represent the within-channel kernel, and off-diagonal matrices Hkl represent the cross-
channel kernel when k 6= l.
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Figure 3. Crosstalk kernels at G location: (a) Gaussian kernel of σg = 0.45 and (b) Gaussian kernel of
σg = 0.60. Owing to the crosstalk kernel, spectral and spatial degradation simultaneously occur.

Matrix H can be composed by utilizing the characteristic that each location and channel
has a different kernel according to the CFA periodic structure. Figure 4a shows an example
of configuring matrix H using matrix B and the CFA structure. As each color filter has its
own spectrum, the crosstalk kernel is separated into three different kernels depending on
the location of each color filter even though they have the same shape as the low-pass filter.
Thereafter, a total of nine kernels can be configured by separating each color channel. Note
that multi-channel degradation matrix H changes according to the type of CFA pattern. In
the case of a RGBW [3] or multispectral filter array [2], the number of spectral bands and
spatial periodicity of CFA sampling patterns are different and the formulation thus must
be slightly changed.

Figure 4b shows that different formulations—single-channel and multi-channel degra-
dation models—can yield the same degraded results. By modeling the same phenomenon
differently, we propose a method that can simultaneously solve complex spatial and spectral
degradation through a multi-channel degradation model.
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Figure 4. Example illustrations of single-channel and multi-channel degradation models: (a) Rela-
tionship of B in the single-channel degradation model (left) and H in the multi-channel degradation
model (right). (b) Comparison of the single-channel degradation model (top) and the multi-channel
degradation model (bottom). ARI demosaicing is applied equally to degraded images. The same
degraded results are produced by different formulations of the crosstalk phenomenon, but different
results are restored.

3. Proposed Method

In this section, we propose an efficient algorithm for multi-channel deconvolution
based on the multi-channel degradation model, as mentioned above. To overcome the
ill-posed problem, effective regularization terms are employed to restrict the solution space.
The proposed method utilizes Lp regularization to achieve the estimated image with sharp
edges and details. It efficiently suppresses noise amplification for each color component.
Concurrently, intercolor regularization is employed to smooth the color difference compo-
nents and to encourage the homogeneity of the edges. Thereafter, we describe an efficient
solver to minimize the cost function regularized by specific prior information.

3.1. Multi-Channel Deconvolution

The multi-channel deconvolution problem is used to obtain an estimate of x given y,
D, H, and the prior knowledge of e. Equation (4) can be rewritten as

yk = DkHkx + ek, for k ∈ {R, G, B}, (6)
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where matrix Hk is given by
Hk = [HkR, HkG, HkB], (7)

with the kth block row matrix of dimension MN × 3MN. The regularized solution of the
multi-channel deconvolution problem in (6) is defined as

x̂ = arg min
x

 ∑
k∈{R,G,B}

1
λk
||yk −DkHkx||22 +R(x)

. (8)

Here, the first term, called the data fidelity term, denotes a measure of the Euclidean
distance from the original image to the observed image. The second term R(x) is the
regularization term based on the prior model. Regularization parameters λk manage the
trade-off between the two terms. As each color channel suffers from degradation under the
same conditions, it is assumed that λk for each channel has the same value.

The data fidelity term can generally be defined as the L2-norm, which is known as the
least-squares approach. Although the L1-norm increases the robustness to outliers such as
noise or errors, it is employed in this study because the error term is generally modeled
as Gaussian noise and the crosstalk kernel is an already known prior. As the crosstalk
kernel is not signal-dependent, it can be parameterized through experiments. Moreover,
it is generally assumed to be a Gaussian kernel [14]. In addition, L2-norm data fidelity
enables the finding of solutions with low computational costs [17].

The regularization term is herein adopted to decrease the uncertainty in the inverse
problem by constraining the solution space. The regularization term can be expressed
according to the combination of several constraints:

R(x) = ∑
i

λiRi(x), (9)

where λi is the regularization parameter for each constraint function Ri(x). Tikhonov
regularization is a representative smoothing constraint that assumes that the distribution
of gradient magnitudes for images is smooth [18]. This strategy decreases the uncertainty
using the L2-norm and is defined as follows:

R(x) = ||Cx||22, (10)

where C denotes the second derivative linear operator, which is known as the Tikhonov
matrix. Tikhonov regularization smooths the estimated image with a limited high-frequency
component. However, this regularization strategy inevitably oversmooth some important
information, such as edge sharpness and detail.

To reconstruct the estimated image while preserving the sharp edges, total variation
(TV) regularization is introduced in [19]. TV regularization is one of the most successful
techniques for reconstructing images. In the field of denoising, various noise types are
effectively removed using this regularization strategy [20]. Unlike Tikhonov regularization,
TV regularization is employed in the image restoration process under the assumption that
the image gradient distribution has a Laplace distribution. Therefore, high-frequency infor-
mation, such as edge information or details, can be effectively restored. TV regularization
is defined as follows:

R(x) = ||∇x||, (11)

where ∇ denotes the first derivative linear operator. TV regularization is isotropic if the
norm || · || denotes the L2-norm, and it is anisotropic if it denotes the L1-norm.

Although TV regularization exhibits excellent performance in various image process-
ing fields, recent works have focused on presenting constraints with consideration of the
image characteristics. In research on the properties of natural images [21,22], the statistic of
real-world scenes substantially follows a heavy-tailed distribution in their gradients, which
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is modeled as a hyper-Laplacian prior (p(x) ∝ exp(−k||∇x||pp)). This prior is incorporated
as Lp regularization, and it is defined as follows:

R(x) = ||∇x||pp, (12)

where the norm || · ||pp denotes the Lp-norm and the value of p is typically set to [0.5, 0.8].

