
����������
�������

Citation: Zahid, S.; Ullah, K.;

Waheed, A.; Basar, A.; Zareei, M.;

Biswal, R.R. Fault Tolerant

DHT-Based Routing in MANET.

Sensors 2022, 22, 4280. https://

doi.org/10.3390/s22114280

Academic Editor: Nikos Dimitriou

Received: 30 January 2022

Accepted: 23 March 2022

Published: 3 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Fault Tolerant DHT-Based Routing in MANET
Saleem Zahid 1 , Kifayat Ullah 2 , Abdul Waheed 3,4,* , Sadia Basar 5 , Mahdi Zareei 6

and Rajesh Roshan Biswal 6,*

1 Institute of Computer Science & Information Technology, FMCS, The University of Agriculture,
Peshawar 25130, Pakistan; szahid77@gmail.com

2 Department of Computer Science, CECOS University, Peshawar 25000, Pakistan; kfytullah@gmail.com
3 Department of Computer Science, Northern University, Nowshera 24100, Pakistan
4 School of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
5 Department of Information Technology, Hazara University Mansehra, Mansehra 21120, Pakistan;

sadiaa.khancs@gmail.com
6 School of Engineering and Sciences, Tecnologico de Monterrey, Zapopan 45201, Mexico;

m.zareei@tec.mx
* Correspondence: abdul@netlab.snu.ac.kr (A.W.); rroshanb@tec.mx (R.R.B.)

Abstract: In Distributed Hash Table (DHT)-based Mobile Ad Hoc Networks (MANETs), a logical
structured network (i.e., follows a tree, ring, chord, 3D, etc., structure) is built over the ad hoc physical
topology in a distributed manner. The logical structures guide routing processes and eliminate
flooding at the control and the data plans, thus making the system scalable. However, limited radio
range, mobility, and lack of infrastructure introduce frequent and unpredictable changes to net-
work topology, i.e., connectivity/dis-connectivity, node/link failure, network partition, and frequent
merging. Moreover, every single change in the physical topology has an associated impact on the
logical structured network and results in unevenly distributed and disrupted logical structures. This
completely halts communication in the logical network, even physically connected nodes would
not remain reachable due to disrupted logical structure, and unavailability of index information
maintained at anchor nodes (ANs) in DHT networks. Therefore, distributed solutions are needed
to tolerate faults in the logical network and provide end-to-end connectivity in such an adversarial
environment. This paper defines the scope of the problem in the context of DHT networks and
contributes a Fault-Tolerant DHT-based routing protocol (FTDN). FTDN, using a cross-layer design
approach, investigates network dynamics in the physical network and adaptively makes arrange-
ments to tolerate faults in the logically structured DHT network. In particular, FTDN ensures network
availability (i.e., maintains connected and evenly distributed logical structures and ensures access
to index information) in the face of failures and significantly improves performance. Analysis and
simulation results show the effectiveness of the proposed solutions.

Keywords: Distributed Hash Table (DHT); fault tolerance; Mobile Adhoc Networks (MANET);
routing

1. Introduction

In general, MANET routing protocols use IP addresses for nodes identification as well
as for routing and consider node identity equal to routing address, i.e., static addressing.
These identifiers are independent of the relative location of nodes in the network and do
not provide any information to guide the routing process. Therefore, these protocols rely on
flooding or network-wide routing information dissemination and degrade performance as
a network scales. On the contrary, the identity and location of nodes should be considered
separately because nodes are mobile, and the network topology continuously changes.
Therefore, the nodes should have a transient routing address that reflects their relative
position concerning their neighbor nodes. From this emerges the concept of dynamic or
transient addressing, where a node changes its address according to its location. In this

Sensors 2022, 22, 4280. https://doi.org/10.3390/s22114280 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114280
https://doi.org/10.3390/s22114280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6115-348X
https://orcid.org/0000-0003-2749-3135
https://orcid.org/0000-0002-0974-6154
https://orcid.org/0000-0002-9876-3932
https://orcid.org/0000-0001-6623-1758
https://orcid.org/0000-0001-6053-3384
https://doi.org/10.3390/s22114280
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114280?type=check_update&version=1

Sensors 2022, 22, 4280 2 of 24

manner, the transient addresses build a logical, structured network that guides the routing
process. This eliminates flooding in routing and makes the system scalable. DHT provides
a scalable way to decouple node location from its identity and facilitate general mapping
between them. In the last few years, several DHT-based routing protocols for MANETs
have been proposed that eliminate flooding in the route discovery, thus making the network
more scalable [1–18]. In DHT-based routing protocols, a node is assigned a logical identifier
(LID) in addition to its permanent identifier (i.e., MAC/IP address also known as user id,
i.e., UID) based on the LIDs of its physical neighbors. The LID is drawn from a predefined
logical identifier space (LS) (i.e., the LS forms a logical, structured network following a
tree, ring, chord, etc., structure). A node must maintain a disjoint portion of the whole
LS, referred to as Logical Space Portion (LSP) (i.e., the LSP acts as the LID for a node).
Moreover, each node keeps track of its logical neighbor nodes with LIDs close to its LID by
following a ring, chord, or multidimensional structure. Thus, a logical, structured network
is built over the ad hoc physical topology. Routing is performed in the logical, structured
network using the transient addresses (i.e., LIDs). The logical structure guides routing
processes and eliminates flooding at the control plane and the data plane. Furthermore, a
connected and evenly distributed LS is always needed for successful routing.

DHT networks can be defined with the help of three entities: (i) Logical Network
construction, (ii) Address Publication phase, also called Anchor Request, and (iii) Lookup
phase, also known as Address Resolution, and actual data forwarding.

i. Logical network construction: In network bootstrapping, nodes compute LIDs and
form a logical, structured network (i.e., LS) over the ad hoc topology of MANET. For
this purpose, a periodic hello message containing necessary information (depends on
protocol specification) is exchanged among the neighboring nodes.

ii. Address Publication/ Anchor Request: After computing LIDs, nodes store their index
information, also called mapping information (i.e., (LID, UID) pair), by sending store
mapping information (SMI) packets, at certain nodes in the network referred to as an
anchor node (AN). A node determines its AN by applying a hash function over its
UID and generates a hashed value, h(v). The hashed value h(v) is drawn from the
same LS used to assign LIDs to nodes. For example, a node p would act as the AN
for node q if either h(v) falls in the LSP of node p or node p’s LID is closest to h(v),
depending on the protocol specification. The SMI packet is unicasted in the logical
network to node q, and node q stores index information for node p. (i.e., node q starts
acting as a designated AN for node p). The address publication process is shown in
Figure 1, dotted line in the figure represents the address publication process.

iii. Lookup phase and actual data forwarding: To send a data packet, a source node s
retrieves the destination node q’s LID from q’s AN, i.e., node p, (Flow 1 and Flow 2 in
Figure 1 shows the lookup process). For this purpose, node s applies a hash function
over q’s UID that gives the LID of node q’s AN, i.e., node p. Based on the computed
LID, node s sends a mapping request message (MREQ) towards node p forwards to
get the index information of node q. Upon receiving the index information of node q
on the mapping reply message (MREP), node s then sends the data packet towards
node q based on the node q LID; Flow 3 in Figure 1 shows data packet routing.

Greedy forwarding is used in the logical, structured network, i.e., the neighbor with
the closest LID to the intended destination node is selected as the next hop. However,
successful resolution of lookup queries, with minimum possible delay, is imperative for
optimal network performance. The terms used in the paper are defined in Table 1.

Sensors 2022, 22, 4280 3 of 24

s

q

Source Node

Destination Node
1:

 M
RE

Q
pk

t.

2:
 M

RE
P

pk
t.

3: Data Sessio
n

p

Anchor node for q

a: SMI pkt.

► Flow1 & Flow 2 show lookup resolution process. ► Flow 3 shows actual data forwarding
►Flow ‘a’ represents the address publication process. ►MREQ represents mapping requests
►MREP represents mapping reply packet. ►SMI shows Store Mapping Info. packet.
►The cloud represents logical structured networks (i.e. , tree, chord) built over the ad hoc physical topology.

Anchor Nodes play two roles:
Holds the mapping information i.e., (UID, LID) pair by
receiving/storing the SMI packets.
Lookup resolution: The anchor node entertains the lookup
queries by responding with the MREP packets against the
MREQ control packets.

Figure 1. Address publication, lookup, and routing in DHT networks.

