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Abstract: A few cases of multiple sclerosis (MS) onset after COVID-19 vaccination have been reported,
although the evidence is insufficient to establish causality. The aim of this study is to compare cases
of newly diagnosed relapsing–remitting MS before and after the outbreak of the COVID-19 pandemic
and the impact of COVID-19 vaccination. Potential environmental and genetic predisposing factors
were also investigated, as well as clinical patterns. This is a single-centre retrospective cohort
study including all patients who presented with relapsing–remitting MS onset between January
2018 and July 2022. Data on COVID-19 vaccination administration, dose, and type were collected.
HLA-DRB1 genotyping was performed in three subgroups. A total of 266 patients received a new
diagnosis of relapsing–remitting MS in our centre, 143 before the COVID-19 pandemic (until and
including March 2020), and 123 during the COVID-19 era (from April 2020). The mean number of
new MS onset cases per year was not different before and during the COVID-19 era and neither were
baseline patients’ characteristics, type of onset, clinical recovery, or radiological patterns. Fourteen
(11.4%) patients who subsequently received a new diagnosis of MS had a history of COVID-19
vaccination within one month before symptoms onset. Patients’ characteristics, type of onset, clinical
recovery, and radiological patterns did not differ from those of patients with non-vaccine-related
new diagnoses of MS. The allele frequencies of HLA-DRB1*15 were 17.6% and 22.2% in patients
with non-vaccine-related disease onset before and during the COVID-19 era, respectively, while
no case of HLA-DRB1*15 was identified among patients with a new diagnosis of MS post-COVID-
19 vaccine. In contrast, HLA-DRB1*08+ or HLA-DRB1*10+ MS patients were present only in this
subgroup. Although a causal link between COVID-19 vaccination and relapsing–remitting MS
cannot be detected, it is interesting to note and speculate about the peculiarities and heterogeneities
underlying disease mechanisms of MS, where the interactions of genetics and the environment could
be crucial also for the follow-up and the evaluation of therapeutic options.
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1. Introduction

Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central ner-
vous system (CNS) characterized by focal demyelination and neurodegeneration. The
aetiopathogenesis of MS is multifactorial, and environmental factors have been shown
to have a considerable impact on susceptible individuals [1–3]. Among triggers, viral
infections have been associated with an increased risk of developing MS [4–8], and a direct,
causal relation has recently been established for the Epstein–Barr virus (EBV) [9]. Active
immunization with vaccines has been also hypothesized as a possible trigger for MS onset
on the assumption that immune stimulation may lead to a dysregulated, auto-aggressive
response. Nevertheless, the risk of developing MS after vaccinations against Hepatitis B
virus, Human Papillomavirus, seasonal influenza and H1N1, measles–mumps–rubella,
Variola, tetanus, Bacillus Calmette–Guérin, Poliovirus, typhoid fever, and diphtheria has
not been proven [10–12].

The recent COVID-19 pandemic and the subsequent vaccination campaign have raised
a new debate on the mutual relations between viral infections, vaccinations, and MS. The
massive inflammatory response induced by SARS-CoV-2 infection is peculiar compared to
other viruses [13,14] and has been associated with the occurrence of many para- and post-
infectious inflammatory neurological conditions, like acute disseminated encephalomyelitis
(ADEM) [15,16] and neuromyelitis optica spectrum disorders (NMOSDs) [17,18]. A few
cases of typical onset of MS during or post-COVID-19 have been reported as well, although
the evidence is insufficient to establish a causative role of the SARS-CoV-2 virus [19–23].

After the early stages of vaccination campaigns, in late 2020, many cases of neurological
disorder onset after vaccination were reported [24–27]. A few cases of reactivation or
new onset of demyelinating diseases of the CNS have been described as well, both after
vaccination with mRNA-based [28–31] and with adenovirus-vectored formulations of the
vaccine [31–33]. The assumption that anti-COVID-19 vaccination may increase the risk
of developing MS is still debated, and this potential causal relationship could change the
risk–benefit profile of anti-COVID-19 vaccination, at least in some population subgroups.
Genetic and environmental predisposing factors for the onset of demyelinating disease
after the vaccine in predisposed individuals have not yet been defined.

The T-cell-mediated self-reactivity against myelin is strongly linked to the human
leucocyte antigen (HLA)-DRB1. In particular, the HLA-DRB1*15 haplotype represents the
single genetic factor with the strongest association with relapsing–remitting MS [34–36],
although more recent genome-wide association studies showed extreme complexity of
interactions between genes and immune response in the development of MS [37,38].

