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Abstract: There are three standard equivalent circuit models of solar cells in the literature—single-
diode, double-diode, and triple-diode models. In this paper, first, a modified version of the single
diode model, called the Improved Single Diode Model (ISDM), is presented. This modification
is realized by adding resistance in series with the diode to enable better power loss dissipation
representation. Second, the mathematical expression for the current–voltage relation of this circuit
is derived in terms of Lambert’s W function and solved by using the special trans function theory.
Third, a novel hybrid algorithm for solar cell parameters estimation is proposed. The proposed
algorithm, called SA-MRFO, is used for the parameter estimation of the standard single diode
and improved single diode models. The proposed model’s accuracy and the proposed algorithm’s
efficiency are tested on a standard RTC France solar cell and SOLAREX module MSX 60. Furthermore,
the experimental verification of the proposed circuit and the proposed solar cell parameter estimation
algorithm on a solar laboratory module is also realized. Based on all the results obtained, it is
shown that the proposed circuit significantly improves current–voltage solar cell representation in
comparison with the standard single diode model and many results in the literature on the double
diode and triple diode models. Additionally, it is shown that the proposed algorithm is effective and
outperforms many literature algorithms in terms of accuracy and convergence speed.

Keywords: Lambert’s W function; mathematical models; optimization; parameter estimation;
photovoltaics; solar cells; special trans function theory

1. Introduction

The modeling, planning, management, and optimal operation of solar energy systems
require knowledge of accurate models of the components used [1,2], which relies on the
accurate modeling of the equivalent circuits of solar cells and panels [3]. The accuracy of a

Sensors 2022, 22, 4173. https://doi.org/10.3390/s22114173 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114173
https://doi.org/10.3390/s22114173
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6035-5733
https://orcid.org/0000-0002-7693-3494
https://orcid.org/0000-0001-8025-0453
https://orcid.org/0000-0002-6959-9686
https://orcid.org/0000-0002-6624-6148
https://orcid.org/0000-0001-8544-8995
https://orcid.org/0000-0003-2546-6352
https://orcid.org/0000-0003-3964-675X
https://doi.org/10.3390/s22114173
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114173?type=check_update&version=1


Sensors 2022, 22, 4173 2 of 34

solar photovoltaic (PV) model greatly influences system design [4]. In this regard, there
are three equivalent circuit models of solar cells widely used in the available literature.
The first and most widely accepted model is the single-diode solar cell model (SDM) [5–7].
This five-parameter SDM is prevalent in the literature due to its simplicity. Besides, the
seven-parameter double-diode model (DDM) [8,9] and nine-parameter triple-diode solar
cell model (TDM) [10] make use of additional diodes in their models to describe the
physical nature of solar cells. Although these models provide good accuracy in modeling
solar cells, they have a more complex structure since they are represented with more
parameters [11,12].

Several solar cell parameter estimation approaches have been developed in scientific
publications [13–16]. For instance, it is possible to estimate the parameters of solar cells
from nameplate data, i.e., using the catalogue data of the manufacturer [13,17]. However,
different research works have shown that this approach has drawbacks because real-world
conditions differ from the operating conditions assumed when these cells were tested in
factories. Additionally, it is expected to have incomplete data or missing parameters in data
sheets provided by manufacturers. Thus, it is preferable to find these missing parameters
based on the measured voltage–current characteristics of these cells [14,18]. Unfortunately,
regardless of the approach or the solar cell model used, solar cells are characterized by
the nonlinearity of the mathematical relation of currents and voltages. This means that
estimating the parameters is associated with solving high nonlinear equations [19].

Afterward, several approaches have been proposed in the literature for estimating
the precise parameters of diode models of solar PV equivalent circuits. The first approach
relies on applying numerical methods to estimate the values of these parameters, but this
approach is time-consuming [15]. Additionally, these approaches are based on iterative
techniques, and it is well known that the performance of iterative techniques is highly
dependent on the initial values provided by the programmer/designer. Added to that,
they may suffer from local solutions problems. The second method is based on solving
the equations analytically [14]. However, this approach necessitates several approxima-
tions/relaxations as the mathematical relation between currents and voltages is nonlinear,
affecting the model’s accuracy. The most widely accepted methods in this research point
are based on the application of metaheuristic algorithms [20,21]. Metaheuristic algorithms
are characterized by the simplicity of application and independence on the initial values of
the unknown parameters. Today, over 100 different algorithms can be found to estimate
solar cell parameters. Generally, they can be categorized into several groups (All acronyms
of algorithms are explained in a list of abbreviations):

• Bio-inspired algorithms (BIA) mimic ideas, processes, or biological behaviors in nature.
The main representatives are MADE [22], ISCE [23], BPFPA [8], GAMNU [24], and
GA [25].

• Swarming-based algorithms (SBA) mimic swarming behaviors of birds, cats, bees,
fish, or others. The main representatives are EHHO [26], CPMPSO [27], FPSO [28],
MPSO [29], FA [30], MSSO [31], CSO [32], ABC [25,31,33], WHHO [21], and PSO [33].

• Physics- and chemistry-based algorithms (P-CBA) mimic physical or chemical ideas or
concepts of estimation procedures. The prominent representatives are ER-WCA [34,35],
WDO [36], and HS [35].

• Teaching- and learning-based algorithms (T-LBA) mimic the teaching process with stu-
dents and schoolchildren. The main representatives are GOTLBO [12], STLBO [12,37],
SATLBO [38], GSK [39], EOTLBO [40], and LETLBO [9].

• Chaotic-based algorithms (CBA) mimic chaotic processes from science and nature.
The main representatives are ILCOA [41], COA [10,35,42], CWOA [41], CNMSMA [4],
and CLSHADE [10].

• Mathematical-based algorithms (MBA) use mathematical expressions and equations
for some process descriptions. The leading representative is ISCA [43].
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• Hybrid algorithms (HA) combine different analytical and numerical optimization
methods, and so on. The main representatives are BHCS [44], HFAPS [30], and
TLABC [9,45].

Predominantly, most of the research works are oriented toward the proposal of new
algorithms to estimate parameters of the solar diode models. At the same time, most
of them use some of the solar cell models and test them on standard solar cells, such
as RTC France [9,46–48], Solarex MSX 60 [10,17,35], or others, or perform experimental
verification on real cells [10]. Their primary focus is the comparisons of algorithms in
terms of the speed of convergence required in a certain number of iterations, time per
iteration, statistical measures, and so on [35]. It is clear that this research point can be
further expanded by developing new models of solar cells. Consequently, this paper
addresses this research point.

In this work, we propose a new simple six-parameter diode model of solar cells that
will not further complicate the model, but will increase the accuracy of the estimation of
solar cell parameters, i.e., improve the accuracy of modeling current–voltage characteristics.
Namely, an improved single diode model (ISDM) is proposed in this work, including an
additional resistor that models the losses during solar energy conversion into electricity.
The mathematical expression of the current–voltage characteristic of the proposed model
was derived, in which the derived equation is highly nonlinear (transcendental type).
An analytical solution to the current as a function of the voltage is proposed in terms of
Lambert’s W function and is further solved by using the special trans function theory
(STFT). Additionally, investigating the accuracy of the proposed model was performed
on several solar cells and modules. Note that different models of solar cells are listed
in [16], which deals with equivalent models for solar cells in which the resistance of the
diode is included in two-diode and three-diode models of solar cells. However, in [16], no
analytical expressions for current–voltage dependence are given, nor is the solution of the
same analyzed. Therefore, this work represents a forward step in terms of developing a
new one-diode solar cell model and its mathematical explanation.