In DHT networks, logical network construction, address publication, and lookup
processes are the main factors and define overall network performance. Therefore, sophisti-
cated techniques are needed to keep the system in function, especially in the adversarial
environment offered by MANETs. MANETs are entirely self-organized, mobile, distributed,
and infrastructure-less networks. Nodes in the network with limited transmission ranges
use wireless broadcasting mechanisms in a multi-hop fashion to achieve end-to-end con-
nectivity. Limited radio range, mobility, faulty nodes, and lack of infrastructure introduce
frequent and unpredictable changes to network topology, i.e., connectivity/dis-connectivity
(can cause occasional nodes failures, network partition, frequent merging, etc.). Therefore,
an end-to-end path that is believed optimal at a given time might not be available just
after a moment. The case is more severe in DHT networks, where a logical, structured
network is built over the ad hoc physical topology, and routing needs an evenly distributed
and connected logical network. Similarly, access to the index information stored at ANs
(i.e., lookup queries resolution) is imperative for successful routing. Another correlated
problem is the longer lookup delay in DHT routing, where network dynamics significantly
exacerbate the delay. Furthermore, frequent merging is common in MANETs, but DHT
needs extra effort to merge logical structures/LSs (i.e., LIDs reconfigurations, etc.) in a
distributed manner. The impact of network dynamics on DHT networks with a detailed
explanation is discussed in Section 2.

It is worth mentioning that the problem of fault tolerance, in the context of DHT
networks, has not yet been fully explored. There exist no explicit and direct solutions to
the problem. To the best of author’s knowledge, existing DHT-based routing protocols in
MANETs [1–18] mainly consider routing and resilience of the address spaces used. In other
words, existing protocols do not consider network dynamics and associated issues that limit
the scope of these protocols in the adversarial environment of MANET. However, some
closely related work [13,14] consider the problem partially and solve it independently in
the logical network without using physical network information. The adopted mechanisms
in [13,14] introduce huge lookup delays with extra overhead. For further detail please see
Section 3.

Sensors 2022, 22, 4280 4 of 24

Table 1. Definitions/Abbreviations used in DHT routing.

Term/Symbol Description
Anchor Node (AN) A node that holds the mapping information of other nodes. A

source node has to retrieve the mapping info. from the AN
before initiating a data session with destination. Any node in
the network can act as AN.

Logical Identifier(LID) A unique ID that identifies a node in the logical structured
network and, represents the node relative position in the logical
structure.

Logical Space (LS) The LIDs are drawn from the LS. The LS represents a range
of valid LIDs and forms a structured logical network i.e., tree,
chord etc.

Logical Space Portion
(LSP)

Nodes in the logical network maintain a disjoint portion of LS
called LSP. The LSP denotes relative position of a node in the
logical network and acts as LID.

Mapping Informa-
tion/Index Informa-
tion

The mapping info. (i.e. (UID, LID) pair) provides mapping
between permanent identifier (IP/MAC) and LID. The mapping
information are maintained at AN.

Logical Network (LN) The interconnection of nodes based on their LIDs is called logi-
cal network.

Store Mapping Info.
(SMI/SII) packet

After computing LID, a joining node stores its mapping infor-
mation on AN by forwarding SMI packets in the network.

Universal Identifier
(UID)

A unique identifier of a node that remains constant in the net-
work life time. UID can be the IP or MAC address.

Mapping Request
(MREQ) packet

A source node retrieves the mapping info. from the AN by
sending MREQ packets in the network.

Mapping Reply packet
(MREP)

The AN shares the requested mapping info. by sending MREP
packet.

N(v) It represents 1-hop neighbors of node v excluding node v, called
open neighborhood of node v.

N[v] It shows 1-hop neighbors of node v including node v, called
close neighborhood of node v.

LSR It stands for Lookup Success Ratio.
E2E E2E stands for End-to-End lookup delay.

The paper contributions are twofold, i.e., in the problem domain and the solution
domain. In particular, the main contributions are summarized as under:

• This paper explores the classical problem of fault tolerance in DHT-based MANET
and defines its scope(Section 2). In particular, issues such as disrupted logical network
structures, loss of index information due to AN failure or network partition, detecting
and differentiating occasional node failure (i.e., node failure without causing network
partitioning, where alternate paths avoiding the failing node are needed to be found)
and partition detection, merging of logical structures and LID reconfiguration are
addressed (for details, please see Section 2). Additionally, limitations of the existing
protocols are highlighted in Section 3.

• In the solution domain, a suite of distributed mechanisms is provided for the identified
problems under the scalability constraints. Specifically, we consider k-hop topological
information and the philosophies of detection, recovery, avoidance, and redundancy
to cope with the problems. Moreover, pre-failure measures (finding critical regions in
the network, dynamic replication, and partition detection) and post-failure measures
(finding alternate paths avoiding the failure, merging and merging detection, and
LIDs reconfigurations) are considered in a distributed manner. (Section 4 presents
detailed description).

The rest of the paper is structured as follow: the scope of the problem is defined in
Section 2, and related work is provided in Section 3. Section 4 presents a suite of distributed
solutions. Simulation and results analysis are given in Section 5. Finally, Section 6 concludes
the paper.

Sensors 2022, 22, 4280 5 of 24

2. The Problem and Its Scope

Generally in MANETs, existing literature [19–23] on the fault tolerance (an overview
is provided in Section 3) targets the node(s) failure problem and assumes that a subset of
nodes in the network fail. The routing process avoids such faulty nodes and makes packet
delivery possible. The existing solution domain is based on the design philosophies of
detection, avoidance, and redundancy. The employed mechanisms detect faulty nodes
and avoid such nodes in the routing process. Similarly, in redundancy-based mechanisms,
multiple routes are maintained between a source and destination pair, where a stable path,
i.e., having no faulty nodes, is selected for routing. However, the case is different in DHT
networks where a logical, structured network is built and maintained over the underline
ad hoc physical topology. The relationship between the physical network and the logical
network is tight. In other words, a change in the physical network has an associated impact
on the logical, structured network. Similarly, node failure has an associated impact on the
logical, structured network. For example, a single fault in the physical topology is directly
associated with the loss of index information (if AN fails, AN holds index information),
logical network partition (i.e., LS loss and disrupted LSs in the created instances), and
indirectly with merging. These problems halt communication entirely and need to be
addressed for optimal network performance. We further explore the problem in DHT
networks. Our findings are summarized as below:

• Existing solutions for the fault tolerance problem are purely designed for flooding-
based infrastructure-less MANET and are not applicable in DHT-based MANET.

• We found that existing solutions [19–23], including multi-path routing, blindly assume
a fault ratio and do not investigate the failure (as not needed). However, in a DHT
network, a node failure causes two different events: (i) occasional node failure without
creating a partition, alternate paths avoid the failure, and routing processes should
avoid the failure in forwarding decisions. Moreover, in (ii) node failure causing
network partition, there exist no alternate paths at all. Similarly, both events have a
different associated impact on the DHT network. For example, in case of event (i) if the
failing node is AN, then the corresponding mapping information remains unreachable.
Similarly, in case (ii), node failure would cause loss of mapping information and leave
unevenly distributed and disrupted LSs (logical networks) in the disjoint instances.
This halts communication in the disjoint partitions. Therefore, mechanisms are needed
to detect and differentiate such events in DHT networks. Algorithms 3 and 4 address
the problems using k-hop topological information, respectively.

• Lookups and AN failure: In the lookup phase, source nodes retrieve routing infor-
mation stored on ANs to initiate a data session with destination nodes. The lookup
request initiated by the source node is routed towards intended ANs in the network.
The designated AN resolves the query by forwarding the required routing information.
Therefore, successful lookup resolution, with minimum possible delay, is imperative
in DHT-based routing. Moreover, DHT inherently suffers from longer lookup delays
in the lookup phase. However, network dynamics prohibit lookup resolution and
introduce massive delays. For example, in the case of AN failure (due to occasional
node failure or network partition), the mapping information is lost, and corresponding
lookup queries would not be entertained. The requesting party will keep trying to
resolve the query, even the AN is no longer available. This causes the failure of lookup
and introduces massive lookup delays and overhead. A similar situation arises, for
example, when a source and destination pair remains in one partition, and the cor-
responding AN resides in a disjoint partition after the network gets partitioned. In
short, the lookup phase defines the overall performance of DHT networks and needs
mechanisms to ensure access to mapping info. In the presence of failure/partition.
Algorithm 2 performs replication decisions across the critical regions (identified by
Algorithm 1 in a dynamic and distributed manner and ensures access to mapping info
in the adversarial environment.

Sensors 2022, 22, 4280 6 of 24

• Merging: Similarly, we argue that merging is indirectly associated with node failure
(i.e., failure causing network partition) and should be treated as an integral part of any
fault-tolerant protocol in DHT networks. Secondly, merging is different in DHT (i.e.,
need to merge disjoint logical structure (LS) to achieve an evenly distributed and con-
nected LS). For example, in the case of a network partition, there would exist multiple
network instances. In a mobile and self-organized environment, frequent merging
might take place. Simple merging (i.e., physical topology) of the disjoint instances
would not restore communication in a DHT-based network. Instead, it will result in a
physically connected but logically disconnected network [5] (i.e., need to merge the
logical structures for an evenly distributed LS). Therefore, additional measures such
as LIDs reconfiguration, root election, etc., are needed to obtain uniformly distributed
and connected LS. Moreover, merging detection in the physical network is needed to
initiate merging in the logical network. It is pertinent to mention that existing merging
solutions [5] assume uniformly distributed LSs in the disjoint networks for smooth
merging. However, partitioning leaves unevenly distributed and disrupted instances
of the logical network (LS). In fact, due to network partition, a portion of the logical
network (LS) is lost. Therefore, for smooth operations in the disjoint instances and
smooth merging, uniformly distributed LSs are needed. To solve the problem, the lost
LS needs to be recovered and reused in the created instances after a network partition.
LS recovery and reusing purely depend on protocol specification. For example, in tree
shape LS, the lost LS is recovered and reused by re-electing new representative nodes,
LIDs reconfigurations, etc., in the disjoint instances. However, LS recovery/reusing
needs timely detection of the partition event. Therefore, partition detection is another
sub-problem in this particular domain. Algorithms 4 and 5 solve these problems in a
distributed manner.