3.2. Constraints

In the spirit of a hyper-Laplacian prior, the proposed constraint consists of spatial
regularization to encourage high frequencies within each color channel. It additionally
fosters intercolor regularization to enforce the homogeneity of the edges or details in the
color channels. The first constraint R1(x) coerces sharp edges in the estimated image. If
the prior knowledge of the image gradient is considered, an optimal solution can be found.
Figure 5a presents the probability density of the first-order derivative using 42 images
from the Kodak and McMaster datasets [23]. The empirical distribution can be modeled
as a hyper-Laplacian distribution with p = 0.66. This property allows a regularization
term to employ a hyper-Laplacian prior in the deconvolution problem. Therefore,R1(x) is
represented as follows:

R1(x) = ||∇x||pp, (13)

where ∇ denotes the first derivative operator and p = 0.66.
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Figure 5. Probability distributions from Kodak and McMaster datasets: (a) Distribution of image
gradients and (b) distribution of color difference gradients. The empirical distributions of im-
age gradients and color difference gradients follow the probability distributions of p = 0.66 and
0.62, respectively.

The second constraint R2(x) is chosen to encourage smoothness in the differences
between the color components. In most demosaicing, color interpolation is performed
under the assumption of a high correlation among the three color bands [4–8]. This property
is also valid for natural color images. The optimal Lp-norm can be selected through the
probability density of the color difference gradient, as presented in Figure 5b. Similar to the
case ofR1(x), a hyper-Laplacian distribution with p = 0.62 allows the regularization term
to deploy Lp-norm prior in the image restoration process. The term R2(x) is expressed
as follows:

R2(x) =||∇(+2xR − xG − xB)||
p
p

+||∇(−xR + 2xG − xB)||
p
p

+||∇(−xR − xG + 2xB)||
p
p. (14)
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This regularization term can be expressed in the formR2(x) = ||∇Mx||pp, where

M =



2 0 . . .
0 2
...

. . .

−1 0 . . .
0 −1
...

. . .

−1 0 . . .
0 −1
...

. . .
−1 0 . . .
0 −1
...

. . .

2 0 . . .
0 2
...

. . .

−1 0 . . .
0 −1
...

. . .
−1 0 . . .
0 −1
...

. . .

−1 0 . . .
0 −1
...

. . .

2 0 . . .
0 2
...

. . .


, (15)

and M is an 3MN × 3MN dimensional matrix.
Each regularization term ofR1(x) andR2(x) is incorporated into the objective func-

tion of (8), and the overall objective function is represented as follows:

x̂ = arg min
x

{
||y−DHx||22 + λ1||∇x||pp + λ2||∇Mx||pp

}
, (16)

where λ1 and λ2 are regularization parameters for the constraints of color components and
color difference components, respectively. AsR1(x) andR2(x) have similar p values near
2/3, we assume p = 2/3 in the following optimization problem for convenience.

3.3. Optimization

In this subsection, we describe how to optimize the objective function of Equation (16).
The minimization of an objective function with Lp regularization engenders difficulty in
obtaining closed-form solutions because of the non-differentiability and non-linearity of
the Lp regularization. To efficiently recover estimated image x and solve this problem,
a strategy based on alternating minimization [24], known as half-quadratic splitting, is
employed. Two auxiliary variables w and v are introduced to approximate ∇x and ∇Mx
among the non-differentiable terms || · ||pp, respectively. The approximation model to
Equation (16) can be expressed as follows:

x̂ = arg min
x,w,v

{
||z−Hx||22 + θ1||∇x−w||22

+ λ1||w||
p
p + θ2||∇Mx− v||22 + λ2||v||

p
p

}
, (17)

where w and v are the auxiliary variables, θi denotes the auxiliary regularization parameter,
and z represents the estimated full-color image. Alternating minimization guarantees that
the minimizer of Equation (17) converges to that of Equation (16) as the value of θi moves
toward ∞. Therefore, the objective function in Equation (17) is convex and differentiable.
This formulation allows the minimization problem with respect to the others to obtain a
closed-form formula if one of the three variables, w, v, and x, is fixed.

Note that vector z is first estimated based on the demosaicing method that satisfies
the condition y = Dz. The choice of the demosaicing method is not relevant; however,
the state-of-the-art demosaicing method (e.g., ARI [8]) is advantageous in reducing color
artifacts. Although the effects of subsampling cannot be completely eliminated, this process
enables the objective function to negate the subsampling operator of matrix D.

Since w and v are separable in a given x, the minimizer of the objective function
is readily obtained. By fixing x, the formulation of Equation (17) is separable in w and
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v. Based on the alternative minimization method [24], the minimization problem can be
transformed into two subproblems, as follows:

ŵ = arg min
w

{
||w−∇x||22 +

λ1

θ1
||w||pp

}
, (18)

v̂ = arg min
v

{
||v−∇Mx||22 +

λ2

θ2
||v||pp

}
. (19)

Each objective function in (18) and (19) is a single-variable problem. Although it is
difficult to derive an exact solution for these objective functions, the minimization can
be obtained using a numerical root-finder, such as the Newton–Raphson method. In the
special case of p = 2/3, the exact analytic solution for non-zero w and v is described in [21].
Specifically, the multidimensional minimizer of α||s||pp + ||s− t||22 is extended to the scalar
minimizer of α|s|p + |s− t|2. By calculating the derivative of α|s|p + |s− t|2 with respect to
s, the minimizer is given by:

αp|s|p−1 + 2|s− t| = 0. (20)

For p = 2/3, the equation can be expressed as follows:

α|s|−1/3 + 3|s− t| = 0,

α3|s|−1 + 27|s− t|3 = 0,

s4 − 3ts3 + 3t2s2 − t3s +
α3

27
= 0. (21)

Therefore, the solution of each objective function in (18) and (19) can be solved numer-
ically through the root of the quartic polynomial.