Besides, a novel hybrid algorithm for solar cell parameters estimation is proposed. The
proposed algorithm, called SA-MRFO, is based on simulated annealing (SA) and Manta
ray foraging optimization (MRFO), in which the SA algorithm is used to initialize the
population of the MRFO, and it is used for parameters estimation of the standard and
improved single-diode models. The proposed algorithm results are compared with those
obtained by other algorithms presented in the literature to validate their effectiveness and
accuracy. Moreover, for the RTC France solar cell, a comparison of the results with the
corresponding ones obtained by applying deterministic methods was carried out.

Therefore, the main contributions of this work are outlined as follows:

• A new original single-diode solar cell model is proposed.
• The mathematical expression of the current–voltage characteristic of the proposed

model is derived.
• The accuracy of the proposed model is tested, and its advantages over the single-diode

model are shown.
• The accuracy of the proposed model is compared with the precision of two-diode and

three-diode models, and it is shown that the results obtained are even better than some
literature-known solutions of these models.

• The experimental verification of the proposed circuit and the proposed solar cell
parameter estimation algorithm on a solar laboratory module is made, and the appli-
cability of the proposed model is demonstrated.

• The advantage of applying the proposed algorithm compared with different algo-
rithms in the literature is shown in terms of convergence rate, standard deviation, and
Wilcoxon rank-sum test.

The rest of the paper is arranged as follows. The common diode models of solar
PV equivalent circuits are presented in Section 2. The analytical formulation of the new
six-parameter solar cell model—ISDM—is presented in Section 3. The proposed simulated
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annealing–Manta ray foraging optimization is presented in Section 4. In Section 5, the
numerical outcomes and findings for two types of solar cells are presented, analyzed, and
discussed. The experimental verification of the proposed model was made on measured
data from a solar laboratory module, and the applicability of the proposed model is
demonstrated in Section 6. Finally, the conclusions, study limitations, and future works are
given in Section 7.

2. Common Diode Models of Solar PV Equivalent Circuits

Three-diode models of solar PV equivalent circuits can be found in the literature. The
widely used and well-known solar cell model is the single-diode model (SDM), presented
in Figure 1a. This model consists of four elements—an ideal current generator (Ipv), diode
(D), series resistance (RS), and parallel resistance (RP). Besides, the double-diode model
(DDM) and triple-diode model (TDM), presented in Figure 1b,c, respectively, are widely
used in the literature. Unlike SDM, these models consist of two (D1 and D2) and three
diodes (D1, D2, and D3) [18,35,49–52].

Figure 1. Common diode models of solar PV equivalent circuits: (a) SDM, (b) DDM, and (c) TDM.

The current (I)–voltage (U) relationship of these models can be described for SDM,
DDM, and TDM as given in (1)–(3), respectively. In these equations, Ipv denotes the photo-
generated current. I01, I02, and I03 represent the reverse saturation current of the three
diodes, respectively. n1, n2, and n3 represent the ideality factors of the diodes, respectively,
and Vth is the thermal voltage, which equals KBT/q, where KB is the Boltzmann constant, q
is the charge of the electron, and T is the temperature in Kelvin.

I = Ipv − I01

(
e

U+IRS
n1Vth − 1

)
− U + IRS

RP
(1)

I = Ipv − I01

(
e

V+IRS
n1Vth − 1

)
− I02

(
e

V+IRS
n2Vth − 1

)
− U + IRS

RP
(2)

I = Ipv − I01

(
e

V+IRS
n1Vth − 1

)
− I02

(
e

V+IRS
n2Vth − 1

)
− I03

(
e

V+IRS
n3Vth − 1

)
− U + IRS

RP
(3)

It is apparent that I–U expressions of the three models are transcendental, i.e., highly
nonlinear.
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For SDM, the analytical solution of the current as a function of voltage is given
as follows:

I =
RP
(

Ipv + I0
)
−U

RS + RP
− n1Vth

RS
W(αS) (4)

where

αS =
I0RPRS

n1Vth(RS + RP)
exp

(
RP
(

RS Ipv + RS I0 + U
)

n1Vth(RS + RP)

)
(5)

where W represents Lambert’s W function.
The I–U expressions of both DDM and TDM do not have exact analytical solutions.

However, in [10], an original iterative procedure for solving these nonlinear equations was
proposed and tested. The iterative-based solution of the current as a function of the voltage
for DDM is formulated as follows [10]:

I =

(
Ipv + I01 + I02 − U

RP
−

Ψ
(

1+ Rs
Rp

)
Rs

n1Vth

)
1 + Rs

Rp

(6)

where Ψ is the solution of the nonlinear equation so that

αD + βD exp(δDΨ) = Ψ exp(Ψ) (7)

αD =

RS
n1Vth(

1 + RS
RP

) I01 exp
(

U
n1Vth

)
· exp

 RS
n1Vth

(
Ipv + I01 + I02 − U

RP

)
(

1 + RS
RP

)
 (8)

βD =

RS
n1Vth(

1 + RS
RP

) I02 exp
(

U
n2Vth

)
· exp

 Rs

n2Vth

(
Ipv + I01 + I02 − U

RP

)
(

1 + RS
RP

)
 (9)

δD = 1− n1

n2
(10)

Additionally, the iterative-based solution of the current as a function of the voltage for
TDM is formulated as follows [10]:

I =

(
Ipv + I01 + I02 + I03 − U

RP
−

Z
(

1+ RS
RP

)
RS

n1Vt

)
1 + RS

RP

(11)

where Z is the solution of the nonlinear equation.

αT + βT exp(δTZ) + γT exp(σTZ) = Zexp(Z) (12)

αT =

RS
n1Vth(

1 + RS
RP

) I01 exp
(

U
n1Vth

)
· exp

 RS
n1Vth

(
Ipv + I01 + I02 + I03 − U

RP

)
(

1 + RS
Rp

)
 (13)

βT =

RS
n1Vth(

1 + RS
RP

) I02 exp
(

U
n2Vt

)
· exp

 RS
n2Vth

(
Ipv + I01 + I02 + I03 − U

RP

)
(

1 + RS
RP

)
 (14)

γT =

RS
n1Vth(

1 + RS
RP

) I03 exp
(

U
n3Vth

)
· exp

 RS
n3Vth

(
Ipv + I01 + I02 + I03 − U

RP

)
(

1 + Rs
RP

)
 (15)

δT = 1− n1

n2
(16)
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σT = 1− n1

n3
(17)

