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Abstract: Tropical marine lakes are small land-locked marine waterbodies occurring in karstic
coastal areas. During biodiversity surveys in 12 marine lakes in Raja Ampat, Southwest Papua
province, Indonesia, we recorded at least 37 species belonging to 29 genera of hard corals. Their
observed associated symbiont fauna consisted of bivalve molluscs and polychaete worms. Marine
lake temperature ranged from 30.0 to 32.5 ◦C, acidity from pH 7.6 to 8.1, and salinity from 26.4 to
33.2 ppt. This study provides the first inventory of the marginal coral communities in the extreme
habitat of marine lakes, under chronic extreme environmental conditions of higher temperatures,
land-based nutrient loads, and sedimentation.

Keywords: extreme habitat; marginal coral communities; environmental limits; anchialine; Raja
Ampat; Bird’s Head Peninsula; Indonesia

In recent years, there has been heightened interest in corals that live at the edge of their
environmental limits as they can provide insights into how coral communities may survive
and adapt to future scenarios of the marine environment [1]. Coral-populated extreme
environments are considered possible resilience hotspots and climate-change refugia [1–3].
Within this line, marine lakes represent environments with elevated seawater temperatures,
lower pH, and natural turbidity [4–6]. These small waterbodies are entirely surrounded by
land but have a connection to the adjacent sea through subterranean channels and fissures
or porous rock [4]. As such, marine lakes contain saline water and harbour marine species
communities [6–9], some of which are anchialine as defined by Holthuis [10]. Marine lakes
may contain endemic species of crustaceans [11,12], echinoderms [13,14], sponges [15–17],
sea anemone [18,19], and benthic forams [20], some of which were observed to be involved
in unique species interactions [18,19].

During biodiversity surveys in 2016, 2020, and 2023 in Raja Ampat, west of Bird’s
Head Peninsula (Papua, Indonesia), we encountered hard coral species in 12 marine lakes
(Figure 1). All marine lakes with coral fauna appeared to have well-developed connections
to the sea. These allow frequent flushing of seawater with the adjacent coast and a high
influence of terrigenous runoff, resulting in low-visibility waters despite low turbulence.
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The temperature across the 12 marine lakes ranged from 30.0 to 32.6 ◦C (Table 1), while in
the nearby reefs it ranged from 29.2 to 30.9 ◦C. The salinity of the lakes also varied, with
some of them representing brackish environments (26.4–29.1 ppt) and others that are only
slightly lower in salinity (30.0–33.2 ppt) (Table 1) than coastal reefs (33.5–34.5 ppt).
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Papua15 30.6 (30.3–31.2) 30.1 (29.1–30.4) 8.1 (8.0–8.1) 10,300 34 Yes 
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Figure 1. (a) Locations of 12 marine lakes with coral communities in Raja Ampat, Indonesia.
(b–d) Aerial images of marine lakes: (b) Papua24, (c) Papua06, and (d) Papua25. See Table 1
for location codes (Photo credits: Christiaan de Leeuw).

Table 1. Environmental characteristics of 12 marine lakes with hard coral fauna in Raja Ampat,
Indonesia. Code names for marine lakes follow those of earlier studies [21–23]. Averages (and
ranges in brackets) of temperature, salinity, and pH are based on five sites within each marine lake.
Measurements were made at 1 m intervals in the depth range that the corals were observed (1–5 m).
n.a. = not available.

Marine Lake
Code

Temperature
(◦C) Salinity (ppt) pH Surface Area

(m2)
Maximum
Depth (m)