This study aimed to compare cases of newly diagnosed relapsing–remitting MS re-
ported to our MS centre before and after the outbreak of the COVID-19 pandemic and their
temporal relationship with SARS-CoV-2 vaccination. Potential environmental and genetic
predisposing factors were also investigated, as well as clinical patterns of the post-vaccine
MS cohort and a typical newly diagnosed MS cohort.

2. Results
2.1. Comparison between Patients with a Disease before and during the COVID-19 Pandemic

During the study period (January 2018–July 2022), 266 patients received a new diag-
nosis of relapsing–remitting MS at our centre, 143 before the SARS-CoV-2 outbreak (until
and including March 2020), and 123 during the COVID-19 era (from April 2020). The
mean number of new MS onset was 64 per year before the COVID-19 era and 56 per year
during the COVID-19 era; a statistically significant difference was not detectable (Figure 1).
Similarly, the number of new MS onset per trimester was not statistically different before
and during the COVID-19 era (Figure 2). One hundred eighty-five (69.5%) patients were
female, with a median age of 34 years, and 10.8% of them had another associated autoim-
mune disease. The most common onset types were spinal (27.1%), multisystemic (21.4%),
and brain stem (19.9%). Oligoclonal bands were positive in 83.5% of patients. Median
EDSS after relapse was 1.0. Complete or partial recovery after pulse steroid treatment was
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observed in 93.6% of patients. MRI at onset showed a median of five supratentorial T2
lesions; 54.1% of patients showed at least one gadolinium-enhancing lesion. A comparison
between patients with a new diagnosis of MS before and during the COVID-19 era showed
no difference in patients’ characteristics, type of onset, clinical recovery, and radiological
patterns; during the COVID-19 era, the time from onset to diagnosis was lower than that of
patients diagnosed before SARS-CoV-2 advent (Table 1). None of the patients of the MS
cohort with disease onset during the COVID-19 pandemic documented or experienced a
SARS-CoV-2 infection within 1 month before symptoms onset.
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Table 1. Comparison between patients with a new diagnosis of MS in the pre-COVID-19 era and
during the COVID-19 era.

Before COVID-19
Era

During COVID-19
Era p-Value

Patients with a new diagnosis of MS 143 123
Women (%) 105/143 (73.4%) 80/123 (65.0%) 0.178

Age in years—median (IQR) 33.0 (25.82–39.89) 33.0 (25.82–39.89) 0.052
Family history of MS (%) 8/143 (5.6%) 10/123 (8.1%) 0.565

Autoimmune comorbidity (%) 18/143 (12.6%) 7/123 (5.7%) 0.087
Time from onset to

diagnosis—median (IQR) 7.0 (1.97–7.70) 4.0 (1.97–7.70) <0.001

Type of onset 0.081
Optic neuritis (%) 29/143 (20.3%) 21/123 (17.1%)

Brain stem (%) 31/143 (21.6%) 22/123 (17.9%)
Cerebellum (%) 3/143 (2.1%) 1/123 (0.8%)
Spinal cord (%) 38/143 (26.6%) 34/123 (27.6%)

Supratentorial (%) 20/143 (14.0%) 10/123 (8.1%)
Multisystemic (%) 22/143 (15.4%) 35/123 (28.5%)

Oligoclonal bands (%) 122/139 (87.8%) 100/110 (90.9%) 0.528
EDSS at onset—median (IQR) 2.0 (1.50–2.5) 2.0 (1.50–2.5) 0.097

EDSS after relapse—median (IQR) 1.0 (1.50–2.5) 1.0 (1.50–2.5) 0.905
Clinical recovery after pulsed steroid

therapy 0.372

None (%) 7/143 (4.9%) 10/123 (8.1%)
Partial (%) 89/143 (62.2%) 74/123 (60.2%)

Full (%) 48/143 (33.6%) 38/123 (30.9%)
MRI brain stem (%) 60/143 (42.0%) 49/123 (39.8%) 0.822

MRI cerebellum 41/143 (28.7%) 35/123 (28.5%) 1.000
MRI spinal cord (%) 99/143 (69.2%) 93/123 (75.6%) 0.308