3. Analytical Formulation of a New Six-Parameter Solar Cell Model: Improved
Single-Diode Model (ISDM)

A PV cell is a semiconductor device that converts sunlight into electricity [53]. How-
ever, light, i.e., the incoming photons to be absorbed, must have more incredible energy
than the bandgap energy of the cell [54]. The absorbed photon generates pairs of mobile
charge carriers (electron and hole), which are then separated by the structure of the device
(p–n junction). This action produces a potential difference and thus creates an electrical
current. Currently, semiconductor materials (usually silicon) in the p–n junction (diode) are
commercially used to produce solar cells. The well-known Shockley equation gives the I–U
characteristic of a p–n junction [54]. The current generated in the PV cell flows through a
semiconductor material. However, different types of losses exist in a solar cell. In order
to represent all series resistances, such as the resistance of the metal grid, contacts, and
current-collecting wires, the single-diode morel consists of equivalent resistance RS, added
in series with the ideal circuit model (parallel connection of ideal current generator and
diode). On the other side, as the solar cells are made out of large-area wafers and from
large thin-film material, second resistance, connected in parallel with the ideal device RP,
also exists in the single-diode equivalent circuit. An improved SDM (ISDM) is proposed in
this work to improve and collect all power energy losses in the solar cell. The proposed
circuit of the ISDM is presented in Figure 2. Unlike the standard SDM, this model involves
one additional resistance (RSD) connected in series with the diode to sufficiently express
the power loss dissipation due to the current that flows through the p–n junction.

Figure 2. Improved solar PV equivalent circuit, ISDM.

The equation that expresses the sum of currents in the ISDM is given as follows:

Ipv = ID +
U + IRS

RP
+ I (18)

where

ID = I0

(
e

VD
n1Vth − 1

)
(19)

The voltage equation of this circuit is expressed as follows:

VD + RSD ID = U + IRS (20)

Hence, the expression of the current can be derived in the following form:

I =
RP

RS + RP

(
Ipv + I01 −

U
RP
− x
)

(21)

where x is the solution of Lambert’s W function and is given in the following form:

x = β exp(−x) (22)
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where β is expressed as follows:

β = I2

(
b
a

)
exp

(
b
a

I1

)
(23)

so that
a = 1 + RS

RP
,

b = RS
nVt

(
1 + RSD

RP
+ RSD

RS

)
,

I1 = Ipv + I01 − U
RP

,

I2 = I01 exp
(

1
nVt

(
U − RSD Ipv +

RSD
RP

U
))

.

(24)

Given in Equation (22), Lambert’s W function is a nonlinear transcendental equation.
This function is presented in Figure 3 for different values of β.

Figure 3. Lambert’s W function.

Different methods can solve this equation as it has become trendy in science. Many
program packages (Matlab, Mathematica, Maple, and others) have implemented this
equation. For instance, it can be solved using numerical techniques such as Frisch iteration,
Newton–Raphson method, and others. Additionally, it can be solved analytically using the
Taylor series or by using Special Trans Function Theory (STFT) [1,10,19,55,56].

Based on previous research [10,35] on the parameter estimation of PV equivalent
circuits, it was clearly shown that the STFT has a significant advantage over the Taylor
series. In this context, the analytical solution of the I–U relationship for the ISDM can be
expressed as follows:

I =
RP

RS + RP

Ipv + I01 −
U
RP
− β

∑M
k=0

βk(M−k)k

k!

∑M+1
k=0

βk(M+1−k)k

k!

 (25)

where M represents a positive integer. Additionally, the power–voltage relationship can be
expressed as follows:

P = U·I = RPU
RS + RP

Ipv + I01 −
U
RP
− β

∑M
k=0

βk(M−k)k

k!

∑M+1
k=0

βk(M+1−k)k

k!

 (26)

Therefore, the voltage corresponding to the maximum power delivered (Ump) by the
cell/module can be determined as follows [57]:(

∂P(U)

∂U

)∣∣∣∣
U=Ump

= 0 (27)

where
Pmp = Ump Imp (28)
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Additionally, the current corresponding to the maximum power can be calculated
easily, where Pmp is the maximum power point of the solar cell/module.

4. Simulated Annealing (SA)–Manta Ray Foraging Optimization (MRFO)

The recently proposed Manta Ray Foraging Optimization (MRFO) is improved by
the Simulated Annealing (SA) algorithm to formulate a novel hybrid algorithm called
Simulated Annealing–Manta ray foraging optimization (SA-MRFO).

SA is usually used to hybridize standard metaheuristics algorithms [58,59]. It is a well-
known and applicable algorithm. Due to its merits, it is implemented in Matlab and can be
called by the function simulannealbnd. Algorithmically, SA is used when the search space
is discrete. Additionally, its metaheuristic nature enables it to obtain approximate global
or near-global solutions in an ample search space. SA has one main general characteristic:
simulated annealing is preferable for problems where finding an approximate global
optimum is more worthy than finding an accurate local optimum in a specific time. All
the aspects mentioned above are the main reasons we developed the hybrid SA-MRFO
algorithm in this paper. In the hybrid algorithm proposed in this paper (SA-MRFO), the SA
algorithm is used to initialize the population of the MRFO.

Manta Ray Foraging Optimization (MRFO) is an algorithm realized by observing
manta rays, the largest marine creatures [60,61]. This algorithm relies on three parts—chain,
cyclone, and somersault foraging.

The first part of MRFO (chain foraging) focuses on the plankton position. This algo-
rithm assumes that the best-found solution is plankton with a high concentration of manta
rays. Specifically, the higher the plankton concentration, the better the position. At each
iteration, each individual is updated with the best solution found to date and the solution
in front of it. In a mathematical sense, the chain foraging model is represented as follows:

xd
i (t + 1) =

 xd
i (t) + r

(
xd

best(t)− xd
i (t)

)
+ γ

(
xd

best(t)− xd
i (t)

)
, i = 1

xd
i (t) + r

(
xd

i−1(t)− xd
i (t)

)
+ γ

(
xd

best(t)− xd
i (t)

)
, i = 2, . . . , N

(29)

where xd
i (t) is the position of the ith individual at time t, r and r1 are random num-

bers within the range of [0,1], while xd
best(t) denotes the plankton with a high concentra-

tion (best position). The chain foraging coefficient is denoted γ, which is expressed as
γ = 2r

√
|log(r)|.

The second part of MRFO (cyclone foraging) is oriented on a school of manta rays.
Namely, when a school of manta rays recognizes a patch of plankton, they will form a
long foraging chain. Furthermore, they will swim toward the food in a spiral movement.
The mathematical equation that expresses the spiral action of manta rays is the same as
the expression given in (29), except that the cyclone foraging coefficient (γ) is expressed
as γ = 2er1(T − t + 1)/T sin(2πr1), where T denotes the maximum number of iterations. The
reference position is the food, where all individuals orient towards it. Iteratively, each
individual looks for a better position around it. In this sense, each individual has an
opportunity to find itself in a random position. Mathematically, a change in the position is
expressed as follows:

xd
i (t + 1) =

 xd
rand + r

(
xd

rand − xd
i (t)

)
+ β

(
xd

rand − xd
i (t)

)
, i = 1

xd
rand + r

(
xd

i−1(t)− xd
i (t)

)
+ β

(
xd

rand − xd
i (t)

)
, i = 2, . . . , N

(30)

where xd
rand is a randomly produced position in the search space. Lbd and Ubd denote the

lower and upper boundaries of the decision variables.
The third part of MRFO defines the movement of each individual in a new search

domain located between the current position and its symmetrical position around the best
position found to date (somersault foraging), in which the position of the food is viewed
as a pivot. Each individual tends to swim around the pivot to reach a new position. Thus,
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each individual updates its position around the best position found. The mathematical
model of this part can be expressed as follows:

xd
i (t + 1) = xd

i (t) + 2
(

r2·xd
best − r3xd

i (t)
)

(31)

where r2 and r3 are random numbers in [0, 1]. The flowchart of the SA-MRFO algorithm is
presented in Figure 4.