Therefore, DHT protocols should consider the above-highlighted issues to ensure
optimal network performance in adversarial environments.

3. Related Work

Much research exists over the classical fault-tolerance problem in MANETs but is not
applicable in DHT networks (for detail please see Section 2).

E2FT [19] addresses the problem using multipath source routing philosophy in
MANET. The protocol maintains multiple paths between a source and destination pair. The
protocol iteratively estimates and selects specific reliable paths among the available paths.
For this purpose, a source node estimates the quality of a route by sending packets and
measuring the delivery ratio (the destination node acknowledges the packets received).
Specifically, the protocol uses mechanisms such as route estimation (a source node esti-
mates the path quality, i.e., delivery ratio probability), and route selection (best paths are
selected for routing with the help of two additional procedures known as confirmation
and dropping). The confirmation and dropping procedures are used to refine the selection
process progressively. However, the protocol incurs extra overhead to maintain a certain
delivery ratio.

BFTR [20] performs routing in the presence of faulty nodes using a best-effort approach.
BFTR’s key idea is to tolerate the fault to a certain extent and maintain maximal network
performance in an adversarial environment. BFTR classifies existing routes between a
source and destination into two classes, i.e., most feasible and non-feasible paths. For this
purpose, the protocol maintains immediate records (i.e., delivery ratio and delay) of a
path. The paths with the highest delivery ratio are marked as feasible and are selected for
routing. Similarly, the paths having poor past statistics are declared as infeasible and are
discarded. BFTR does not detect faulty nodes on a routing path, but evaluates a path’s
routing feasibility based on its past end-to-end performance statistics.

An enhancement over E2FT [19] was proposed known as weak-estimation learning-
based fault-tolerant routing (WEFTR) [21,22]. WEFTR exploits stochastic learning proce-
dures and obtains better path estimation and selection. The protocol achieves a certain

Sensors 2022, 22, 4280 7 of 24

packet delivery ratio with relatively low overhead as compared to E2FT. WEFTR also
argued that weak estimation procedures best suits mobile environments.

FTAR [23] proposed a bio-inspired solution to the problem of fault-tolerant routing
in MANETS. FTAR exploits the ideas of foraging in natural ants [24]. A source routing
mechanism is used to find routes between a source and destination pair. The proposed
solution ranks the available paths using pheromone value/metric. In this manner, FTAR
selects optimal routes (i.e., having minimum faulty nodes or high pheromone valued routes)
among the existing routes.

However, existing DHT based routing protocols in MANETs [1–15] assume ideal
network environments or mainly focus on addressing schemes and LS resilience in the
perspective of routing. There exist no straightforward solutions, and the problem is not yet
been explored in the DHT context. However, some closely related work partially targets
and solves the problem (for certain specific scenarios); the subsequent paragraphs provide
an overview of the closely related work.

VCP [13] exploits chord-shaped structures for DHT-based routing in MANETs. In net-
work bootstrapping, nodes compute LIDs, in addition to UIDs, using a pre-defined LS that
ranges [S = 0, E = 1]. In this manner, nodes build a logical chord-shaped structured network
over MANET’s ad hoc physical topology. The LIDs computed based on adjacent physical
neighbors’ LIDs show relative positions of nodes in the logical chord. Each node proactively
maintains logical neighbors (predecessor/successor) and physical neighbors recorded in
the routing table. Forwarding decisions consider physical and logical neighbors, where
routing processes assume a uniformly distributed (i.e., dead-ends free) chord. Furthermore,
in case of AN failure, VCP resolves lookup requests using redundancy. For this purpose,
nodes forward and store mapping information on ANs in the address publication phase.
Further, the designated ANs replicate and store copies at directly connected neighbors (i.e.,
1-hop physical neighbors or logical neighbors predecessor/successor). VCP periodically
updates the mapping information stored at actual ANs and the neighbors (i.e., replicas). So
that, in case of an actual AN failure, lookup requests are routed to the vicinity of the failing
node, and a ring search is employed to locate the replicas. The ring search is restricted to
search replicas among 1-hop physical neighbors, i.e., using broadcast. There are several
serious concerns regarding the fault tolerance capability of VCP. The replicas deployment,
maintenance, and locating replicas introduce massive delays, overhead, and failures. Since
VCP replicates and maintains (i.e., periodically updates) mapping information blindly
and in a static manner (i.e., network dynamics are not considered in the replication de-
cisions). This introduces extra overhead and delay. For example, VCP suffers from the
mismatch problem [12,14]. Therefore, neighbors in the logical network might be distant
nodes in the physical network and vice versa. So that replicating mapping information
on predecessors/successors needs several transmissions in the physical network. This
makes the replication process more expansive, mainly when VCP updates the replicas
periodically. This also limits the applicability of the restricted ring search in the lookup
process. The employed ring search, where the search space is restricted to 1-hop physical
neighbors, misleads the lookup requests and introduces huge delay and overhead with
false attempts to solve the lookup queries. Similarly, if the designated AN is critical and
fails, then logical and physical neighbors would remain unreachable, or the network would
get partitioned into disjoint parts. In these cases, the lookup resolution process would fail.
Therefore, the replication decisions should be adaptive using knowledge about network
dynamics. Furthermore, VCP does not consider network partition, merging, and its impact
on network availability. An entirely fault-tolerant system should consider these practical
considerations, especially in MANETs.

DART [14], and M-DART [15] embed the ad hoc physical topology of MANETs into a
logical tree shape structured network. In network bootstrapping, joining nodes compute
LIDs and form a logical tree-structured network (i.e., address tree). After computing LIDs,
nodes store mapping information on specific ANs. A source node retrieves mapping
information from the designated AN before starting the communication session with the

Sensors 2022, 22, 4280 8 of 24

destination node to route data packets. M-DART [15] is an enhanced version of DART.
M-DART’s sole purpose was to explore and pro-actively maintain multiple paths in the
address tree (i.e., logical network) between a source and destination pair. M-DART pro-
actively and blindly (i.e., do not consider physical network connectivity) maintains multiple
paths between a source and destination pair. Therefore, in case of a route failure, alternate
paths, if available, can be exploited. This is an inherent feature of multi-path routing, i.e.,
redundancy. M-DART completely fails in situations where a single path exists. In other
words, MDART does not consider network partition. Similarly, the impact of failures (i.e.,
AN failure, lookup failures, and address tree partitioning/merging) on DHT routing is not
addressed. Moreover, M-DART does not claim fault tolerance capability and does not fit
in the problem scope (please see Section 2). However, DART solves the problem partially
by targeting the ANs failure problem. DART keeps updating mapping information on
the ANs so that the information remains available after every update. The idea is to keep
updating or selecting new ANs blindly and repeatedly. By doing so, the information will
be available after every refresh period despite the failure. Similarly, if lookup queries
arrive earlier than the updates (i.e., before selecting a new AN), the queries are buffered
by the neighboring nodes and are forwarded towards the newly designated AN as soon
as the updates arrive. This scheme has several problems; for example, it introduces an
enormous delay (i.e., buffer delay, forwarding delay, and routing table updating time by the
neighboring nodes) and overhead in the lookup resolution process. Further, the delay and
overhead get worst as mobility and network size increase. Similarly, no buffer management
is provided. However, mobility (high failure ratio) and network size would cause a buffer
overflow, and lookup queries would get lost. Furthermore, DART mentioned the problems
of partition and merging implicitly, using certain assumptions, without implementing
algorithmic detail. These issues limit its scope in adversarial environments.

Another closely related work is [5], In [5], the merging problem is investigated in the
context of mismatch [3,6] problem, and a leader election-based merging approach is utilized
for merging DHT networks. However, the work assumes the existence of evenly distributed
disjoint instances of the network, but this assumption does not hold in practice (for details,
please see Section 2). Moreover, we use rank-based merging as a post-failure technique
to recover from the failures and heal the logical, structured network. Additionally, FTDN
ensures the existence of evenly distributed disjoint instances before initiating the merging
process.