Note that if p = 1, then the objective functions in (18) and (19) will be equal to
the TV regularized problem. Although the proposed method has an optimal solution
with approximately p = 2/3 and a corresponding solution is derived above, the TV
regularization remains a useful strategy in terms of speed and implementation. Each
solution of (18) and (19) with p = 1 is given by the one-dimensional shrinkage, as follows:

ŵ =
∇x
||∇x||1

max(||∇x||1 −
λ1

2θ1
, 0), (22)

v̂ =
∇Mx
||∇Mx||1

max(||∇Mx||1 −
λ2

2θ2
, 0). (23)

The solution to this problem can be achieved component-wise.
For fixed w and v variables, the objective function in (17) can be simplified as a

least-squares formulation as

x̂ = arg min
x

{
||z−Hx||22 + θ1||∇x−w||22 + θ2||∇Mx− v||22

}
. (24)

Moreover, the objective function is convex and differentiable with respect to x. As the
objective function is composed of quadratic terms, the corresponding optimal solution of
Equation (24) becomes a least-squares problem as follows:

(HTH + θ1∇T∇+ θ2(∇M)T(∇M))x = HTz + θ1∇Tw + θ2(∇M)Tv. (25)

The solution can be obtained by solving its normal equations.
We summarize the proposed crosstalk correction process based on multi-channel

deconvolution in Algorithm 1 with the continuation technique on regularization parameter
θi. The continuous scheme is widely used with the penalty method to speed up the overall
convergence. As a small value of θi is initially set and gradually increases in iterations,
the convergence speed can be accelerated. As the value of θi moves toward inf, the
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minimizer of Equation (17) transformed by the quadratic penalty method converges to that
of Equation (16). In terms of convergence, the objective function in Equation (17) is convex
in x, w and v.

Algorithm 1 Crosstalk Correction based on Lp-regularized Multi-channel Deconvolution.

Input: The observed image y, the subsamling matrix D, the crosstalk matrix H, and the
regularization parameters λi

Output: The reconstructed image x̂
Initialization: x0 = 0
Solve z based on the demosaicing method (y = Dz)
θi ← λi

1: repeat
2: Solve w according to Equation (18)
3: Solve v according to Equation (19)
4: Solve x according to Equation (24)
5: θi ← 2θi
6: until θi < θmax

7: return x̂

In implementation terms, the computation of each block in Equation (25) can be
accelerated by a two-dimensional (2D) fast Fourier transform (FFT) at each iteration. Under
the periodic boundary condition for x, ∇T∇, and all block matrices in HTH are block
circulants. Specifically, the matrix on the left-hand side of Equation (25) can be precomputed
once before the iterations. At each iteration, six FFTs are applied to w and v. Then, three
inverse FFTs are computed to obtain x. Therefore, a total of nine FFTs (including three
inverse FFTs) are required to solve Equation (25).

4. Experimental Results

The performance of the proposed method was evaluated using the color peak signal-
to-noise ratio (CPSNR) and structural similarity index (SSIM) [25] as objective image quality
metrics. The former was used to evaluate the intensity differences between the original
image and the estimated image; the latter was employed to evaluate the structural similarity
in terms of the human visual system. In particular, SSIM is suitable for comprehensively
determining the similarity between luminance and chrominance components.

4.1. Datasets

Several experiments were conducted to verify the performance of the proposed method
using artificially degraded images. For the comparisons, we generated crosstalk degrada-
tion on four public benchmark datasets: Kodak, McMaster [23], Set5 [26], and Set14 [27].
The point spread function of crosstalk is inspired by the crosstalk kernel given by [14].
Moreover, two levels of degradation were tested with consideration of the crosstalk phe-
nomenon that intensifies in accordance with the pixel size. For crosstalk degradation 1, the
synthetic datasets were generated by convolving the ground truth (GT) images within
the given dynamic range [0, 1] and the crosstalk kernels of the 2D Gaussian kernel with a
standard deviation of σg = 0.45. They were also generated by adding Gaussian noise with
a standard deviation of σn = 0.01. For crosstalk degradation 2, the Gaussian crosstalk kernel
with a standard deviation of σg = 0.60 and a Gaussian noise with a standard deviation of
σn = 0.04 were used. We assume that the crosstalk kernel is space-invariant.

4.2. Compared Methods

For performance comparisons, we implemented four conventional methods. The
first conventional method (CM1) was explained as the ARI method in [8]. It only per-
formed demosaicing and ignored the crosstalk kernel. The second (CM2), described as
Lucy-demosaicing in [16], performed single-channel deconvolution based on the Lucy–
Richardson method [28]. The third (CM3) was inspired by CM2 and applied TV-based
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single-channel deconvolution [24]. For CM2 and CM3, deconvolution was performed in
the subsampled domain, followed by demosaicing. The fourth method (CM4) was deemed
a color correction method in [13]. It focuses on color correction with consideration of the
crosstalk kernel. For CM4, the CFA image was first demosaiced by the various demosaicing
methods. The fifth (CM5), sixth (CM6), and seventh (CM7) performed single-channel
deconvolution based on deep-learning approach [29–31]. Each method uses a convolution
neural network (CNN) to solve a constraint optimization problem. In a similar way to CM3
and CM4, deconvolution performed in the subsampled domain for CM5, CM6, and CM7
using pre-trained models. In this experiment, ARI demosaicing [8] was applied equally
to various conventional methods requiring demosaicing. The parameters were chosen to
achieve the highest CPSNR values for all test images.

4.3. Comparisons

The quantitative evaluation of the Kodak and McMaster datasets [23] for crosstalk
degradation 1 in terms of the CPSNR and SSIM values is demonstrated in Table 1. It is
observed that the proposed method improved the performance. It achieved the highest
CPSNR and SSIM values among all methods, including demosaicing (CM1), deconvo-
lution (CM2 and CM3), color correction (CM4), and deep-learning-based deconvolution
approach (CM5, CM6, and CM7). Note that the higher the CPSNR value is, the closer
the estimated image is to the original image. Moreover, the higher the SSIM value, the
better the perceived quality. The widening performance gap between the conventional
methods and the proposed method can be confirmed for crosstalk degradation 2 in Table 2.
In other words, the proposed method is robust against both crosstalk degradation and
noise. Quantitative assessments for the Set5 [26] and Set14 [27], including the Kodak and
McMaster datasets [23], are summarized in Table 3.