Figure 4. Flowchart of the proposed algorithm.
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5. Results and Discussion

The results obtained using the proposed algorithm to estimate the intrinsic parameters
of the addressed equivalent circuit models are presented in this section.

For parameter estimation, the minimization of the expression given in (32) that rep-
resents the root-mean-square error (RMSE) between the solar PV cell’s measured and
calculated output current was used.

RMSE =

√√√√ 1
Np

Np

∑
i=1

(
Imeas
i − Icalc

i
)2 (32)

The goal of the estimation process was to find the appropriate value of the solar cell
parameters to minimize the RMSE between simulated and measured solar cell current
values. In this equation, Np represents the number of the measured points, while Imeas

i and
Icalc
i represent the measured and estimated solar cell current at point i, respectively.

The software tool used to estimate the intrinsic parameters of the PV cells was MAT-
LAB 2018a. The computing tasks were implemented on a laptop PC with Intel(R) Core
(TM) i3-7020U CPU @2.30 GHz and 4 GB RAM.

5.1. RTC France Solar Cell

A well-known commercial silicon solar cell called RTC. France is used to validate the
effectiveness of the proposed algorithm and the accuracy of the ISDM. The RTC France
solar cell is a benchmark cell usually used in testing the performance of optimization
algorithms, with 26 pairs of current–voltage points available under test conditions of
1000 W/m2 irradiance and 33 ◦C temperature. This is why this solar cell is suitable for a
fair comparison with all other algorithms, i.e., the results presented in the literature.

The results obtained for the ISDM of the RTC France cell using the proposed algorithm
under the mentioned test conditions are shown in Table 1. Besides, the results presented
for the SDM under the same test conditions are presented in the same table.

Table 1. Lower and upper bounds of the parameters and the results obtained for the RTC France
solar cell for both SDM and ISDM.

Parameter
Bounds Model

Lower Upper SDM ISDM

Ipv (A) 0.4 0.8 0.760787000 0.76079199200
I01 (µA) 0.1 0.5 0.310684200 0.31215026600

n1 1.0 1.7 1.477281000 1.47744988425
RS (Ω) 0.01 0.05 0.036581000 0.03638798313
RP (Ω) 40 70 52.87890000 52.8792013970

RSD (mΩ) 0.001 0.3 - 0.15054000000
RMSE 7.74549919 × 10−4 7.73001979 × 10−4

Table 2 shows the literature results (parameters and RMSE values) obtained for the
RTC France solar cell (SDM, DDM, and TDM). It should be noted that RMSE values that
are not presented in the methods addressed in Table 2 were calculated using Equation (32).
Table A1 in Appendix A shows the parameters of the solar RTC France cell using the
methods presented in Table 2. Acronyms of the algorithms presented in Table 2 are given
in the list of abbreviations.
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Table 2. RMSE calculation for the solar RTC France cell using various algorithms.

Method Ref. Algorithm Model RMSE Method Ref. Algorithm Model RMSE

1 Proposed SA-MRFO ISDM 0.000773002 46 [40] EOTLBO DDM 0.000757585
2 Proposed SA-MRFO SDM 0.000774549 47 [26] EHHO DDM 0.000764087
3 [18] LCNMSE SDM 0.000775390 48 [32] CSO DDM 0.000869770
4 [20] EO SDM 0.000776865 49 [33] R-II DDM 0.007293813
5 [21] WHHO SDM 0.000791502 50 R-III DDM 0.007220113
6 [4] CNMSMA SDM 0.000775388 51 [42] COA DDM 0.000757686
7 [24] GAMNU SDM 0.000812621 52 [12] PGJAYA DDM 0.000756809
8 [39] GSK SDM 0.000776134 53 GOTLBO DDM 0.000774762
9 [7] EABOA SDM 0.000775354 54 JAYA DDM 0.000781225

10 [5] SMA SDM 0.000795243 55 STLBO DDM 0.000759274
11 [40] EOTLBO SDM 0.000775391 56 TLABC DDM 0.000802419
12 [26] EHHO SDM 0.000786704 57 CLPSO DDM 0.000788578
13 [32] CSO SDM 0.000860194 58 BLPSO DDM 0.000856308
14

[33]
R-II SDM 0.000775645 59 DE/BBO DDM 0.000828349

15 R-III SDM 0.000775557 60 [47] CLPSO DDM 0.000813110
16 [27] CPMPSO SDM 0.000775393 61 BLPSO DDM 0.000915079
17 [46] HCLPSO SDM 0.000833742 62 IJAYA DDM 0.000761222
18 [28] FPSO SDM 0.000791115 63 SFS DDM 0.000759762
19 [6] ITLBO SDM 0.000777792 64 pSFS DDM 0.000755741
20 [47] pSFS SDM 0.000775415 65 [30] FA DDM 0.000793077
21 [43] ISCA SDM 0.000775389 66 HFAPS DDM 0.000757633
22 [41] ILCOA SDM 0.000791666 67 ABC DDM 0.000789395
23 [22] MADE SDM 0.000777792 58 [25] ELPSO DDM 0.004363207
24 [42] COA SDM 0.000775383 69 BSA DDM 0.004074336
25 [12] PGJAYA SDM 0.000777792 70 ABC DDM 0.004332926
26 [11] GAMS SDM 0.000775395 71 GA DDM 0.006223578
27 [44] BHCS SDM 0.000775415 72 ELPSO DDM 0.004363207
28 [29] MPSO SDM 0.004359909 73 [48] SATLBO DDM 0.000762457
29 [30] HFAPS SDM 0.000775248 74 [62] CWOA DDM 0.000842359
30 [23] ISCE SDM 0.000775391 75 [9] IJAYA DDM 0.000980735
31 [45] TLABC SDM 0.000775416 76 LETLBO DDM 0.000774275
32 [34] ER-WCA SDM 0.000775291 77 LBSA DDM 0.000780352
33 [31] MSSO SDM 0.000809159 78 [8] BPFPA DDM 0.003447871
34 [8] BPFPA SDM 0.000955513 79 [21] WHHO TDM 0.002839541
35 [36] WDO SDM 0.000894818 80 [4] CNMSMA TDM 0.000762096
36 [41] CWOA SDM 0.000948338 81 [5] SMA TDM 0.008381759
37 [9] IJAYA SDM 0.000776055 82 [33] R-II TDM 0.005125476
38 [7] EABOA DDM 0.002525316 83 R-III TDM 0.002249998
39 [39] GSK DDM 0.000765347 84 PSO TDM 0.002171714
40 [24] GAMNU DDM 0.000795540 85 CS TDM 0.004569170
41 [18] LCNMSE DDM 0.000757590 86 ABC TDM 0.002471743
42 [20] EO DDM 0.006348583 87 TLO TDM 0.000779584
43 [21] WHHO DDM 0.000774553 88 [37] ABC TDM 0.000990246
44 [4] CNMSMA DDM 0.000757922 89 OBWOA TDM 0.000823136
45 [5] SMA DDM 0.007025646 90 STLBO TDM 0.000823698