4. Fault Tolerant DHT Network (FTDN)

FTDN employs localized distributed algorithms and solves the problem of fault
tolerance in a DHT-based MANET. FTDN, using a cross-layer design approach, investigates
network dynamics in the physical network and adaptively makes arrangements to tolerate
faults in the logical, structured DHT network. For this purpose, FTDN exploits k-hop
topological information along with the philosophies of detection, recovery, avoidance, and
redundancy. Specifically, FTDN considers pre-failure measures (i.e., measuring network
dynamics, replication, and partition detection) and post-failure measures (i.e., finding
alternate paths to avoid failure, merging detection, and reconfiguring). These measures
ensure DHT network availability, successful lookup resolution and make the system reliable,
fault-tolerant in the adversarial environment of MANET.

Overview: FTDN builds a logical tree-based structured network(Section 4.1), analyzes
network dynamics (Section 4.2), replicates index information in the address publication
process (Section 4.3), differentiates between occasional node failure (finds alternate paths
avoiding the failure) and detects partition event (Section 4.4), and performs merging
detection and merging (Section 4.5).

4.1. Logical Network Construction/LIDs Assignment and Key-Invariants

For logical network construction (i.e., LIDs assignments), we are using existing al-
gorithms in [14]. In network bootstrapping, joining nodes compute L-bit LIDs and build

Sensors 2022, 22, 4280 9 of 24

a virtual rooted binary tree, T(r), r represents the root of the tree, a node with the most
miniature LID in the network is chosen as a root node in the tree. The L-bit longer LID
forms a complete binary address tree with L + 1 levels. All the leaves remain at the same
level in the address tree, and each inner vertex carries zero or two children. The leaves
nodes represent the actual node (i.e., complete address), and the inner nodes, at a certain
level, represent sub-trees (i.e., set of addresses with common prefix), as depicted in Figure 2.
In general, an inner vertex in the address tree at a level-k represents a level-k sub-tree.
The level-k sub-tree represents a set of network addresses/leaves (i.e., nodes) sharing a
common prefix of (L-k) bits. A node can have at most L subtrees. Each node in the network
belongs to one of these sub-trees(siblings). Similarly, all nodes that belong to a sub-tree
share a common prefix.

xxx

10x01x00x

0xx 1xx

010001000

11x

110101100011 111

Node x

Level-0

Level-3

Level-2

Level-1

Figure 2. The Address tree.

For example, a tree T(x), rooted at x, is shown in Figure 2, node x has different sub-trees
at each level, for example, at level-0 the sub-tree is S0(x) = {000}, i.e., contains a single leaf
node (node x by itself), level-1 sub-tree is S1(x) = {001}, level-2 is S2(x) = {010, 011} and
level-3 sub-tree S3(x) = {100, 101, 110, 111}. Each sub-tree at a certain level share a common
prefix, i.e., (L- k) bits, for example, nodes in S1(x), S2(x) and S3(x) have common prefixes
00x, 0xx and 1xx, respectively. Furthermore, in the binary address tree a level-k sub-tree
can have at most two level-(k-1) sub-trees.

The logical network construction algorithm (i.e., the address tree) preserves physical
proximity and maintains a key invariant property called prefix sub-graph constraint.

Key-invariant: Adjacent nodes in the logical network (i.e., address tree) share a
common prefix and represent a connected sub-graph in the physical topology. In other
words, non-empty adjacent (i.e., with common prefix) sub-trees must be connected in the
physical topology.

Formally, for a connected network, G = (V, E) with the address tree, T(x), rooted at x;
there must be nodes, say, (i,j ∈ V) where i∈Sk(x) and j∈Sk–1(x) such that (i,j)∈E, where

{ ∃ i and j where i∈ Sk(x) ∧ j∈ Sk–1(x) | (i, j) ∈ E }

If the prefix subgraph constraint violates, disjoint instances of the address tree (i.e.,
network partition) would exist. FTDN exploits the key invariant and physical topological
information (i.e., critical/non-critical nodes) and makes arrangements to detect the partition
event (i.e., prefix subgraph constraint violation event) and differentiate between occasional
node failure and partition. The key-invariant and the topological information play a vital
role in finding alternate routing paths avoiding the failing nodes (i.e., occasional nodes
failure without causing network partition), see Section 4.4 for detail.

Routing: FTDN exploits logical distances in the logical network and performs the
forwarding decisions. For this purpose, a distance, δ, function based on Longest Common
Prefix (LCP) match is used. The distance function δ(x,y) = L-LCP(x,y) computes logical
distance (in terms of bits) and identifies the most significant bit that differs between the
current node and the destination. Then, the next hop is determined by looking up the

Sensors 2022, 22, 4280 10 of 24

routing entry at the identified index (sub-tree) and packets are sent there, where L represents
a total number of address bits used in the LIDs assignment. In other words, the distance
function returns the sub-tree to which the destination address belongs and the node then
looks up the next-hop table to find the next-hop towards the destination. In brevity, we
omit diagrammatic and algorithmic details for the logical network construction/routing.
For complete detail please see [14]. Our main objective is fault tolerance. The greedy
forwarding and the prefix sub-graph constraint ensure the successful delivery of packets in
the logical network.

4.2. Network Dynamics

FTDN measures physical network dynamics (connectivity/dis-connectivity) using
the concept of critical node(s)/link(s) [25,26] and adaptively makes arrangements (i.e.,
replicating data, partition detection, finding alternate paths avoiding the failed node(s),
and reliable forwarding) in the logical networks to tolerate the faults. A node/link is said
to be critical if its failure causes network partition. FTDN identifies critical nodes/links in a
distributed manner by using k-hop common neighboring nodes. For example, as shown in
Figure 3, the link(x,y) is said to be k-hop critical if its failure leaves node x and node y with
disjoint k-hop neighboring nodes. For k = 1, the link(x,y) is 1-hop critical because 1-hop
neighbors of node x and node y are disjoint. For k = 2, the link(x,y) is 2-hop critical, as there
exist no common neighbors in the 2-hop neighbors of node x and node y. In this manner,
the link(x,y) is considered a globally critical link because for k ≥ 1 there exist no common
neighbors at all. Likewise, node p in Figure 3 is globally critical because there exists no
common neighbor for k ≥ 1. If we increase the value of k then still there exist no common
neighbors. Moreover, a globally critical node/link is always locally critical. Similarly, the
failure of globally critical nodes triggers a partition event.

a

j

b p

x

i

c

d

e

y

Critical Node

Critical link

Physical Network
Topology

Figure 3. k-hop critical node/link scenario.

FTDN employs a k-hop localized distributed algorithm and computes critical nodes/links
using k-hop topological information. For this purpose, nodes need to exchange the list of
their k-1 hop neighbors’ information. In the simplest implementation (i.e., relying on the
existing hello messages), nodes in the network periodically exchange the list of 1-hop
physically connected neighbor nodes besides other information. In this manner, nodes
attain 2-hop topological information. Formally, for a network G = (V, E), the neighborhood
of a vertex v∈V is the induced subgraph of G consisting of all vertices adjacent to v and all
edges connecting two such vertices. Similarly, the open neighborhood, N(v), of the vertex v
consists the set of vertices adjacent to v excluding v, i.e., N(v) = {w∈N(v) : vw∈ E} and the
closed neighborhood of v is N[v] = N(v)∪{v}.

Sensors 2022, 22, 4280 11 of 24

Algorithm 1 computes critical nodes/links based on the localized knowledge avail-
able at nodes despite network-wide control information dissemination. For this purpose,
(line: 1): nodes periodically exchange their open neighborhood in hello message. For any
two adjacent nodes u and v across the link (u,v), node u and node v periodically exchange
N(u) and N(v), respectively. (lines: 4–7): Node u and node v independently compare the
exchanged lists, and if there exist common node(s), i.e., (N[u]∩ N[v]\ (u, v)) 6={}, then node
u and node v declare their status as non-critical (lines: 8–11): otherwise critical. The link
between two critical nodes is treated as critical.

Algorithm 1 Critical node/link detection

Require: Each node in the network exchanges the list of its 1-hop neighbors in the periodic
hello message.

1: Each node u periodically broadcasts its closed neighborhood N[u] and waits to listen
messages from other nodes

2: for each node u ∈V in the network do
3: for each node v∈ adj[u] do
4: if (N[u] ∩ (N[v] \(u,v) == {}) then
5: STATUS (u)← critical
6: STATUS (v)← critical
7: link(u, v)← critical
8: else if (N[u]∩(N[v] \(u,v) 6= {}) then
9: STATUS (u)← noncritical

10: STATUS (v)← noncritical
11: end if
12: end for
13: end for

4.3. Address Publication

The address publication and lookup query resolution play vital roles in DHT networks
and define overall network performance. Similarly, the resolution of lookup queries with
minimum possible delay is imperative for successful communication. However, network
dynamics such as AN failure, network partition prohibit resolution of lookup queries and
exacerbate the delay. We believe that effectively replicating index information during the
address publication at appropriate locations (i.e., based on network dynamics) would
guarantee successful resolution of lookup requests; further, it would help to reduce lookup
delays. However, replication should be dynamic, distributed, and scalable with minimum
possible cost.