A comparison of the qualitative evaluation for crosstalk correction is visualized in
Figure 6. In CM1, where only demosaicing was applied, color degradation is clearly
observed. When the degree of crosstalk degradation is insignificant, it is defined as crosstalk
degradation 1. The single-channel deconvolution methods (CM2 and CM3) show relatively
good results in terms of improving color fidelity and producing sharp details. However,
noise amplification is not completely considered. In CM4, which focused on color correction,
blurring artifacts are not at all improved. The deep-learning-based deconvolution methods
(CM5, CM6, and CM7) show usable results in terms of reducing noise and producing sharp
details. However, the color fidelity has improved in a limited way. In contrast, the proposed
method based on multi-channel deconvolution successfully reconstructed edge sharpness
and overcame color degradation without noise amplification.
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Table 1. Objective Performance Comparison of the Kodak 24 and McMaster 18 Images in CPSNR
(dB) and SSIM for Crosstalk Degradation 1 (crosstalk kernel with σg = 0.45 and noise with σn = 0.01).

Kodak dataset

CPSNR SSIM
No. CM1 CM2 CM3 CM4 CM5 CM6 CM7 PM CM1 CM2 CM3 CM4 CM5 CM6 CM7 PM

1 30.59 35.15 35.20 33.72 26.47 29.56 24.51 35.67 0.9527 0.9553 0.9568 0.9494 0.8497 0.9483 0.9223 0.9628
2 23.89 34.98 35.44 35.91 29.28 23.97 24.45 36.85 0.8992 0.8887 0.8918 0.9068 0.8428 0.7832 0.8429 0.9278
3 27.47 36.63 36.94 37.13 27.75 25.19 25.22 38.71 0.9165 0.9034 0.9120 0.9174 0.8731 0.8991 0.8797 0.9533
4 27.17 35.45 35.75 36.43 25.82 24.26 23.02 37.15 0.9259 0.9112 0.9153 0.9265 0.8355 0.8653 0.8745 0.9411
5 30.13 35.02 35.11 33.68 27.34 28.36 25.12 35.42 0.9549 0.9585 0.9603 0.9581 0.8937 0.9467 0.9283 0.9679
6 30.37 35.49 35.70 35.03 25.62 27.85 24.72 36.39 0.9484 0.9374 0.9413 0.9425 0.8444 0.9446 0.9114 0.9572
7 30.76 36.66 36.88 37.11 27.16 28.59 25.33 38.72 0.9417 0.9247 0.9306 0.9373 0.9226 0.9292 0.9073 0.9658
8 30.55 33.21 33.38 31.61 27.58 30.73 24.19 33.61 0.9543 0.9520 0.9550 0.9507 0.8951 0.9585 0.9257 0.9586
9 33.20 36.19 36.47 36.32 31.01 30.14 24.78 38.01 0.9318 0.8872 0.9028 0.9106 0.9180 0.9364 0.8796 0.9442
10 34.33 36.40 36.53 36.44 29.09 29.64 24.14 37.90 0.9379 0.9093 0.9177 0.9262 0.9140 0.9360 0.8880 0.9480
11 31.58 35.37 35.65 35.20 26.62 29.04 25.20 36.44 0.9406 0.9255 0.9320 0.9323 0.8241 0.9442 0.9014 0.9482
12 30.71 36.86 36.72 37.29 24.46 27.02 24.74 38.60 0.9345 0.9080 0.9133 0.9238 0.8388 0.9188 0.8824 0.9459
13 29.33 33.38 33.41 31.45 25.82 28.22 24.66 33.95 0.9481 0.9585 0.9598 0.9473 0.8135 0.9513 0.9278 0.9646
14 27.92 34.45 34.71 34.39 27.80 27.12 24.97 35.20 0.9391 0.9400 0.9441 0.9443 0.8538 0.9361 0.9085 0.9518
15 28.21 34.87 35.20 35.60 26.08 25.00 24.27 36.81 0.9194 0.8913 0.8968 0.9119 0.8485 0.8789 0.8699 0.9381
16 34.48 36.58 36.93 36.94 28.61 32.19 25.08 37.98 0.9435 0.9234 0.9307 0.9334 0.8822 0.9481 0.9037 0.9531
17 34.86 36.16 36.54 36.21 30.75 32.62 23.20 37.63 0.9419 0.9186 0.9286 0.9334 0.9025 0.9461 0.8905 0.9539
18 30.18 34.31 34.45 33.62 27.99 29.04 23.44 34.78 0.9348 0.9292 0.9355 0.9338 0.8450 0.9268 0.8977 0.9434
19 31.80 35.65 35.83 34.88 28.37 30.25 23.02 36.44 0.9382 0.9238 0.9306 0.9319 0.8526 0.9370 0.8905 0.9476
20 32.17 36.63 36.78 36.56 27.79 31.10 21.78 38.19 0.9367 0.9153 0.9218 0.9278 0.8861 0.9365 0.8730 0.9521
21 31.98 35.41 35.59 34.82 28.57 32.12 24.12 36.44 0.9382 0.9074 0.9133 0.9215 0.8921 0.9296 0.8926 0.9492
22 29.95 34.95 35.09 35.11 26.10 28.13 24.60 35.92 0.9305 0.9164 0.9229 0.9275 0.8106 0.9215 0.8946 0.9399
23 25.74 36.88 36.90 37.38 26.76 23.06 24.95 39.36 0.9135 0.8965 0.9044 0.9153 0.8902 0.8738 0.8706 0.9522
24 31.34 33.71 33.79 32.90 28.13 29.77 23.41 34.30 0.9488 0.9411 0.9451 0.9440 0.8937 0.9525 0.9177 0.9592