A few conclusions can be reached by observing the results presented in Tables 1 and 2.
First, the proposed algorithm is superior to many other compared algorithms in terms of
the calculated RMSE. Second, the effectiveness of the proposed solar cell model, ISDM, is
apparent as the calculated RMSE value is lower than all algorithms used in the literature for
the parameter estimation of the SDM of the RTC France cell. Third, the proposed model and
algorithm enable parameter estimation, giving lower RMSE values than many of the results
reported in the literature, even for DDM and TDM of the RTC France cell. The visualization
of the calculated RMSE values using the different methods presented in Table 2 is depicted
in Figure 5. It indicates that the proposed method and circuit model enable obtaining better
results than other models and algorithms.
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Figure 5. Visualization of the calculated RMSE values using the different methods presented
in Table 2.

Figures 6–9 illustrate current/power versus voltage characteristics and their corre-
sponding errors. From the presented graphs, it is clear, at first glance, that there are no
differences between the explored curves for all methods given in the available literature.
However, observing the three-dimensional graphs of the error for both current and power,
it can be seen that some methods give a minimal error value for all voltage values, while
the error in other methods is high. The error, i.e., the difference between the measured and
calculated value of current (or power), is specifically noticeable for large voltage values
(close to the no-load voltage). The current error is almost negligible for low voltage values
in all models.

The current–voltage and power–voltage characteristics and corresponding errors value
for the proposed ISDM and the standard SDM, whose parameters were determined by the
proposed algorithm and Laplacian Nelder–Mead spherical evolution (LCNMSE) [18], are
illustrated in Figures 10–13. It is evident that the results match well. Moreover, for a few
particularly zoomed points, it is clear that the proposed model provides the possibility of
better fitting the measured and simulated curve.
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Figure 6. Current–voltage characteristics for the methods listed in Table 2.

Figure 7. Difference between the measured and calculated current values for the methods listed
in Table 2.
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Figure 8. Power–voltage characteristics for the methods listed in Table 2.

Figure 9. Difference between the measured and calculated power values for the methods listed
in Table 2.
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Figure 10. Current–voltage characteristics using different methods for both SDM and ISDM.

Figure 11. Difference between the measured and calculated current values using different methods
for both SDM and ISDM.
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Figure 12. Power–voltage characteristics using different methods for both SDM and ISDM.

Figure 13. Difference between the measured and calculated power values using different methods
for both SDM and ISDM.

To confirm the accuracy and applicability of the proposed model of solar cells, we
also compared the RMSE values obtained by applying the proposed model and algo-
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rithm with the results obtained using the deterministic methods described in [63] for the
RTC France solar cell. Four different methods were used for the comparison—Laudani
et al.’s solution [64], Cardenas et al.’s solution [65], Two-Step Linear Least-Squares (TSLLS)
method [66], and TSLLS with refinement [66].

The current–voltage characteristics, power–voltage characteristics, difference between
the measured and calculated current values, and difference between the measured and
calculated power values using different methods for both SDM and ISDM are shown
in Figure 14.

Figure 14. Cont.
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Figure 14. Comparison with the deterministic methods described in [63–66] for the RTC France solar
cell using different methods for both SDM and ISDM: (a) current–voltage characteristics, (b) power–
voltage characteristics, (c) difference between the measured and calculated current values, and
(d) difference between the measured and calculated power values.

The obtained results are shown in Table 3, in which the RMSE values taken from [63]
and the calculated RMSE values are presented. The minor difference between the values is
due to the difference in the value of the thermal voltage, for which this work uses the values
of the Boltzmann constant and elementary charge defined in the International System of
Units (SI). Using the proposed method for calculating RMSE and considering the same
thermal voltage value given in [63], we obtained the same RMSE values.
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Table 3. Comparison with the deterministic methods described in [63–66] for the RTC France solar
cell using different methods for both SDM and ISDM.

Method Ipv (A) I01 (µA) n1 RP (Ω) RSH (Ω) RMSE Presented in [63] RMSE

Laudani et al. [64] 0.7607884 0.3102482 1.4769641 0.03655304 52.859056 7.73009395 × 10−4 8.48634847817564 × 10−4

Cardenas et al. [65] 0.760788 0.3106847 1.4771051 0.036547 52.890468 7.730062729 × 10−4 8.48539429771994 × 10−4

TSLLS method [66] 0.76074014 0.31285196 1.4777295 0.036615485 55.907380 7.943924087 × 10−4 8.64560187331562 × 10−4

TSLLS with
refinement [66] 0.76078797 0.31068485 1.4771052 0.036546942 52.889804 7.730062726 × 10−4 8.48514263124791 × 10−4

5.2. Solarex MSX 60 Solar Module

A similar investigation for the well-known Solarex MSX 60 module was also conducted.
Namely, the parameters of the SDM and ISDM were determined by applying the proposed
algorithm. The obtained results are presented in Table 4, and the difference in the obtained
RMSE values is visualized in Figure 15. An overview of the known results in the literature
for the MSX 60 solar module, described via the equivalent SDM, DDM, and TDM circuits,
is shown in Table 5. Table A2 in Appendix A shows the Solarex MSX 60 module parameters
using the methods presented in Table 5. From these results, it can be concluded that the
proposed model is accurate, and the proposed algorithm is highly efficient for estimating
the parameters of solar modules.

The current and power change for different voltage values obtained using the methods
considered are shown in Figures 16–19. Based on the results obtained, it is clear that there
are some differences between the measured and calculated values of current and power,
especially for high voltage values. The current–voltage and power–voltage characteristics
for the proposed model of solar cells and the standard single diode model, whose parame-
ters were determined by the proposed algorithm and evaporation rate-based water cycle
algorithm (ER-WCA), are depicted in Figures 20–23. From the presented results, it is clear
that the measures superbly match and that the proposed circuit, without doubt, increases
the modeling accuracy of the solar cells.

Figure 15. Visualization of the calculated RMSE values using the different methods presented
in Table 5.
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Table 4. Lower and upper bounds of the parameters and the results obtained for the Solarex MSX
60 module for both SDM and ISDM.

Parameter
Bounds Model

Lower Upper SDM ISDM

Ipv (A) 3.7 4 3.81237 3.8110008
I01 (µA) 0.1 0.2 0.139907 0.13

n1 1.0 1.7 1.3325 1.3268061
RS (Ω) 0.1 0.5 0.22343 0.2255596
RP (Ω) 500 1500 897.00 940.0105

RSD (mΩ) 0.001 0.3 - 0.1047
RMSE 0.011705935 0.01167228

Table 5. RMSE calculation for Solarex MSX 60 module using various algorithms.