For this purpose, FTDN replicates index information in the address publication process
across the critical regions (identified by Algorithm 1). FTDN performs replication and
forwarding decisions at each node independently along the path to the intended AN using
k-hop topological information (connectivity/dis-connectivity). Particularly, consider a
newly joining node j; after computing LID node, j publishes and stores its index information
(LID, UID pair) on AN. Node j determines its AN by applying a hash function over its UID,
say v, generating a hashed value, say h(v), and stores index information on a node (i.e.,
A.N) with LID closest to h(v). For this purpose, node j broadcasts SMI (or SII) packets to be
forwarded towards the intended AN. FTDN takes care of the SMI packets and replicates
index information across all the critical links/nodes along the path to AN. If the actual AN
fails/moves or the network gets partitioned, the index information remains accessible in
the disjoint partitions, and nodes in the network could access node j’s index information
from the replicas despite the actual AN. Algorithm 2 performs replication decisions using
k-hop topological information. (line: 1): when an SMI/SII packet is received at node (i.e.,
k). (lines: 2–3): If node k finds itself closest to the hash valued (i.e., intended AN) then
node k stores the mapping information and starts acting as designated AN. (lines: 4–6):
otherwise, if there exists another node (i.e., m ∈ N(k)) closest to the intended AN and if the

Sensors 2022, 22, 4280 12 of 24

link (k,m) is critical, then node k keeps a copy of mapping information and forwards SMI to
m. lines (7–9): alternatively, the SMI is forwarded to node m without making any replica.

Algorithm 2 Address Publication

Require: When SII/SMI message is received at node k from a newly joining node j along
the path to intended anchor node(AN), where N[k] and N(k) denote closed and open
neighborhood of node k, respectively.

1: On the reception of SII/SMI at a node k from node j∈N[k]
2: if (δ(k, h(v))= mini 6=j∈N[j](δ(i, h(v)) then
3: k← SII
4: else if (∃m ∈ N(k)|δ(m, h(v)) = minl 6=j∈N(j)(δ(l, h(v)) then
5: if (N[u] ∩ (N[v] \(u,v) == {}) then
6: Replicate SII at k and forward SII to m
7: else
8: Forward SII to m without making replica at k
9: end if

10: end if

Impact on lookup: It is observed that the replication scheme significantly reduces
lookup delays and improves lookup success ratio. The proposed address-publication
targets critical regions (i.e., critical nodes/links) in the network, where these regions are
more prone to failure (i.e., AN failure, partition, etc.); therefore, a trivial way is to replicate
the index information across the critical regions so that index information would remain
reachable despite actual AN fails or move/partition, etc. This ensures guaranteed access to
index information in the adversarial environment and significantly improves the lookup
success ratio with minimal delay. It is pertinent to mention that impact of the dynamic
replication has been evaluated (using 3D and Chord structures) and found significant
gains [25].

4.4. Partition Detection and Occasional Node Failure

A leaving/faulty node can cause two important events, i.e., partition detection and oc-
casional node failure events. How to detect and differentiate these events need knowledge
about network dynamics; we exploit network dynamics (critical/non-critical node/links)
and the key-invariant property to effectively detect/differentiate these events.

CASE-I: Occasional node failure or node failure w.o.t causing partition (Finding
alternate path avoiding the failed node)

FTDN uses a cross-design approach and finds alternate routing paths avoiding the
failed node. Specifically, we consider logical network knowledge (i.e., key invariant prop-
erty) and physical network connectivity information (i.e., critical/non-critical status). The
cross-layer design approach finds and ensures a guaranteed available alternate path avoid-
ing the failed node. FTDN finds an alternate path without creating any extra overhead
and relies on the existing periodic hello messages. The parameters (i.e., key invariant and
critical/non-critical) are computed independently at each node without any network-wide
control information dissemination.

Key idea: if the leaving/fail node is non-critical, then there exists an alternate route in
the physical network to reach across the failure, i.e., bypass the faulty node. Particularly,
if an adjacent node u of a node v fails/moves, this would result in two rooted sub-trees
in the logical network, i.e., T(r) and T(u). Node u and its siblings share a common prefix
by the key invariant property and form a connected sub-tree rooted at node u, i.e., T(u).
FTDN investigates the failure further in the physical topology using k-hop topological
information and checks node u status as critical/non-critical. In occasional node failure
(contrast to partition detection event), node v will find node u as non-critical; therefore,
there exist common neighbors (i.e., in other words, there exist alternate paths avoiding the
failure to reach nodes in T(u)). Algorithm 3 (lines: 3–5): finds such common neighbors and

Sensors 2022, 22, 4280 13 of 24

selects an appropriate next hop, k∈T(u). If there exist more than one common neighbor, the
neighbor closest to the intended destination is chosen based on the logical distance in the
logical network, i.e., k ∈ (N(u) ∩ N(v)|(u,k) ∈ E ∧ δ(k, d) = minj∈N(u)∩N(v)(δ(j, d))).

Algorithm 3 failure_handler(u,v,d) [Finding alternate path avoiding the failure]

1: for each node v ∈ G do
2: u = v.nexthop()
3: if (N[u]∩(N[v]\(u,v) 6= {}) then
4: return k∈(N(u)∩ N(v)|(u,k)∈E ∧δ(k, d)=minj∈N(u)∩N(v)(δ(j, d)))
5: end if
6: end for

The key invariant property and network dynamicity measurement (i.e., critical/non-
critical) confirm the guaranteed availability of node k. FTDN finds alternate paths and
bypasses the failing node in a fully distributed manner. As shown in Figure 4, nodes
compute LIDs and form a logical tree over the Adhoc physical topology using the joining
algorithm [14]. For instance, if the link(c,d) fails, node c finds node d as non-critical (since
there exists a common neighbor, i.e., node e) and by the key-invariant node e and node
d share a common prefix (i.e., 10x) thus form a connected subtree. In this manner, the
proposed algorithm returns node e as the next hop to reach the subtree across the failure.

Figure 4. Physical vs. logical network.

CASE-II: Partition Detection
If two adjacent critical nodes u and v in the network (i.e., logical tree T(r) rooted at a

node r with the lowest LID in the network) do not hear each other for a specific time interval
(i.e., Partition_Timer), a Partition_Event is triggered. In this case, the leaving neighboring
node must be k-hop critical (i.e., k-hop neighbors of the leaving node u remains unreachable
to node v and its neighbors N(v) if node u moves/fails) and causes network partition, i.e.,
there exist two distinct instances of the logical tree. The leaving node u and its siblings
share a common prefix and form a connected sub-tree rooted at u, i.e., T(u) by key invariant
property. Node v remains in the tree rooted T(r), where nodes in T(u) invoke the root
election routine and select an appropriate root node, i.e., with the lowest LID. Thus, two
valid instances of the logical tree (LS) with different roots exist. Algorithm 4 timely detect
the partition event and ensures the existence of valid disjoint sub-trees. (line: 1–3): if two
critical nodes with similar roots do not hear each other and the partition timer expires the
partition event triggers. (lines: 4–5: nodes recover and reuse the LS by changing the roots).

Sensors 2022, 22, 4280 14 of 24

Algorithm 4 Partition Detection

1: for each (u,v) ∈ E do
2: if (root[u]==root[v]) then
3: if ((N[u]∩ (N[v]\u, v) == {})∧ Partiti_Timer_Expire == true) then
4: root[u]=u
5: v.purge[u]
6: end if
7: end if
8: end for

4.5. Merging Detection and Merging

As discussed in Section 2, merging physical topologies causes physically connected
but logically independent networks; routing is performed on the logical structure (i.e.,
tree). Therefore, extra effort is needed for merging the disjoint logical structures (i.e.,
trees); merging logical networks should produce an evenly distributed LS (a connected
logical network, i.e., a single-rooted tree). Therefore, the merging process should consider
measures such as LIDs reconfiguration and new root election, etc. Moreover, a smooth
network working needs an evenly distributed LS (i.e., single root with the most miniature
LID where all other (n-1) nodes LIDs form the sibling trees), how to merge two disjoint
LSs (i.e., sub-trees) into an evenly distributed LS (i.e., singly connected rooted tree) with
minimum cost is a challenging issue.

FTDN maintains root and rank information on every node in the network. FTDN
exploits the existing periodically exchanging hello messages; the hello message contains
root LID and rank value beside other information. If nodes across the network find different
root LIDs in the periodic hello messages, nodes trigger merging detection events, and the
actual merging process is initiated. Timely detection of merging detection events is needed
to start a smooth merging process. The rank metric makes the merging process more
efficient and cost-effective. Rank is an upper bound on the size of the rooted binary tree,
and nodes compute rank value independently. Rank = (2h+1–1), h = L (height of the tree or
address length, i.e., number of occupied address bits, excluding unused bits) is tree height.
Similarly, the root node LID in a tree acts as representative/identity of a network, i.e., tree.