Avg. 30.36 35.43 35.63 35.24 27.54 28.46 24.29 36.69 0.9363 0.9218 0.9276 0.9314 0.8676 0.9229 0.8950 0.9511
McMaster dataset

CPSNR SSIM
No. CM1 CM2 CM3 CM4 CM5 CM6 CM7 PM CM1 CM2 CM3 CM4 CM5 CM6 CM7 PM

1 22.33 29.21 29.18 28.96 26.31 20.12 20.85 29.12 0.8460 0.8968 0.8967 0.8920 0.8195 0.8017 0.8329 0.8992
2 27.01 33.42 33.37 33.35 27.43 25.36 22.16 33.88 0.8754 0.8987 0.8994 0.9026 0.7900 0.8190 0.8291 0.9196
3 28.40 33.07 33.09 32.36 27.72 25.73 22.17 33.41 0.9245 0.9348 0.9378 0.9377 0.8910 0.9025 0.8764 0.9549
4 30.85 34.71 34.90 34.64 30.34 27.17 20.35 36.21 0.9516 0.9372 0.9425 0.9474 0.9504 0.9583 0.8993 0.9713
5 27.55 33.53 33.53 33.53 27.53 26.61 22.19 33.88 0.9077 0.9188 0.9208 0.9243 0.8568 0.8773 0.8752 0.9370
6 28.08 35.77 35.71 35.93 28.83 27.25 23.31 36.50 0.9045 0.9263 0.9279 0.9320 0.8500 0.8650 0.8806 0.9447
7 30.03 35.72 35.97 35.52 30.09 28.78 22.93 36.11 0.9254 0.9313 0.9342 0.9331 0.8348 0.9079 0.8610 0.9458
8 33.80 35.85 35.98 35.36 32.21 31.44 22.27 36.77 0.9132 0.9104 0.9146 0.9122 0.8891 0.9021 0.7697 0.9449
9 26.06 34.77 34.73 34.87 28.09 24.89 21.68 35.80 0.8841 0.9027 0.9036 0.9132 0.8431 0.8100 0.8424 0.9409
10 24.01 35.74 35.58 35.87 27.79 22.06 22.55 36.66 0.8582 0.9185 0.9181 0.9218 0.8137 0.7644 0.8305 0.9464
11 24.45 36.28 36.06 36.43 27.14 22.83 22.34 37.36 0.8150 0.9118 0.9075 0.9161 0.7336 0.7052 0.7810 0.9426
12 25.63 36.12 36.09 36.03 30.77 27.27 22.36 37.69 0.8938 0.8973 0.8988 0.9094 0.8624 0.8367 0.8471 0.9455
13 27.79 36.16 36.19 36.88 33.04 31.32 22.60 38.79 0.9015 0.8639 0.8675 0.8895 0.8838 0.8592 0.8435 0.9323
14 26.26 35.66 35.55 36.04 27.51 25.07 22.36 37.04 0.8740 0.8906 0.8924 0.9007 0.8084 0.8005 0.8248 0.9296
15 24.16 35.85 35.71 36.04 28.61 22.12 22.41 37.13 0.8509 0.8904 0.8902 0.8971 0.7458 0.7069 0.7838 0.9280
16 21.74 33.66 33.48 33.11 27.96 18.23 21.67 33.17 0.8098 0.9346 0.9332 0.9326 0.8141 0.7283 0.8265 0.9369
17 22.42 32.78 32.65 32.71 26.90 19.07 21.59 32.92 0.8137 0.9218 0.9202 0.9239 0.7896 0.6346 0.8147 0.9326
18 25.46 33.99 33.91 34.00 27.56 22.81 21.54 34.70 0.9103 0.9248 0.9257 0.9293 0.8581 0.8628 0.8593 0.9419

Avg. 26.45 34.57 34.54 34.53 28.66 24.90 22.07 35.40 0.8811 0.9117 0.9128 0.9175 0.8352 0.8190 0.8377 0.9386
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Table 2. Objective Performance Comparison of the Kodak 24 and McMaster 18 Images in CPSNR
(dB) and SSIM for Crosstalk Degradation 2 (crosstalk kernel with σg = 0.6 and noise with σn = 0.04).