Method Ref. Algorithm Model RMSE

1 Proposed SA-MRFO ISDM 0.01167228000
2 Proposed SA-MRFO SDM 0.01170593500
3

[35]
ER-WCA SDM 0.01170676846

4 HS SDM 0.01286676449
5 COA SDM 0.01198624631
6 [50] NM SDM 0.05563692890
7 [49] BC SDM 0.03072250565
8 [51] A&I SDM 0.01810661465
9 [52] A&I SDM 0.02839662736
10

[10]
CLSHADE DDM 0.01202866517

11 CLSHADE TDM 0.01165303676
12 [17] TSO TDM 0.01700978598

Figure 16. Current–voltage characteristics for the methods listed in Table 5.
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Figure 17. Difference between the measured and calculated current values for the methods listed
in Table 5.

Figure 18. Power–voltage characteristics for the methods listed in Table 5.
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Figure 19. Difference between the measured and calculated power values for the methods listed
in Table 5.

Figure 20. Current–voltage characteristics obtained using different methods for both SDM and ISDM.
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Figure 21. Difference between the measured and calculated current values using different methods
for both SDM and ISDM.

Figure 22. Power–voltage characteristics obtained using different methods for both SDM and ISDM.
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Figure 23. Difference between the measured and calculated power values using different methods
for both SDM and ISDM.

5.3. Effectiveness of the Algorithm

To further analyze the performance of the proposed algorithm, a comparison of the
convergence characteristics of the proposed algorithm and some of known algorithms
in the literature was performed. Additionally, the statistical measures of the presented
algorithm results were performed and reported in Tables 6 and 7. Additionally, Figure 24
shows the convergence rates of the different algorithms toward the optimal solution [67].

Based on all the presented results, it is evident that the proposed model of solar cells
improves the accuracy of fitting current–voltage characteristics without increasing the
computational complexity of the calculation. On the other side, the proposed algorithm
estimates parameters with greater accuracy than many previously known methods.

From Figure 24, it is clear that the proposed hybrid algorithm contributes to better
convergence towards the optimal solution. Additionally, statistical tests show that mean,
median, and standard deviations have better features than the other considered algorithms.
Based on the above, it is clear that the proposed algorithms have exceptional statistical
features compared to different algorithms.

Table 6. Comparison of statistical results of different algorithms.

Parameters PSO COA [10] MRFO SA-MRFO

Mean 0.00194965 0.00086624 0.0009987 0.000781
Median 0.00078866 0.00077944 0.0007743 0.000773

Std 0.00315942 0.00039946 0.0004283 4.03 × 10−5

Table 7. p-values obtained with Wilcoxon’s rank-sum test (5% significance level).

Parameters SA-MRFO vs. MRFO SA-MRFO vs. COA SA-MRFO vs. PSO

p-value 4.76 × 10−5 8.70 × 10−5 8.88 × 10−7
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Figure 24. Comparison of the convergence curves for different optimization algorithms.

6. Experimental Application

The measurement of current–voltage characteristics of a solar laboratory module
manufactured by Clean Energy Trainer was undertaken to validate the performance of the
proposed model experimentally. The experimental setup—a connection diagram of the
measuring equipment that includes a personal computer (PC), solar module, an insolation
source lamp, an insolation measuring device (TES 1333R) with a resolution 0.1 W/m2, and
a USB data monitor for data acquisition and processing of all components—is depicted in
Figure 25. The measurements were taken in October 2021.

Figure 25. Experimental setup: (a) connection diagram, (b) USB data monitor, (c) solar module, and
(d) device for insolation measurement.

The measurements were performed with numerous replicates and careful monitoring
of the module’s temperature. The solar module temperature was kept unchanged in
all experiments, around 39 ◦C. First, the I–U and P–U characteristics were measured at
1300 W/m2 (as depicted in Figures 26 and 27). Afterward, the parameters of the solar
PV equivalent circuits were estimated using the proposed algorithm for the standard and
modified single-diode models. The obtained results are shown in Table 8. They are also
compared with the results presented in [10] that were determined using the COA algorithm.
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Figure 26. The measured and simulated I–U characteristics for the standard and modified single-
diode models.

Figure 27. The measured and simulated P–U characteristics for the standard and modified single-
diode models.

Table 8. Experimental results obtained from the experimentally tested solar modules.

Parameter/Model SDM-Based COA [35] SDM-Based SA-MRFO ISDM-Based SA-MRFO

RS (Ω) 0.1140 0.1138 0.1142
RP (Ω) 219.75 222.05 250.53
I0 (A) 10.56 × 10−8 10.43 × 10−8 10.554 × 10−8

Ipv (A) 0.2987 0.29868 0.2987
n 0.3441 0.3442 0.34405

RSD (mΩ) - - 0.41
RMSE 0.00113727 0.0011256 0.000912
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Further, two additional current–voltage characteristics were recorded to check the accu-
racy of the results. This measurement was taken for two irradiance (G) values—1100 W/m2

and 830 W/m2. The measured and estimated current–voltage characteristics of the solar
modules are compared in Figures 28 and 29.

Figure 28. The measured and simulated I–U characteristics using different irradiance values.

Figure 29. The measured and simulated P–U characteristics using different irradiance values.

It is apparent that the results are close to each other. Additionally, the agreement
between both measured and estimated characteristics is remarkable for all investigated
cases. Note that the change of parameters with the different irradiance values was taken
from [68] for calculation purposes.

7. Conclusions

This paper proposed an amended single-diode model of equivalent circuit models
of solar cells. This amendment was realized by adding resistance in series with the diode
of the single-diode model to represent power loss dissipation better. The mathematical
expression of the current–voltage characteristic of the proposed model was derived. An
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analytical solution of the transcendental expression was developed in terms of Lambert’s W
function and was further solved using the STFT. In addition, a novel hybrid algorithm for
solar cell parameters estimation was proposed for the parameter estimation of the standard
and improved single-diode models.

The proposed solar cell model enables the better fitting of the measured current–
voltage characteristics. This statement was proved by comparing the estimated charac-
teristics with many characteristics obtained for the parameters of solar cells available in
the literature. Moreover, the proposed solar cell model and algorithm were tested on two
well-known solar cells/modules. The experimental measurement of the current–voltage
characteristics of a solar laboratory module was also realized. The results undoubtedly
show that the proposed model and algorithm provide better accuracy and efficiency than
traditional models.

Moreover, the accuracy obtained by applying the proposed model is even better than
many of the accuracy values obtained by using more complex models—DDM and TDM.
Finally, this research aimed to develop a good base for the further investigation of new
generations of solar cell models and the implementation of efficient optimization algorithms
to solve the parameter estimation problem.