Mangrove
Presence

Papua06 31.9 (30.8–32.5) 28.3 (26.7–29.1) 7.9 (7.9–8.0) 2950 12 No
Papua11 30.7 (30.1–31.0) 27.6 (26.4–29) 8.1 (8.0–8.1) 27,300 9 Yes
Papua12 31.2 (30.2–31.8) 32.7 (32.6–32.8) n.a. 7160 12 Yes
Papua13 30.6 (29.0–31.3) 32.8 (32.7–32.9) n.a. 2100 3.5 Yes
Papua15 30.6 (30.3–31.2) 30.1 (29.1–30.4) 8.1 (8.0–8.1) 10,300 34 Yes
Papua16 31.2 (31.1–31.6) 30.0 (29.5–30.1) 8.1 (8.0–8.1) 21,100 19 No
Papua17 31.7 (31.1–32.0) n.a. n.a. 6500 n.a. Yes
Papua18 31.5 (29.9–32.6) 28.4 (27.2–29.1) 7.7 (7.6–7.8) 7000 4.5 Yes
Papua24 30.3 (30.0–31.1) 30.7 (30–31.1) 7.9 (7.8–7.9) 4200 6 No
Papua25 31.7 (31.1–32.1) 29.6 (27.2–30) 7.8 (7.7–7.8) 21,500 8.5 Yes
Papua26 30.6 (30.0–31.5) 29.7 (29.1–30.2) 8.1 (8.0–8.1) 16700 4.5 Yes
Papua33 30.4 (30.0–30.6) 33.0 (32.8–33.2) n.a. 11,700 27 No
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The corals were mostly present at a depth range of 0.5–5 m. In four marine lakes
(Papua11, Papua12, Papua15, and Papua24) hard corals represented 10–20% of the total
benthic cover [23], resembling inshore and turbid reefs in the Indo-Pacific [24–26]. For
comparison, the nearby reefs in Raja Ampat can range in coral cover from 10 to 86% [23]
In some marine lakes, the corals formed small reefs (Figures 2d and 3c,d), while in others,
corals occurred in patches (Figure 2c). Most corals exhibit massive and encrusting growth
forms. In some marine lakes, corals also exhibit foliose and branching growth forms,
which contribute to increased structural habitat complexity. In the surveyed marine lakes
with mangroves, the corals grow on and in between mangrove roots. Corals growing on
mangrove roots is an uncommon feature, although there are reports from coastal areas in
the Caribbean, such as in the U.S. Virgin Islands [27,28], Panama [29,30], and Florida [31],
and also in the Indo-Pacific, such as the Great Barrier Reef [32,33].
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Figure 2. Impressions of coral cover and coral formations at shallow depths in marine lakes: (a) 
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butterflyfishes in shallow water; (c) encrusting merulinid coral with the grey encrusting sponge 
Lamellodysidea herbacea and the green macroalga Halimeda sp.; (d) pillar reef formations of Galaxea. 

Figure 2. Impressions of coral cover and coral formations at shallow depths in marine lakes:
(a) corals growing among and on mangrove roots; (b) foliose and vase-shaped corals as habitats
for butterflyfishes in shallow water; (c) encrusting merulinid coral with the grey encrusting sponge
Lamellodysidea herbacea and the green macroalga Halimeda sp.; (d) pillar reef formations of Galaxea.

Based on photographic evidence that was taken while snorkelling, 37 stony coral
species of 29 genera could be distinguished, belonging to 11 scleractinian families and one
hydrozoan family (Table 2; Figures 4 and 5). They were identified with the help of Corals
of the World [34], updated with the nomenclature of World List of Scleractinia [35]. These
corals are generally known to be sediment-tolerant, such as those belonging to the genera
Galaxea, Goniopora, Montipora, Pachyseris, Pavona, and Porites [36,37]. Most of the species
have previously been reported from turbid reef or mangrove environments. For example,
shallow-water branching Acropora spp., foliose Montipora spp., and large massive Porites
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spp. have been recorded in turbid nearshore coral communities in the Paluma Shoals Reef
Complex in the Great Barrier Reef, Australia [26].
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Figure 3. Impressions of coral cover and coral formations on upper reef slopes of marine lakes:
(a) massive merulinid coral colonies and an encrusting Porites overtopped by a free-living mushroom
coral, Danafungia scruposa (arrow); (b) encrusting and massive coral colonies; (c) foliose colonies of
an unidentified Montipora species; (d) foliose colonies of an unidentified Montipora species next to a
patch of Pavona cactus.

Table 2. Coral taxa (Scleractinia and Milleporidae) observed in 12 marine lakes of Raja Ampat,
Indonesia (Figure 1).

Family Species

Acroporidae Acropora cf. rudis, Montipora spp. (2×)
Agariciidae Gardineroseris planulata, Pavona cactus, P. decussata

Euphylliidae Coeloseris mayeri, Euphyllia glabrescens, Galexea astreata

Fungiidae Danafungia scruposa, Fungia fungites, Heliofungia actiniformis,
Lithophyllon repanda

Leptastreidae Leptastrea sp.
Lobophylliidae Lobophyllia sp.