Kodak dataset
CPSNR SSIM

No. CM1 CM2 CM3 CM4 CM5 CM6 CM7 PM CM1 CM2 CM3 CM4 CM5 CM6 CM7 PM
1 23.45 20.40 22.96 20.14 22.80 23.14 19.54 25.91 0.7248 0.4425 0.6344 0.4994 0.6268 0.7946 0.4642 0.7379
2 17.06 21.14 19.98 18.22 21.64 16.51 18.54 29.96 0.5310 0.2356 0.2662 0.1925 0.3376 0.5778 0.2390 0.7700
3 20.82 19.61 22.39 17.56 23.37 20.41 19.30 30.91 0.5760 0.1969 0.3985 0.1917 0.6379 0.7723 0.2364 0.8465
4 20.61 20.16 21.66 18.58 21.33 19.68 18.52 29.88 0.6019 0.2448 0.4159 0.2518 0.4217 0.7373 0.2706 0.7980
5 23.23 21.09 23.01 20.60 23.57 23.24 20.36 25.96 0.7426 0.5307 0.6606 0.5354 0.7330 0.8275 0.5539 0.8009
6 23.54 19.94 22.87 19.06 23.15 23.17 18.89 27.07 0.6732 0.3232 0.5541 0.3599 0.6241 0.8006 0.3622 0.7546
7 23.59 20.26 23.50 18.49 24.08 23.28 19.91 29.91 0.6542 0.3197 0.5078 0.3259 0.7194 0.8383 0.3575 0.8836
8 23.79 20.63 23.20 20.05 24.93 24.58 19.79 24.89 0.7587 0.5414 0.6901 0.5629 0.7924 0.8487 0.5709 0.7847
9 25.66 19.83 24.46 17.21 28.08 25.80 19.55 30.53 0.6207 0.2349 0.4672 0.2356 0.8367 0.8285 0.2810 0.8570
10 26.63 19.85 24.70 18.11 27.69 26.75 19.46 30.25 0.6299 0.2316 0.4837 0.2492 0.8225 0.8265 0.2868 0.8423
11 24.58 20.34 23.75 18.96 24.47 24.81 19.91 28.09 0.6435 0.3045 0.5264 0.3133 0.7058 0.7934 0.3507 0.7661
12 23.96 19.53 23.16 17.63 23.00 23.38 19.12 30.74 0.5995 0.1822 0.4279 0.1920 0.5484 0.7995 0.2405 0.8114
13 22.82 20.23 22.58 20.42 20.91 22.93 19.41 24.17 0.7306 0.4803 0.6695 0.5378 0.5656 0.7828 0.5030 0.7413
14 21.08 20.48 22.78 20.13 23.55 21.12 19.85 27.17 0.6743 0.3728 0.5626 0.4058 0.6492 0.7627 0.4063 0.7613
15 21.82 20.72 22.46 18.61 23.18 21.37 18.69 30.04 0.5925 0.2547 0.4325 0.2310 0.6755 0.7784 0.2741 0.8176
16 26.41 19.88 24.56 18.09 26.03 27.01 19.74 29.20 0.6289 0.2136 0.4885 0.2470 0.7383 0.8092 0.2794 0.7712
17 26.81 21.20 25.08 19.33 27.49 27.49 19.69 29.78 0.6445 0.3088 0.5096 0.2922 0.8143 0.8227 0.3360 0.8388
18 23.30 20.83 23.43 19.84 23.17 23.14 19.55 26.95 0.6713 0.3787 0.5639 0.3933 0.6648 0.7747 0.3963 0.7646
19 24.27 20.00 23.82 18.06 23.91 23.85 18.99 27.83 0.6524 0.2954 0.5207 0.3127 0.6986 0.8016 0.3348 0.7913
20 24.96 21.15 24.84 18.69 24.98 24.76 16.59 30.66 0.6653 0.2753 0.5221 0.2478 0.7380 0.8318 0.2708 0.8546
21 24.54 20.16 23.70 17.76 23.66 24.15 19.48 27.94 0.6579 0.3253 0.5118 0.3315 0.5943 0.8170 0.3606 0.8237
22 23.15 19.86 23.13 18.71 22.10 22.65 19.33 28.38 0.6355 0.2539 0.4939 0.2960 0.5215 0.7678 0.3037 0.7641
23 19.28 19.41 21.12 17.47 22.07 18.96 18.84 30.94 0.5742 0.2065 0.3795 0.1864 0.5709 0.7587 0.2428 0.8714
24 24.79 20.36 23.91 19.61 24.42 25.24 19.06 26.50 0.6924 0.3585 0.5861 0.3963 0.7359 0.8228 0.3959 0.7950

Avg. 23.34 20.29 23.21 18.81 23.90 23.23 19.26 28.49 0.6490 0.3130 0.5114 0.3245 0.6572 0.7906 0.3466 0.8020
McMaster dataset

CPSNR SSIM
No. CM1 CM2 CM3 CM4 CM5 CM6 CM7 PM CM1 CM2 CM3 CM4 CM5 CM6 CM7 PM

1 16.54 19.46 19.19 19.74 20.59 16.15 17.09 24.08 0.5966 0.4867 0.5371 0.4583 0.5732 0.6265 0.4650 0.7191
2 20.73 21.58 22.07 19.95 22.87 20.10 19.18 28.06 0.6010 0.4209 0.5022 0.3632 0.5880 0.6816 0.3957 0.7877
3 22.29 20.49 22.32 19.87 22.85 22.20 18.98 25.75 0.7010 0.5153 0.6205 0.5129 0.7628 0.8070 0.5175 0.8282
4 24.53 20.44 23.32 20.00 25.80 25.49 17.50 27.94 0.7179 0.4464 0.6171 0.4752 0.9138 0.8833 0.4815 0.9034
5 21.06 20.64 22.50 19.78 22.94 20.52 18.78 27.34 0.6360 0.3744 0.5187 0.3807 0.6086 0.7314 0.3943 0.8081
6 21.21 20.82 22.64 19.59 23.68 20.65 19.35 27.60 0.6042 0.3592 0.4870 0.3428 0.6010 0.7054 0.3705 0.7908
7 23.19 21.06 23.77 19.99 26.72 23.37 19.34 28.26 0.6592 0.3750 0.5559 0.3862 0.7465 0.7656 0.3786 0.7660
8 26.86 23.86 25.52 19.78 29.03 26.96 20.19 29.73 0.6351 0.4812 0.5268 0.3050 0.8459 0.7972 0.3622 0.8207
9 19.49 20.91 21.74 18.76 22.29 18.82 18.43 28.67 0.5837 0.3675 0.4495 0.3257 0.5174 0.6915 0.3559 0.8365
10 17.58 20.84 20.37 19.71 21.08 17.15 18.28 28.89 0.5541 0.3884 0.4367 0.3331 0.4784 0.6315 0.3529 0.8135
11 18.00 21.15 20.69 19.44 22.54 17.53 18.47 29.91 0.4969 0.3507 0.3809 0.2806 0.4837 0.5586 0.3051 0.7948
12 18.65 20.62 21.41 17.73 23.67 17.92 18.16 29.78 0.5728 0.3018 0.3751 0.2600 0.4956 0.6600 0.2940 0.8558
13 20.55 20.02 22.09 16.67 24.22 19.22 18.44 32.29 0.5653 0.1968 0.3062 0.1631 0.4607 0.6944 0.2216 0.8820
14 19.67 20.98 21.79 18.83 23.60 19.09 19.01 30.98 0.5502 0.3041 0.3959 0.2348 0.5872 0.6683 0.2850 0.8344
15 17.86 21.14 20.40 18.87 21.94 17.19 18.10 30.98 0.5047 0.3322 0.3683 0.2247 0.4392 0.5859 0.2777 0.8161
16 15.87 18.06 18.50 21.53 20.10 15.49 17.23 26.50 0.5825 0.4662 0.5222 0.4982 0.5267 0.6143 0.4585 0.7429
17 16.60 19.80 18.78 20.16 20.83 16.08 17.44 24.38 0.5013 0.4300 0.4568 0.4032 0.5088 0.5389 0.4069 0.7004
18 19.16 20.64 20.91 20.31 21.49 18.76 18.08 28.17 0.6560 0.4417 0.5272 0.4333 0.5850 0.7335 0.4382 0.7988