Merging: The merging process should produce an evenly distributed single-rooted
tree with minimal cost. FTDN merges the smaller tree with the more extended tree. In other
words, nodes belong to the smaller tree re-compute LIDs and correspondingly update root
and rank information. Merging a smaller tree with the longer one makes the process cost-
effective (i.e., would cause minimum possible reconfiguration cost). For this purpose, FTDN
exploits the rank information and performs rank-based merging causing at most log(n)
reconfiguration operations, i.e., re-computing LIDs, updating root and rank information.
Algorithm 5 performs merging detection and merging process in a distributed manner.
The hello messages carrying root, rank, etc., information are periodically exchanged by
the nodes in the network. (Lines: 2): If a node u discovers a node v with a different
root LID, node u perceives a merging detection event. Furthermore, (Lines: 3–8): a rank-
based merging process is initiated where nodes in the smaller tree change LIDs, root, and
rank information.

Sensors 2022, 22, 4280 15 of 24

Algorithm 5 Merging

1: for each edge (u,v) ∈ E do
2: if (root[u] 6= root[v]) then
3: if (rank(u) < rank(v)) then
4: root[u]=root[v]
5: LID[u]=unused slot of LID[v]
6: else
7: root[v]=root[u]
8: LID[v]= compute-LID(v)
9: end if

10: end if
11: end for

Rank-based merging significantly reduces reconfiguration costs. Since the ranks make
sure to merge the smaller tree with the more enormous tree, smooth merging causes at most
log(n) operations (LIDs to be updated) for n number of nodes, particularly, consider a node
x in the network, each time node x’s LID was updated by the algorithm x must be in the
smaller tree (due to rank metric). Therefore, the first time update in x’s LID would cause a
tree to have at least two nodes. Similarly, a subsequent update (i.e., LID are only updated
in the merging process) in the x’s LID at least double the size of nodes in the resulting tree,
i.e., four nodes. In a tree implementation, at most log(n), total union operations are needed
to merge n number of nodes. Therefore, most log(n) operations are needed to perform
a smooth merging by the algorithm. In an arbitrary merging or blind merging (i.e., not
ranked base), there can be at most (n – 1) merging events to unite n number of nodes, and
at most O(n2) operation would be required for reconfiguration/LIDs updates. In other
words, at most log(n) nodes would require reconfiguring LIDs.

4.6. Challenges

Synchronizing Replicas and Anchor Node: FTDN replicates and maintains mapping
information across critical regions besides actual AN. This creates multiple replicas (i.e.,
ANs) alongside the actual AN. In this scenario, synchronizing the replicas and the actual
AN is crucial. For this purpose, FTDN updates the mapping information maintained at the
replicas as well as at the actual AN after a certain time interval, i.e., the Partition_Timer
(the Partition_Timer is set to three times the hello interval). In this manner, a fresh copy of
mapping information is available after every refresh period. However, the synchronization
is achieved at the cost of extra transmission overhead.

Power constraints: FTDN identifies critical nodes/links and replicates the mapping
information accordingly besides the actual AN. If the designated actual AN or the replicated
node is a low-powered node then this would cause extra power consumption in the energy-
constrained nodes. Therefore, measures are needed to cope with this issue.

Transmission Overhead: DHT routing protocols rely on periodically broadcasting hello
messages and building logical structure network (i.e., nodes compute LIDs) over the ad
hoc physical topology. Similarly, FTDN exploits the existing hello messages and exchanges
control information such as 1-hop neighbors, root, and rank, among the neighboring
nodes. This additional information in hello packets introduces extra transmission overhead.
However, there is a trade-off between fault tolerance and overhead.

5. Simulation and Results Analysis

We implement FTDN in an open-source discrete event simulator, i.e., NS-2(2.34) [27] to
evaluate the performance. Network parameters are tuned to standard values for both phys-
ical layer and link layer to simulate IEEE 802.11 along with a two-ray ground propagation
model. The key objective is to create a contention-based MAC environment that best suits
routing protocols in MANETs. Moreover, Constant Bit Rate (CBR) is used as a data traffic
model over a user datagram protocol, and a random traffic model is used as a data pattern.

Sensors 2022, 22, 4280 16 of 24

Similarly, to avoid packet drops due to congestion in the multi-hop approach, the global
traffic load is kept constant at 64 pkts/s. Likewise, mobility is another influential factor in
the performance evaluation of routing protocols in MANET. Mobility compromises network
connectivity (links) and is directly associated with network dynamics (nodes/links failures,
network partition, merging, etc.). Mobility scenarios, based on random waypoint model,
are created using BonnMotion2 [28], with nodes moving speed 0.5, 1.0, 1.5 and 2.0 (m/s)
for different network sizes (50, 100, 150, 200). BonnMotion2 [28] ensures physical net-
work partitioning and maintains network partitions, etc., records. Moreover, FTDN uses
DART [14] routing mechanism in the implementation. The simulation parameters are listed
in Table 2.

Table 2. Simulation Parameters.

Parameters Values

No. of Nodes [50, 100, 150, 200]
Radio range 100 m
Network area 1000 m × 1000 m
Data rate 64 pps
Simulation time 500 s
Speed [0.5, 1.0, 1.5, 2 (m/s)]
Topology Connectivity/Generation BonnMotion2
Propagation Model Tow-Ray Ground
Avg. no. of network partitioning 5 times
No. of flows 12
Traffic Model Random Traffic pattern
Routing Protocols DART
Mobility Model Random way point

Performance comparisons have been made using following metrics with varying
network size and speed.

• Lookup-Success Ratio (LSR): It is the ratio between total lookup queries (i.e., mapping
request packets (MREQ)) and the total lookup queries resolved successfully (i.e., total
MREQ successfully entertained by receiving mapping reply (MREP)). LSR is measured
using Equation (1).

Lookup Success Ratio(LSR) =
Total LookupRequests Initiated

lookup Requests Successfully entertained
(1)

• End-to-End Lookup Delay: The average time taken by a lookup query to get resolved.
In other words, the average time elapsed between MREQ and MREP encountered by
a source node. It includes route discovery delay and queuing delay. It is measured in
seconds. The E2E lookup delay is calculated using Equation (2).

End to End (E2E) Lookup Delay =
Total Lookup Delay

lookup Requests Successfully entertained
(2)

• Normalized Overhead: It is the ratio between total number of transmission at the
network layer and total number of lookup queries successfully resolved (i.e., total
number of MREQ for which MREP is received).

Normalized Overhead =
No. of Transmissions at Network Layer

Lookup Requests Successfully entertained
(3)

Normalized overhead is an important metric to measure total routing overhead per
successful lookup query. The normalized overhead per lookup request is measured
using Equation (3).

Sensors 2022, 22, 4280 17 of 24

5.1. Lookup Success Ratio

The lookup success ratio defines the overall fault tolerance capability of a DHT net-
work. In the lookup process, a source node forwards MREQ (mapping info request) packets
towards the AN and obtains mapping information (by receiving MREP (mapping reply)
packet from the AN) to start a communication session with the destination node. Therefore,
successful resolution of lookup requests is imperative to initiate actual data forwarding
in DHT networks. However, network variations (node(s)/link(s) failures, network parti-
tion, MAC layer collisions, etc.) prohibit successful resolution of lookup. Similarly, the
lookup resolution is directly associated with network size and mobility. The lookup success
ratio decreases by increasing the network size. Because an increase in the network size
increases the average hop count between a source and destination pair and the network
traffic, this eventually causes packets collisions at the MAC layer (i.e., IEEE 802.11) and
MREQ/MREP are likely to be delayed in a queue or dropped. Likewise, the lookup suc-
cess ratio decreases as mobility increases because high nodes’ move speed compromises
nodes connecting links (network connectivity) and introduces frequent network partition,
merging, leaving/joining nodes, and failures (AN failures, etc.). These frequent and un-
predictable changes introduce extra transmission overhead (due to the recurrent execution
of joining, partition detection, and merging procedures), congestion at the MAC layer
(losses of MREQ/MREP due to collision), and eventually, decrease lookup success ratio in
DHT networks.

Figure 5 shows lookup success ratio comparison against different network sizes and
nodes moving speeds (the Figure 5a–d show the results at speed 0.5 m/s, 1.0 m/s, 1.5 m/s
and 2 m/s respectively). In Figure 5, FTDN outperforms its counterparts and shows
significant gains. Moreover, the impact of network size and mobility is lower in FTDN
than VCP and DART; this shows the effectiveness of FTDN in highly mobile environments
(i.e., in the presence of faulty nodes, partition, etc.) with an increasing number of nodes. In
FTDN, the main factors in performance gain are dynamic replication (adaptively replicating
mapping data across the critical regions in-network) and finding alternate paths to avoid
failure. These measures ensure access to mapping information despite AN failure, routes
breakages due to faulty nodes, and network partition. Moreover, these measures are fully
distributed and rely on the local knowledge available to nodes. However, due to the
recurrent execution of merging, LIDs reassignment, and increasing mobility and network
size, a slight decrease in lookup success ratio is reported in Figure 5.