Merulinidae
Cyphastrea sp., Dipsastraea spp. (2×), D. rotumana, D. speciosa,

Echinopora sp., Favites spp. (2×), Goniastrea sp., Hydnophora rigida,
Leptoria phrygia, Oulophyllia crispa, Pectinia paeonia

Milleporidae Millepora tenera
Pachyseridae Pachyseris speciosa
Plerogyridae Plerogyra sinuosa

Pocilloporidae Pocillopora damicornis, Seriatopora hystrix, Stylophora pistillata
Poritidae Porites sp., P. cylindrica, P. rus
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Figure 4. Selection of stony coral species observed in marine lakes: (a) Acropora cf. rudis, (b) Mon-
tipora sp., (c) Pavona decussata, (d) Coeloseris mayeri, (e) Galaxea astreata, (f) Heliofungia actiniformis,
(g) Lobophyllia sp., and (h) Pectinia paeonia.

Hard corals have been reported in marine lakes before, but little information has been
given on the species composition or their diversity. In Palau, which harbours numerous
marine lakes, Hamner and Hamner [4] reported the presence of corals in the marine lake
Ketau without further specification of species identities, coral cover or coral growth forms.
The water in Lake Ketau was isothermal with an average temperature of 29.5 ◦C, with
salinity around 30.5 ppt. Lake Ketau has the general appearance and fauna of the adjacent
outside lagoon, with a high diversity of coral-reef fish and many species of corals found
in the shallow areas near the islands [4]. Colin [5] reported on coral communities in
Palau’s Heliofungia Lake and displayed images of a dense cover of free-living Heliofungia
actiformis, as well as encrusting corals with large populations of Septifer mussels growing
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on them, and a foliose coral (Echinopora lamellosa) growing on a slope of the lake. In Ha
Long Bay (Vietnam), four marine lakes have been reported to have coral, although specific
species were not mentioned: Lake Dau Be (with a narrow strip of coral reef distributed
sparsely around the lake), Lake Qua Bang (narrow strip of corals), Lake Bui Xam (a
belt of massive corals), and Hang Du II Lake (the rocky shores of the lake are partially
covered by a belt of corals) [38,39]. In Indonesia, Tomascik and Mah [40] reported the coral
Alveopora tizardi from the marine Kakaban Lake in East Kalimantan province. However,
we did not encounter this species in our surveys. Notably, no other coral species have
previously been identified in Indonesian marine lakes.
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Figure 5. Selection of stony coral species observed in marine lakes (continued): (a) Dipsastraea sp.,
(b) Echinopora sp., (c) Goniastrea sp., (d), Millepora tenera, (e) Pachyseris speciosa, (f) Plerogyra sinuosa,
(g) Porites cylindrica, and (h) Porites rus.
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It is striking that some corals in marine lakes are associated with high numbers of
filter feeders (Figures 6 and 7). Records of coral-associated animals can be relevant because
of their role as possible bioindicators [41–44]. Since filter-feeding invertebrates generally
appear to be most abundant in relatively shallow, eutrophic water [45], marine lakes could
be favourable environments for these organisms.
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Figure 6. Coral-associated mytilid bivalves: (a) single specimen of Septifer bilocularis settled in between
two merulinid corals; (b,c) clusters of S. bilocularis settled inside crevices and patches of dead surface
areas of scleractinian corals; (d) characteristic orifices (arrows) of boring mussels (Leiosolenes sp.) in a
massive Porites colony.

Clusters of the box mussel bivalve, Septifer bilocularis (family Mytilidae), were present
in high densities over the upper surface of massive coral colonies and inside crevices
(Figure 6a–c). Boring mussels of the genus Leiosolenus (previously also known as Lithophaga)
of the same family lived inside massive Porites corals, showing their characteristic
orifices [46–49] scattered over their host’s surface (Figure 6d). The shell ribs of
Septifer bilocularis resemble those of Brachidontes spp., which were also found to be abundant
in the lakes but not in association with corals [22]. Since S. bilocularis has also been reported
to occur in cryptic upper-sublittoral habitats in dead coral [50], its presence on live coral
can perhaps be explained by settlement on small patches of dead surface area of the living
host. Interestingly, no bivalves of the genus Pedum (family Pectiniidae) were observed,
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even though these scallops are commonly observed inside crevices in massive corals on
coral reefs across the Indo-West Pacific [51–53], including eastern Indonesia [54,55].
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cryptic upper-sublittoral habitats in dead coral [50], its presence on live coral can perhaps 
be explained by settlement on small patches of dead surface area of the living host. Inter-
estingly, no bivalves of the genus Pedum (family Pectiniidae) were observed, even though 
these scallops are commonly observed inside crevices in massive corals on coral reefs 
across the Indo-West Pacific [51–53], including eastern Indonesia [54,55]. 