Avg. 19.99 20.69 21.56 19.48 23.12 19.59 18.45 28.30 0.5955 0.3910 0.4769 0.3545 0.5957 0.6875 0.3756 0.8055
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Table 3. Objective Performance Comparison in Average CPSNR (dB) and Average SSIM.

Crosstalk Degradation 1 (σg = 0.45 and σn = 0.01)

Kodak McMaster Set5 Set14
Method CPSNR SSIM CPSNR SSIM CPSNR SSIM CPSNR SSIM

CM1 30.36 0.9363 26.45 0.8811 27.03 0.9060 27.09 0.8974
CM2 35.43 0.9218 34.57 0.9117 34.95 0.9164 33.17 0.8972
CM3 35.63 0.9276 34.54 0.9128 34.92 0.9186 33.21 0.9001
CM4 35.24 0.9314 34.53 0.9175 35.00 0.9233 33.06 0.9034
CM5 27.54 0.8676 28.66 0.8352 27.66 0.8575 27.51 0.8534
CM6 28.46 0.9229 24.90 0.8190 25.94 0.8801 24.61 0.8654
CM7 24.29 0.8950 22.07 0.8377 19.81 0.8353 19.90 0.7395
PM 36.69 0.9511 35.40 0.9386 35.42 0.9292 33.59 0.9098

Crosstalk Degradation 2 (σg = 0.6 and σn = 0.04)
Kodak McMaster Set5 Set14

Method CPSNR SSIM CPSNR SSIM CPSNR SSIM CPSNR SSIM
CM1 23.34 0.6490 19.99 0.5955 20.48 0.6541 20.66 0.6597
CM2 20.29 0.3130 20.69 0.3910 20.69 0.4302 20.14 0.4139
CM3 23.21 0.5114 21.56 0.4769 21.80 0.5260 21.50 0.5388
CM4 18.81 0.3245 19.48 0.3545 19.88 0.4105 19.50 0.4171
CM5 23.90 0.6572 23.12 0.5957 22.30 0.6064 22.11 0.5908
CM6 23.23 0.7906 19.59 0.6875 19.77 0.7383 20.12 0.7395
CM7 19.26 0.3466 18.45 0.3756 17.43 0.5693 18.04 0.4056
PM 28.49 0.8020 28.30 0.8055 28.67 0.8261 27.34 0.7879

(a) GT (b) CM1 (c) CM2 (d) CM3 (e) CM4 (f) CM6 (g) PM

(h) GT (i) CM1 (j) CM2 (k) CM3 (l) CM4 (m) CM6 (n) PM

Figure 6. Visual comparison of restored images, enlarged parts, and difference maps from crosstalk
degradation 1 (crosstalk kernel with σg = 0.45 and noise with σn = 0.01): (a) Ground truth, (b) CM1,
(c) CM2, (d) CM3, (e) CM4, (f) CM6, and (g) PM. (h–n) Same methods as in (a–g). The first and
second rows present the results of Bike and Parrot in the Kodak dataset, respectively.

Furthermore, as the degree of crosstalk degradation increased, the performance differ-
ence between the conventional methods and the proposed method became more apparent.
Figures 7 and 8 present the results for crosstalk degradation 2. CM1 shows noisy results with-
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out overcoming color degradation and blurring artifacts. The majority of single-channel
deconvolution methods (CM2 and CM3) exhibit limitations in terms of color fidelity be-
cause deconvolution was performed in the subsampled domain. With respect to noise,
CM3 shows slightly better results than CM2. In CM4, the color fidelity is improved close to
the ground truth; however, the noise is amplified, appearing like ink stains in the pixels
with noise. However, as is clearly observed, the proposed method based on multi-channel
deconvolution improves the color fidelity and produces much sharper details than the
other methods. Specifically, it produces the fewest artifacts, such as noise amplification. In
addition, the visual comparison of the difference image shows that the proposed method
achieves a low error rate. Therefore, the proposed method yields more natural and credible
results than the conventional methods.

(a) GT (b) CM1 (c) CM2 (d) CM3 (e) CM4 (f) CM6 (g) PM

(h) GT (i) CM1 (j) CM2 (k) CM3 (l) CM4 (m) CM6 (n) PM

Figure 7. Visual comparison of restored images, enlarged parts, and difference maps from crosstalk
degradation 2 (crosstalk kernel with σg = 0.6 and noise with σn = 0.04): (a) Ground truth, (b) CM1,
(c) CM2, (d) CM3, (e) CM4, (f) CM6, and (g) PM. (h–n) Same methods as in (a–g). The first and
second rows present the results of Bike and Parrot in the Kodak dataset, respectively.