However, VCP and DART degrade lookup success ratio significantly as network size
and mobility increase. Besides that, VCP maintains replicas (i.e., at predecessor/successor
or physical 1-hop neighbors) and exploits a restricted ring search (restricted to 1-hop
physical neighbors) to locate the replicas. However, due to mismatch problem [4,6] and
network partitioning, the ring search not only fails, but introduces huge overhead (causes
more packet collisions at MAC) and delay in the false attempts to locate replicas. Likewise,
an increase in mobility and network size makes it worse and, eventually, the lookup success
ratio drops. In DART, mapping data stored at the ANs are updated periodically; therefore,
in case of failure or partition, the mapping data remains accessible after every refresh
period, but if a lookup request reaches before the arrival of fresh copy, then the requests are
buffered at the neighboring nodes (i.e., neighbors of the failed AN). This technique works
well in small networks with lower mobility and provides access to mapping data despite
network partition and actual AN failure. However, increasing mobility and network size
limits the scope of such approaches because mobility increases the chances of failures
(i.e., AN) and network partition (i.e., AN failures); this causes more lookup requests to be
buffered and awaited to buffer overflow occurs, and requests are dropped.

Sensors 2022, 22, 4280 18 of 24

Figure 5. Lookup success ratio as a function of network size and speed.

Similarly, an increase in network size makes said phenomena worst, since the average
hop count between a node and it is AN increase with increasing network size, so the
periodic updates have to cover longer distances (i.e., updating mapping data); as a result,
more and more requests are likely to buffer and be dropped. This tendency is apparent in
Figure 5, where DART drops lookup success ratio as network size and mobility increases.
However, as shown in Figure 5, DART performs well as compared to VCP. Figure 6 shows
success ratio results against mobility as boxplots, indicating median and quartiles, where
the small boxes show mean values. The boxplot analysis, along with comparison, shows
consistent gains as compared to VCP and DART.

Sensors 2022, 22, 4280 19 of 24

0 . 5 m / s 1 m / s 1 . 5 m / s 2 m / s
0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

S p e e d

 Lo
oku

p S
ucc

ess
 Ra

tio

 F T D N
 V C P
 D A R T

Figure 6. Lookup success ratio results, as boxplots, against different node moving speeds with
varying network sizes.

5.2. End-to-End Delay

Resolution of lookup queries with minimum possible E2E delay is imperative for
successful routing in DHT networks and defines overall network performance, especially
in the adversarial environment offered by MANETs. Similarly, network size and mobility
are the influencing factors. Therefore, for a fair analysis, network size and mobility should
be considered while analyzing E2E delay.

Figure 7 shows E2E delay encountered by FTDN, DART, and VCP with varying
network size and nodes moving speed (the Figure 7a–d show the results at speed 0.5 m/s,
1.0 m/s, 1.5 m/s and 2 m/s respectively). FTDN gains are significant as compared to DART
and VCP. Since, in FTDN, the lookup queries are resolved by the nearby replicas despite
being far from actual AN. Similarly, in case of actual AN failure or partition, the mapping
information remains accessible comparatively at shorter distances than the original AN.
Moreover, resolution of lookup requests by the nearby replicas instead of the designated AN
reduces transmission overhead in FTDN. Eventually, this decreases contention at the MAC
layer (i.e., in IEEE 202.11); these factors further reduce E2E lookup delay in FTDN compared
to VCP and DART. Similarly, high mobility compromises network connectivity (links) and
increases the probability of nodes/links failure and the existence of more critical nodes
in the network. Therefore, FTDN deploys more replicas (i.e., since, in FTDN, replication
decisions consider network dynamics and adaptively replicate mapping info across the
critical regions) and, the lookup queries would get resolved by the nearby replicas, even in
highly mobile environments. So, FTDN is a better choice for highly mobile environments.
However, a slight increase in overhead and delay due to recurrent partition detection and
merging schemes. However, the case is different in VCP and DART since VCP does not
consider physical network dynamics in the replication process and offers no resistance to
mobility. Specifically, in highly mobile environments, the restricted ring search used in VCP
not only fails to discover replicas but introduces massive delay due to the false attempts by
locating the replicas. Similarly, in DART, due to frequent failures (nodes/links, partition,
etc.), more and more lookup queries are needed to be buffered; this causes a buffer overflow,
and the forwarded lookup quarries get lost before reaching the new selected AN. This
worsens with an increase in network size (i.e., an increase in network size also increases
average shortest path length; therefore, SMI packets have to cover longer distances in

Sensors 2022, 22, 4280 20 of 24

periodic updates. Therefore, VCP and DART encounter considerable delays in the lookup
process as mobility and network size increase. However, for small networks with low
mobility, DART outperforms VCP.

Figure 7. Average E2E lookup delay as a function of network size and speed.

Figure 8 provides E2E delay comparison using boxplots against different nodes speed
with varying network size. The data distribution further endorses FTDN’s significant gains.

Sensors 2022, 22, 4280 21 of 24

0 . 5 m / s 1 m / s 1 . 5 m / s 2 m / s

0 . 0 0 5

0 . 0 1 0

0 . 0 1 5

0 . 0 2 0

0 . 0 2 5

S p e e d

Av
g. E

2E
De

lay
 (se

c)

 F T D N
 V C P
 D A R T

Figure 8. E2E delay results, as boxplots, against different node moving speeds with varying net-
work sizes.

5.3. Normalized Overhead

Normalized overhead defines network scalability and shows transmission over-
head per lookup request successfully entertained. In general, the operations carried
out by a protocol produce overhead, but factors such as network size, mobility, etc., are
directly associated.

Therefore, we provide an overhead lookup comparison using varying network sizes
and nodes’ moving speed. As shown in Figure 9, FTDN gains are significant as compared
to VCP and DART (the Figure 9a–d show the results at speed 0.5 m/s, 1.0 m/s, 1.5 m/s and
2 m/s respectively). The dominant factors in overhead reduction are the dynamic replica-
tion of mapping information and alternate paths avoiding faulty nodes. These measures
make possible resolutions of lookups with minimum possible overhead in the presence of
faulty nodes (i.e., AN failures, network partition) since nodes can find mapping data at
nearby replicas despite forwarding lookup requests too far away distant ANs. However,
the case is different in VCP and DART; for example, deploying and locating replicas (i.e.,
ring search) in VCP need extra transmissions and cause more overhead. Similarly, in
DART, lookup queries are resolved far away from actual AN (i.e., no replication); that is
why DART produces more overhead than FTDN. Moreover, growing network size and
increasing mobility produce more overhead in all protocols, but FTDN still performs well
than VCP and DART. A slight increase in FTDN, with an increase in mobility, is due to the
recurrent execution of LS recovery, LIDs reassignment, and merging processes; similarly,
growing network size increases an average number of hope counts to reach AN; eventually,
this increases overhead per lookup request. However, this impact is lower in FTDN as
compared to VCP and DART as depicted in Figure 9.

Sensors 2022, 22, 4280 22 of 24

Figure 9. Normalized overhead as a function of network size and speed.

Boxplot analysis comparison, with varying network sizes and speed, shown in Figure 10,
shows consistent gains in FTDN as compared to VCP and DART.

Sensors 2022, 22, 4280 23 of 24

0 . 5 m / s 1 m / s 1 . 5 m / s 2 m / s
0

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

1 7 5

2 0 0

S p e e d

Nor
ma

lize
d O

ver
hea

d

 F T D N
 V C P
 D A R T

Figure 10. Normalized overhead results, as boxplots, against different node moving speeds with
varying network sizes.

6. Conclusions

In this paper, we outline the challenges to address the problem of fault tolerance
in DHT networks and provide a suite of distributed mechanisms to solve the identified
issues. We have described that network dynamics (i.e., node(s)/link(s) failure, network
partition, merging, etc.) halt communication in the DHT network and limit the scope of
such protocols in the adversarial environment offered by MANET.

In particular, a fault-tolerant DHT-based (FTDN) routing protocol is proposed for
MANET. FTDN builds and maintains a logical tree-structured network over MANET’s
ad hoc physical topology and eliminates flooding at the control and data plans. FTDN,
using a cross-layer design approach, exploits k-hop topological information (i.e., physical
network connectivity/dis-connectivity) along with the philosophies of detection, recov-
ery, avoidance, and redundancy. Moreover, FTDN considers pre-failure measures (i.e.,
measuring network dynamics, replication, and partition detection) and post-failure mea-
sures (i.e., finding alternate paths avoiding the failure, merging detection, merging, i.e.,
reconfiguration). These measures ensure DHT-network availability and make the system
reliable, fault-tolerant in adversarial environments. Performance evaluation confirms the
effectiveness of the solutions provided.

In the future, we would like to extend the performance analysis in two directions: (1)
current implementation considers 1-hop topological information; in the future, we would
like to use a different variation of k. (2) To implement the proposed solutions in other
logical structures by considering different performance parameters (throughput, etc.).