In future work, considerable attention will be paid to developing accurate two-diode
and three-diode models of solar cells using additional resistors as an amendment to the
single-diode model proposed in this work.
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Abbreviations

ABC Artificial bee colony
A&I Analytical and iterative-based methods
BPFPA Bee pollinator flower pollination algorithm
BBO Biogeography-based optimization
BC Bézier curves
BHCS Biogeography-based heterogeneous cuckoo search
BLPSO Biogeography-based learning particle swarm optimization
BPFPA Bee pollinator flower pollination algorithm
BSA Backtracking search algorithm
CLPSO Comprehensive learning particle swarm optimization
CLSHADE Chaotic LSHADE algorithm
CNMSMA Chaotic Nelder–Mead slime mould algorithm
COA Chaotic optimization approach
CPMPSO Classified perturbation mutation-based particle swarm optimization
CWOA Chaotic whale optimization algorithm
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CSO Cuckoo search optimization
DE Differential evolution
DEBBO Differential evolution Biogeography-based optimization
EHHO Enhanced Harris Hawk Optimization
EO Equilibrium Optimizer
EOTLBO Either-or teaching learning-based algorithm
EAs Evolutionary algorithms
EABOA Enhanced adaptive butterfly optimization algorithm
ELPSO Enhanced leader particle swarm optimization
ER-WCA Evaporation-rate-based water cycle algorithm
FPSO Flexible particle swarm optimization
FA Firefly algorithm
FPA Flower pollination algorithm
GA Genetic algorithm
GAMS General algebraic modeling system
GAMNU Genetic Algorithm based on non-uniform mutation
GSK Gaining–Sharing knowledge-based algorithm
GOTLBO Generalized oppositional teaching learning-based optimization
HFAPS Hybrid firefly and pattern search algorithms
HS Harmony search
HCLPSO Chaotic heterogeneous comprehensive learning particle swarm optimizer
ITLBO Improved teaching–learning-based optimization
ISCA Improved sine cosine algorithm
ISCE Improved shuffled complex evolution
ILCOA Improved Lozi map-based chaotic optimization algorithm
IJAYA Improved JAYA optimization algorithm
JAYA Sanskrit word meaning victory or triumph
LBSA Learning backtracking search algorithm
LCNMSE Laplacian Nelder–Mead spherical evolution
LETLBO Teaching–learning-based optimization with learning experience
LMSA Levenberg–Marquardt algorithm combined with simulated annealing
LSHADE Successful history-based adaptive differential evolution variants linear

population size reduction
MADE Memetic adaptive differential evolution
MPSO Modified particle swarm optimization
MSSO Modified simplified swarm optimization algorithm
NM Newton method
OBWOA Opposition-based whale optimization algorithm
PSO Particle swarm optimization
PGJAYA Performance-guided JAYA algorithm
pSFS Perturbed stochastic fractal search
R-II Rao-2 algorithm
R-III Rao-3 algorithm
SA Simulated annealing
SATLBO Self-adaptive teaching–learning-based optimization
SFS Stochastic fractal search
SMA Slime Mould Algorithm
STLBO Simplified teaching–learning-based optimization
TLBO Teaching–learning-based optimization
TLABC Teaching–learning-based artificial bee colony
TSLLS Two-step linear least-squares
TSO Transient search optimization
WCA Water cycle algorithm
WDO Wind-driven optimization
WHHO Whippy Harris Hawks optimization algorithm
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Appendix A

Table A1 shows the parameters of the solar RTC France cell using the methods pre-
sented in Table 2, while Table A2 shows the parameters of the Solarex MSX 60 module
using the methods presented in Table 4.

Table A1. Parameters of the solar RTC France cell obtained using the literature methods presented
in Table 2.

Method Ref. Ipv (A) I01 (µA) n1 RS (Ω) RP (Ω) I02 (µA) n2 I03 (µA) n3

3 [18] 0.76077600 0.32302000 1.48118200 0.03637700 53.71822000 - - - -
4 [20] 0.7607597037 0.32628893 1.48219300 0.03634099 54.20659400 - - - -
5 [21] 0.76077551 0.32302031 1.48110808 0.03637710 53.71867407 - - - -
6 [4] 0.76077600 0.32301700 1.48118200 0.03637700 53.71821000 - - - -
7 [24] 0.76077400 0.32559540 1.48209600 0.03634020 53.89686000 - - - -
8 [39] 0.76080000 0.32310000 1.48120000 0.03640000 53.72270000 - - - -
9 [7] 0.760771077 0.32292900 1.481153457 0.036379593 53.76600144 - - - -

10 [5] 0.76076000 0.32314000 1.48114000 0.03637000 53.71489000 - - - -
11 [40] 0.76077553 0.32302083 1.48118359 0.03637709 53.71852514 - - - -
12 [26] 0.76077500 0.32300000 1.48123800 0.03637500 53.74282000 - - - -
13 [32] 0.76080000 0.32300000 1.48100000 0.03640000 53.71850000 - - - -
14

[33] 0.76077000 0.32301000 1.48118000 0.03639000 53.71854000 - - - -
15 0.76079000 0.32302000 1.48118000 0.03637000 53.71851000 - - - -
16 [27] 0.76077600 0.32302100 1.48118400 0.03637700 53.71852000 - - - -
17 [46] 0.76079000 0.31062000 1.47710000 0.03654800 52.88500000 - - - -
18 [28] 0.76077552 0.32302000 1.48110817 0.03637000 53.71852000 - - - -
19 [6] 0.76080000 0.32300000 1.48120000 0.03640000 53.71850000 - - - -
20 [47] 0.76078000 0.32302000 1.48118000 0.03638000 53.71852000 - - - -
21 [43] 0.76077562 0.32301700 1.48118220 0.03637716 53.71821748 - - - -
22 [41] 0.76077500 0.32302100 1.48110800 0.03637700 53.71867900 - - - -
23 [22] 0.76080000 0.32300000 1.48120000 0.03640000 53.71850000 - - - -
24 [42] 0.76077450 0.32300180 1.48117740 0.03637750 53.73000000 - - - -
25 [12] 0.76080000 0.32300000 1.48120000 0.03640000 53.71850000 - - - -
26 [11] 0.76077600 0.32302000 1.48118400 0.03637700 53.71852400 - - - -
27 [44] 0.76078000 0.32302000 1.48118000 0.03638000 53.71852000 - - - -
28 [29] 0.76078700 0.31068300 1.47526200 0.03654600 52.88971000 - - - -
29 [30] 0.76077700 0.32262200 1.48106000 0.03638190 53.67840000 - - - -
30 [23] 0.76077553 0.32302083 1.48118360 0.03637709 53.71852771 - - - -
31 [45] 0.76078000 0.32302000 1.48118000 0.03638000 53.71636000 - - - -
32 [34] 0.76077600 0.32269900 1.48108000 0.03638100 53.69100000 - - - -
33 [31] 0.76077700 0.32356400 1.48124400 0.03637000 53.74246500 - - - -
34 [8] 0.76000000 0.31060000 1.47740000 0.03660000 57.71510000 - - - -
35 [36] 0.76080000 0.32230000 1.48080000 0.03676800 57.74614000 - - - -
36 [41] 0.76077000 0.32390000 1.48120000 0.03636000 53.79870000 - - - -
37 [9] 0.76080000 0.32280000 1.48110000 0.03640000 53.75950000 - - - -
38 [7] 0.76082865 0.25072000 1.45988481 0.03662660 55.36601290 0.720690 1.99997 - -
39 [39] 0.76080000 0.25950000 1.46270000 0.03660000 54.93300000 0.479100 1.99830 - -
40 [24] 0.76082700 0.32245246 1.48102800 0.03636440 53.11079000 0.000274 1.47010 - -
41 [18] 0.76078100 0.74933000 2.00000000 0.03674000 55.48542000 0.225980 1.45102 - -
42 [20] 0.76792000 0.39999000 2.00000000 0.03659000 54.17614000 0.266050 1.46451 - -
43 [21] 0.76078094 0.22857400 1.45189500 0.03672887 55.42643282 0.727182 2.00000 - -
44 [4] 0.76078100 0.22597600 1.45101700 0.036740 55.48545 0.750681 2.00000 - -
45 [5] 0.76076000 0.74874000 2.00000000 0.03677 55.71456 0.226520 1.45463 - -
46 [40] 0.76078108 0.22597468 1.45101692 0.03674043 55.48543568 0.749344 2.00000 - -
47 [26] 0.760769017 0.58618400 1.968451449 0.036598831 55.63943956 0.240960 1.45691 - -
48 [32] 0.76080 0.22730 1.45130 0.03670 55.43270 0.738400 1.99990 - -
49 [33] 0.76078 0.74911 2.00000 0.03675 55.71854 0.226410 1.45471 - -
50 0.76078 0.74814 2.00000 0.03674 55.71851 0.219110 1.45145 - -
51 [42] 0.76078 0.22597 1.45102 0.03674 55.48542 0.749346 2.00000 - -
52