Filter-feeding coral-associated tube worms were less abundant than the mussels in 
the lakes; they belonged to the polychaete families Sabellidae (Figure 7a–c) and Serpulidae 
(Figure 7d–g). The Sabellidae, popularly known as feather duster worms, have just re-
cently been discovered to form associations with live corals in both the Indo-Pacific and 
in the Caribbean, where they may cause damage to their hosts [56,57]. Records of sabellids 
living on dead corals are more common than on live corals [58–62]. 

The only serpulid worm that could be identified was Floriprotis sabiuraensis (Figure 
7d–f), a coral symbiont, which has been reported from various hosts and localities across 
the Indo-Pacific [49,63–65]. The calcareous tube of an unknown serpulid was found at-
tached to the surface of a massive coral (Figure 7g). It does not show the ring-like struc-
tures (peristomes) of Floriprotis tubes [64,66] and also not the sharp spike at the tube open-
ing, as seen in most Spirobranchus species [67,68]. It could be an individual belonging to 
the Sprirobranchus tetraceros species complex, such as in S. schmardi [69], which do not al-
ways develop such spikes (ten Hove, personal communication). 

Figure 7. Coral-associated tube worms. Sabellidae: (a) Acromegalomma sp. (red arrow); (b,c) colour
varieties of Sabelastarte sp. (possibly S. spectabilis) in massive Porites colonies (yellow arrows). Ser-
pulidae: Floriprotis sabiuraensis with (d,e) tubes almost entirely implanted in a Dipsastraea host coral
(yellow arrows), both with extended arioles (d) and retracted (e), and another one (f) showing its
tube partially embedded and its ariole partially retracted; (g) tube of an unknown serpulid, possibly
Spirobranchus sp.

Filter-feeding coral-associated tube worms were less abundant than the mussels in
the lakes; they belonged to the polychaete families Sabellidae (Figure 7a–c) and Serpulidae
(Figure 7d–g). The Sabellidae, popularly known as feather duster worms, have just recently
been discovered to form associations with live corals in both the Indo-Pacific and in the
Caribbean, where they may cause damage to their hosts [56,57]. Records of sabellids living
on dead corals are more common than on live corals [58–62].

The only serpulid worm that could be identified was Floriprotis sabiuraensis (Figure 7d–f),
a coral symbiont, which has been reported from various hosts and localities across the
Indo-Pacific [49,63–65]. The calcareous tube of an unknown serpulid was found attached
to the surface of a massive coral (Figure 7g). It does not show the ring-like structures
(peristomes) of Floriprotis tubes [64,66] and also not the sharp spike at the tube opening,
as seen in most Spirobranchus species [67,68]. It could be an individual belonging to the
Sprirobranchus tetraceros species complex, such as in S. schmardi [69], which do not always
develop such spikes (ten Hove, personal communication).

Boring sponges may also occur in marine lakes and have here only been recorded from
limestone rock but not yet from corals [70,71], as those in open-sea reefs [71–74]. Other
large, striking coral-associated fauna, such as worm snails [75–77], barnacles, and gall
crabs [49,78,79], were also not observed in the marine lakes of Raja Ampat, and should
therefore receive more attention in future studies.

In conclusion, the coral communities and their associated fauna that we have found
in the marine lakes of Raja Ampat can be classified as extreme and marginal following
the framework by Schoepf et al. [1]. The coral communities in marine lakes survive under
chronic extreme environmental conditions of higher temperature, land-based nutrient loads,
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and sedimentation, and have a species diversity that is lower in comparison to clearwater
coastal coral communities. The marine lakes in the current study that contained stony
corals had an average temperature of 30.4 ◦C, which is markedly higher than the average
temperatures of 27.9 to 28.5 ◦C recorded in the reefs of Raja Ampat since 2009 [80–82].

Our study is a first assessment of the stony coral diversity of marine lakes. The list
of corals that we present here (Table 2) is a first qualitative compilation based on pho-
tographic evidence. Future work will require a systematic documentation of the coral
biodiversity, which will likely result in additional species records. Further research will
assess to what extent these marine lakes can serve as natural laboratories, where resident
coral communities are experiencing conditions of future climate scenarios (high temper-
ature and low pH) combined with local stressors on water quality (e.g., sedimentation
and eutrophication).
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