Author Contributions: Conceptualization, S.Z.; formal analysis, S.Z. and K.U.; funding acquisition,
M.Z. and R.R.B.; investigation, S.B. and M.Z.; methodology, S.Z. and K.U.; project administration,
A.W.; resources, R.R.B.; software, A.W. and S.B.; writing—original draft, S.Z.; writing—review and
editing, A.W. All authors will be informed about each step of manuscript processing including
submission, revision, revision reminder, etc., via emails from our system or assigned Assistant Editor.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias,
Av. General Ramón Corona 2514, Zapopan, Jalisco 45201, Mexico.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 4280 24 of 24

References
1. Jain, S.; Chen, Y.; Zhang, Z.L.; Jain, S. Viro: A scalable, robust and namespace independent virtual id routing for future networks.

In Proceedings of the 2011 IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 2381–2389.
2. Xu, Q.; Sun, L.; Liu, J. Topology aware kademlia based on distributed clustering in selforganizing mode. In Proceedings of the

2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 19–21 March 2010; Volume 1,
p. V1-267.

3. Abid, S.A.; Othman, M.; Shah, N. 3D-RP: Exploiting 3D Structures for Large scale Routing in MANETs. IEEE Commun. Lett. 2013,
17, 2056–2059. [CrossRef]

4. Abid, S.A.; Akhtar, S.; Othman, M.; Shah, N. A survey on DHT-based routing for large-scale mobile ad hoc networks. ACM
Comput. Surv. (CSUR) 2015, 47, 1–46. [CrossRef]

5. Abid, S.A.; Shah, N.; Othman, M. Merging of DHT-based Logical Networks in MANETs. Trans. Emerg. Telecommun. Technol. 2015,
26, 1347–1367. [CrossRef]

6. Abid, S.A.; Othman, M.; Shah, N.; Ali, M.; Khan, A.R. 3D-RP: A DHT-based routing protocol for MANETs. Comput. J. 2015,
58, 258–279. [CrossRef]

7. Shin, S.; Lee, U.; Dressler, F.; Yoon, H. Motion-MiX DHT for Wireless Mobile Networks. IEEE Trans. Mob. Comput. 2016,
15, 3100–3113. [CrossRef]

8. Tahir, A.; Abid, S.A.; Shah, N. Logical clusters in a DHT-Paradigm for scalable routing in MANETs. Comput. Netw. 2017,
128, 142–153. [CrossRef]

9. Kousar, R.; Alhaisoni, M.; Akhtar, S.A.; Shah, N.; Qamar, A.; Karim, A. A Secure Data Dissemination in a DHT-Based Routing
Paradigm for Wireless Ad Hoc Network. Wirel. Commun. Mob. Comput. 2020, 2020, 2740654. [CrossRef]

10. Kunz, T.; Echegini, S.; Esfandiari, B. A P2P Approach to Routing in Hierarchical MANETs. Commun. Netw. 2020, 12, 99–121. [CrossRef]
11. Sindhanaiselvan, K.; Mannan, J.M.; Aruna, S.K. Designing a Dynamic Topology (DHT) for Cluster Head Selection in Mobile

Adhoc Network. Mob. Netw. Appl. 2020, 25, 576–584. [CrossRef]
12. Tahir, A.; Shah, N.; Abid, S.A.; Khan, W.Z.; Bashir, A.K.; Zikria, Y.B. A three-dimensional clustered peer-to-peer overlay protocol

for mobile ad hoc networks. Comput. Electr. Eng. 2021, 94, 107364. [CrossRef]
13. Awad, A.; German, R.; Dressler, F. Exploiting virtual coordinates for improved routing performance in sensor networks. IEEE

Trans. Mob. Comput. 2011, 10, 1214–1226. [CrossRef]
14. Eriksson, J.; Faloutsos, M.; Krishnamurthy, S.V. DART: Dynamic Address RouTing for Scalable Ad Hoc and Mesh Networks.

IEEE/ACM Trans. Netw. (TON) 2007, 15, 119–132. [CrossRef]
15. Caleffi, M.; Paura, L. M-DART: Multi-path dynamic address routing. Wirel. Commun. Mob. Comput. 2011, 11, 392–409. [CrossRef]
16. Kawakami, T. A Node Virtualization Scheme for Structured Overlay Networks Based on Multiple Different Time Intervals. Appl.

Sci. 2020, 10, 8596. [CrossRef]
17. Ameur, A.I.; Lakas, A.; Bachir, Y.M.; Oubbati, O.S. Peer-to-peer overlay techniques for vehicular ad hoc networks: Survey and

challenges. Veh. Commun. 2022, 34, 100455. [CrossRef]
18. Kumar, D.; Pandey, M. An optimal load balancing strategy for P2P network using chicken swarm optimization. Peer-to-Peer Netw.

Appl. 2022, 15, 666–688. [CrossRef]
19. Xue, Y.; Nahrstedt, K. Fault tolerant routing in mobile ad hoc networks. In Proceedings of the 2003 IEEE Wireless Communications

and Networking, New Orleans, LA, USA, 16–20 March 2003; pp. 1174–1179.
20. Xue, Y.; Nahrstedt, K. Providing Fault-Tolerant Ad Hoc Routing Service in Adversarial Environments. Wirel. Pers. Commun. 2004,

29, 367–388. [CrossRef]
21. Oommen, B.J.; Misra, S. A fault tolerant routing algorithm for mobile ad hoc networks using a stochastic learning-based weak

estimation procedure for non-stationary environments. In Proceedings of the 2006 IEEE International Conference on Wireless and
Mobile Computing, Networking and Communications, Montreal, QC, Canada, 19–21 June 2006; pp. 31–37.

22. Oommen, B.J.; Misra, S. Fault-Tolerant Routing in Adversarial Mobile Ad Hoc Networks: An Efficient Route Estimation Scheme
for Non-Stationary Environments. Telecommun. Syst. J. 2010, 44, 159–169. [CrossRef]

23. Misra, S.; Dhurandher, S.K.; Obaidat, M.S.; Verma, K.; Gupta, P. A Low Overhead Fault-Tolerant outing Algorithm for Mobile
Ad-Hoc Networks Based on Ant Swarm Intelligence. Simul. Model. Pract. Theory 2010, 18, 637–649. [CrossRef]

24. Dorigo, M.; Caro, G.D.; Gambardella, L.M. Ant algorithms for discrete optimization. Artif. Life 1999, 5, 137–172. [CrossRef]
25. Zahid, S.; Abid, S.A.; Shah, N.; Naqvi, S.H.A.; Mehmood, W. Distributed Partition Detection with Dynamic Replication

Management in DHT-based routing protocols for MANETs. IEEE Access 2018, 6, 18731–18746. [CrossRef]
26. Stojmenovic, I.; Simplot-Ryl, D.; Nayak, A. Toward scalable cut vertex and link detection with applications in wireless ad hoc

networks. IEEE Netw. 2011, 25, 44–48. [CrossRef]
27. Fall, K.; Varadhan, K. (Eds.) The ns Manual (Formerly ns Notes and Documentation) The VINT Project a Collaboration between

Researchers at UC Berkeley, LBL, USC/ISI, and Xerox PARC. 2011. Available online: https://www.isi.edu/nsnam/ns/doc/
(accessed on 29 January 2022).

28. Aschenbruck, N.; Ernst, R.; Gerhards-Padilla, E.; Schwamborn, M. BonnMotion: A mobility scenario generation and analysis tool.
In Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques (SIMUTools), Torremolinos, Spain,
15–19 March 2010; p. 51.

http://doi.org/10.1109/LCOMM.2013.091113.131256
http://dx.doi.org/10.1145/2632296
http://dx.doi.org/10.1002/ett.2969
http://dx.doi.org/10.1093/comjnl/bxu004
http://dx.doi.org/10.1109/TMC.2016.2524575
http://dx.doi.org/10.1016/j.comnet.2017.05.033
http://dx.doi.org/10.1155/2020/2740654
http://dx.doi.org/10.4236/cn.2020.123006
http://dx.doi.org/10.1007/s11036-019-01283-x
http://dx.doi.org/10.1016/j.compeleceng.2021.107364
http://dx.doi.org/10.1109/TMC.2010.218
http://dx.doi.org/10.1109/TNET.2006.890092
http://dx.doi.org/10.1002/wcm.986
http://dx.doi.org/10.3390/app10238596
http://dx.doi.org/10.1016/j.vehcom.2022.100455
http://dx.doi.org/10.1007/s12083-021-01259-3
http://dx.doi.org/10.1023/B:WIRE.0000047071.75971.cd
http://dx.doi.org/10.1007/s11235-009-9215-4
http://dx.doi.org/10.1016/j.simpat.2010.01.008
http://dx.doi.org/10.1162/106454699568728
http://dx.doi.org/10.1109/ACCESS.2018.2814017
http://dx.doi.org/10.1109/MNET.2011.5687952
https://www.isi.edu/nsnam/ns/doc/

	Introduction
	The Problem and Its Scope
	Related Work
	Fault Tolerant DHT Network (FTDN)
	Logical Network Construction/LIDs Assignment and Key-Invariants
	Network Dynamics
	Address Publication
	Partition Detection and Occasional Node Failure
	Merging Detection and Merging
	Challenges

	Simulation and Results Analysis
	Lookup Success Ratio
	End-to-End Delay
	Normalized Overhead

	Conclusions
	References