[12]

0.76080 0.21031 1.44500 0.03680 55.81350 0.885340 2.00000 - -
53 0.76080 0.13894 1.72540 0.03650 53.40580 0.262090 1.46580 - -
54 0.76070 0.00608 1.84360 0.03640 52.65750 0.315070 1.47880 - -
55 0.76080 0.23364 1.45380 0.03670 55.33820 0.684940 2.00000 - -
56 0.76080 0.33673 1.48610 0.03610 55.06760 0.071730 1.93160 - -
57 0.76070 0.25843 1.46250 0.03670 57.94220 0.386150 1.94350 - -
58 0.76080 0.27189 1.46740 0.03660 61.13450 0.435050 1.96620 - -
59 0.76060 0.00122 1.87910 0.03580 58.40180 0.372200 1.49560 - -
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Table A1. Cont.

Method Ref. Ipv (A) I01 (µA) n1 RS (Ω) RP (Ω) I02 (µA) n2 I03 (µA) n3

60

[47]

0.76112 0.00237 1.68481 0.03619 52.40069 0.338750 1.48612 - -
61 0.76056 0.17895 1.69574 0.03553 64.79937 0.315600 1.48789 - -
62 0.76079 0.49461 1.88559 0.03671 54.65515 0.220690 1.45021 - -
63 0.76078 0.65647 1.99990 0.03669 55.30604 0.237210 1.45509 - -
64 0.76078 0.84161 2.00000 0.03679 55.72835 0.215450 1.44705 - -
65

[30]
0.76101 0.00000 2.00000 0.03671 49.18670 0.292634 1.47134 - -

66 0.76078 0.22597 1.45101 0.03674 55.48550 0.749358 2.00000 - -
67 0.76081 0.19268 1.43800 0.03686 55.93352 0.999587 1.98372 - -
58

[25]

0.76081 1.00000 1.83576 0.03755 55.92047 0.099168 1.38609 - -
69 0.76162 0.41639 1.50537 0.03539 54.45518 0.000001 2.00000 - -
70 0.76072 0.28670 1.46915 0.03666 58.29956 0.247485 1.96837 - -
71 0.76886 0.66062 1.60874 0.02914 51.11600 0.455149 1.62890 - -
72 0.76081 1.00000 1.83576 0.03755 55.92047 0.099168 1.38609 - -
73 [48] 0.76078 0.25093 1.45982 0.03663 55.11700 0.545418 1.99941 - -
74 [62] 0.76077 0.24150 1.45651 0.03666 55.20160 0.600000 1.98990 - -
75

[9]
0.76010 0.00504 1.21860 0.03760 77.85190 0.750940 1.62470 - -

76 0.76080 0.17390 1.65850 0.03650 54.30210 0.226640 1.45780 - -
77 0.76070 0.24877 1.88170 0.03650 56.05240 0.274360 1.46820 - -
78 [8] 0.76000 0.32110 1.47930 0.03640 59.62400 0.045280 2.00000 - -
79 [21] 0.76078248 0.23910895 1.45393749 0.03672493 55.64995795 0.43972073 2.00000 0.8000 2.404159
80 [4] 0.760778 0.540044 1.996437 0.036636 55.09080 0.246533 1.45849 0.0143 1.785208
81 [5] 0.760785 0.2640 1.46085 0.03678 54.91521 0.00000551 1.14671 0.5810 2.020860
82

[33]

0.760792 0.2600 1.4608 0.03660 54.9149 0.000006 1.14660 0.5700 2.020800
83 0.760791 0.2100 1.7714 0.03670 55.3571 0.220000 1.45130 0.9900 2.410300
84 0.760782 0.2500 1.4601 0.03660 55.3133 0.041000 1.74090 1.0000 2.251400
85 0.760776 0.1400 1.4872 0.03630 53.7218 0.190000 1.47710 0.0310 4.466300
86 0.760790 0.3200 1.8666 0.03670 55.4411 0.230000 1.45210 0.7400 2.394900
87 0.760763 0.2800 1.4684 0.03650 55.3821 0.000670 1.54680 1.0000 2.322500
88

[37]
0.760700 0.2000 1.4414 0.03687 55.8344 0.500000 1.90000 0.2100 2.000000

89 0.760770 0.2353 1.4543 0.03668 55.4448 0.221300 2.00000 0.4573 2.000000
90 0.760800 0.2349 1.4541 0.0367 55.2641 0.229700 2.00000 0.4443 2.000000

Table A2. Parameters of the Solarex MSX 60 module obtained using the literature methods presented
in Table 4.

Method Ref. Method Ipv (A) I01 (A) n1 RS (Ω) RP (Ω) I02 (A) n2 I03 (A) n3

1
[35]

ER-WCA 3.8121 0.1399 × 10−6 1.3325 0.22351 914.6885 - - - -
2 HS 3.8115 0.2265 × 10−6 1.3707 0.21287 1976.07 - - - -
3 COA 3.81 0.1783 × 10−6 1.3514 0.21840 2004.977 - - - -
4 [50] NM 3.8084 4.8723 × 10−10 1.0003 0.3692 169.0471 - - - -
5 [49] BC 3.808 1.22 × 10−9 1.045 0.316 146.08 - - - -
6 [51] A&I 3.7983 6.79 × 10−8 1.28 0.251 582.7278 - - - -
7 [52] A&I 3.808244 1.21946 × 10−9 1.045334 0.316000 146.081207 - - - -
8 [10] CLSHADE 3.812527 0.12311 × 10−6 1.32290 0.226800 800 7.2999 × 10−11 1.9880 - -
9 CLSHADE 3.81253 0.12311 × 10−6 1.32270 0.226760 823.40000 7.29985 × 10−11 1.9900 1.25 × 10−10 1.93000
10 [17] TSO 3.8019 3.3525 × 10−7 1.9346 0.22724 450.13 1 × 10−12 1.7208 6.457 × 10−8 1.2764
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