4.4. Influence of Parameters

The proposed method involves regularization parameters λi, which manage the
trade-off between the fidelity to the data and smoothness of the solution. To analyze the
effects of the values of λi on the crosstalk correction method, we performed experiments
with different parameter settings. The value of λi should be determined empirically
based on experiments so that the restored images have reasonable signal-to-noise ratios.
Figures 9 and 10 present examples of the influence of λ1 and λ2 in the case of crosstalk
degradation 2. The results with small values of λ1 are much sharper and noisy, whereas the
results with large values of λ1 are seemingly smoothed and have less noise. Smaller values
of λ2 tend to yield more vivid color, whereas large values of λ2 may be desaturated and
have fewer color artifacts.
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(a) GT (b) CM1 (c) CM2 (d) CM3 (e) CM4 (f) CM6 (g) PM

(h) GT (i) CM1 (j) CM2 (k) CM3 (l) CM4 (m) CM6 (n) PM

Figure 8. Visual comparison of restored images, enlarged parts, and difference maps from crosstalk
degradation 2 (crosstalk kernel with σg = 0.6 and noise with σn = 0.04): (a) Ground truth, (b) CM1,
(c) CM2, (d) CM3, (e) CM4, (f) CM6, and (g) PM. (h–n) Same methods as in (a–g). The first and
second rows present the results of mcm1 and mcm4 in the McMaster dataset, respectively.

(a) (b) (c) (d)

Figure 9. Influence of regularization parameter λ1 for test image House for crosstalk degradation 2
(crosstalk kernel with σg = 0.6 and noise with σn = 0.04): (a) λ1 = 0.01, (b) λ1 = 0.03, (c) λ1 = 0.05,
and (d) λ1 = 0.1.



Sensors 2022, 22, 4285 18 of 21

(a) (b) (c) (d)

Figure 10. Influence of regularization parameter λ2 for test image Parrot for crosstalk degradation
2 (crosstalk kernel with σg = 0.6 and noise with σn = 0.04): (a) λ2 = 0.0001, (b) λ2 = 0.001,
(c) λ2 = 0.01, and (d) λ2 = 0.1.

Figure 11 demonstrates that crosstalk correction can be effectively performed in a range
of λ1, that is, within [0.005, 0.05] and [0.05, 0.01] for crosstalk degradation 1 and 2, respectively.
It is appropriate to select the values of λ2 within [0.0003, 0.003]. Therefore, choosing
the appropriate λi according to the level of degradation will improve the subjective and
objective performances.
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Figure 11. Objective performance comparison for test image Parrot according to regularization
parameters λ1 and λ2: (a) CPSNR values versus values of λ1; (b) SSIM values versus values of λ1;
(c) CPSNR values versus values of λ2; and (d) SSIM values versus values of λ2.

4.5. Convergence Analysis

Finally, we analyzed the convergence behavior of multi-channel deconvolution for
crosstalk correction. The criterion ||xn+1 − xn||2/||xn||2 < η was used to terminate the
iteration, where η was set to 10−4. The propose method converges for various initial
conditions, as plotted in Figure 12a. For the initial estimates, x0, a blank image (x0 = 0),
a demosaiced version of the observed image (x0 = z), or a degraded version of the
demosaiced image (x0 = HTz) was employed. For the experiment on various levels of
crosstalk degradation, the objective function decreased in several iterations, as illustrated
in Figure 12b. In addition, the visualization in Figure 12c shows that the residual image
converges to the image with no value as the iteration progresses. Therefore, the objective
function with a hyper-Laplacian prior converged in several iterations for some variables
through the efficient solver.
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iterations

1st 2nd 3rd 20th

(c)

Figure 12. Convergence for test image Parrot: (a) Value of cost function versus iteration number of
various initial conditions for crosstalk degradation 1 (crosstalk kernel with σg = 0.45 and noise with
σn = 0.01); (b) value of cost function versus iteration number of various degradation conditions; and
(c) visualization of residual image versus iteration number at crosstalk degradation 2 (crosstalk kernel
with σg = 0.6 and noise with σn = 0.04).

5. Discussion

The crosstalk problem generated by the crosstalk kernel in the subsampled domain
causes not only spatial degradation, but also spectral degradation at the same time. Single-
channel deconvolution does not consider the characteristics of CFA, and as a result, there is
a limit to solving complex problems. In this study, it is shown that the crosstalk problem
can be defined as a multi-channel degradation model. In addition, a method to solve the
defined modeling is presented, and an effective objective function and optimization method
are proposed. As can be seen from the experimental results, single-channel deconvolution
can solve the blurring, but cannot solve the desaturation regardless of various methods.
The color correction method is able to improve color fidelity, but the problems regarding
blur and noise still remained. On the other hand, the proposed method is able to improve
both spatial resolution and color fidelity without noise amplification, and it has been
demonstrated that a synergistic effect with the state-of-the-art demosaicing algorithm can
be achieved.

One of the important points is that the regularization parameter in the proposed
method controls the smoothness. Although we have suggested the effective range of
regularization parameters empirically, they will be important variables affecting the results.
Overall, the main concept of the proposed multi-channel deconvolution for crosstalk
correction is to overcome spatial and spectral degradation simultaneously, and its validity
has been proven. The proposed multi-channel deconvolution approach can provide new
insights into solving the crosstalk problem that occurs in the image acquisition system.

6. Conclusions

A crosstalk correction method based on Lp-regularized multi-channel deconvolution
was herein presented. The crosstalk problem with complex spatial and spectral degradation
is formulated as a multi-channel degradation model, and an objective function with a
hyper-Laplacian prior is designed. The proposed method based on multi-channel deconvo-
lution improves color fidelity and produces sharp edges without obvious artifacts, such
as noise amplification. Furthermore, an efficient solver minimizes the objective function
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for crosstalk correction. The cost function gradually converges toward a minimum value
for certain variables. The proposed method was compared with conventional crosstalk
correction methods using synthetic datasets according to various crosstalk and noise levels.
Experimental results demonstrated that the proposed method outperformed the conven-
tional methods in terms of the CPSNR and SSIM values. However, in terms of speed, the
weakness of the proposed method is that the computational complexity is high to perform
real-time processing in camera imaging system. In further research, we will implement the
proposed method with multiple GPUs for a real-time performance. We believe that the
proposed method will be applied to the application of imaging systems in many fields by
overcoming the physical limitations of the image sensor.
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