MRI infratentorial (%) 79/143 (55.2%) 61/123 (49.6%) 0.506
MRI number of supratentorial

lesions—median (IQR) 5 (3.0–9.0) 5 (3.0–9.0) 0.215

MRI contrast enhancement (%) 76/143 (53.1%) 68/123 (55.3%) 0.637
Highly active efficacy therapy (%) 62/143 (43.4%) 60/114 (52.6%) 0.218

Smoke (%) 46/143 (32.2%) 41/123 (33.3%) 0.943
Vitamin D—median (IQR) 23.9 (17.55–30.76) 23.9 (17.55–30.76) 0.564

BMI (kg/m2)—median (IQR) 23.6 (21.30–26.23) 23.6 (21.30–26.23) 0.383
EBV positive serology (%) 124/143 (86.7%) 110/123 (89.4%) 0.065

2.2. Analysis of MS Cohort with a SARS-CoV-2 Vaccine-Related Disease Onset

Fourteen (11.4%) patients who subsequently received a new diagnosis of MS had a
history of SARS-CoV-2 vaccination within one month before symptom onset. The demyeli-
nating event occurred after the first dose vaccination in three patients, after the second dose
vaccination in seven patients, and after booster dose vaccination in four patients (Figure 3).
Ten patients received m-RNA BNT162b2 (Figure 3), three patients received mRNA-1273,
and one patient received heterologous vaccination (ChAdOx1-S/mRNA-1273). Patients’
characteristics, type of onset, clinical recovery, and radiological patterns did not differ from
those of patients with non-vaccine-related new diagnoses of MS (Table 2). A sub-analysis
was performed to test the hypothesis of whether patients with post-vaccine onset differed
in the severity of disease. No statistically significant difference was detectable in the EDSS
in presentation, type of relapse, and recovery after relapse in univariate analysis post-PSM
(Supplementary Table S1).
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Table 2. Comparison between patients with post-vaccine and non-vaccine-related new diagnosis
of MS considering a maximum of 1 month between SARS-CoV-2 vaccination and demyelinating
event onset.

Post-Vaccine New Diagnosis
of MS

Non-Vaccine-Related New
Diagnosis of MS p-Value

Number of patients with a new diagnosis
of MS 14 252

Women (%) 11/14 (78.6%) 174/252 (69.0%) 0.623
Age in years—median (IQR) 33.0 (26.00–40.00) 33.0 (26.00–40.00) 0.321

Family history of MS (%) 1/14 (7.1%) 16/252 (6.3%) 1.000
Autoimmune comorbidity (%) 0/14 (0.0%) 24/252 (9.5%) 0.456

Time from onset to
diagnosis—median (IQR) 4.0 (1.97–7.70) 4.0 (2.00–8.00) 0.869

Type of onset 0.379
Optic neuritis (%) 0/14 (0.0%) 50/252 (19.8%)

Brain stem (%) 5/14 (35.7%) 48/252 (19.0%)
Cerebellum (%) 0/14 (0.0%) 4/252 (1.6%)
Spinal cord (%) 4/14 (28.6%) 68/252 (27.0%)

Supratentorial (%) 1/14 (7.1%) 29/252 (11.5%)
Multisystemic (%) 4/14 (28.6%) 53/252 (21.0%)

Oligoclonal bands (%) 10/12 (83.3%) 212/237 (89.5%) 0.863
EDSS at onset—median (IQR) 2.0 (1.50–2.50) 2.0 (1.50–2.50) 0.328

EDSS after relapse—median (IQR) 1.0 (0.00–1.50) 1.0 (0.00–1.50) 0.264
Clinical recovery after pulsed steroid

therapy 0.180

None (%) 1/14 (7.1%) 14/252 (5.6%)
Partial (%) 3/14 (21.4%) 151/252 (59.9%)

Full (%) 4/14 (28.6%) 82/252 (32.5%)
MRI brain stem (%) 6/14 (42.9%) 103/252 (40.9%) 1.000
MRI cerebellum (%) 5/14 (35.7%) 71/252 (28.2%) 0.688
MRI spinal cord (%) 10/14 (71.4%) 182/252 (72.2%) 1.000

MRI infratentorial (%) 9/14 (64.3%) 132/252 (52.4%) 0.517
MRI number of supratentorial

lesions—median (IQR) 5.0 (3.00–9.00) 5.0 (3.00–9.00) 0.428

MRI contrast enhancement (%) 11/14 (78.6%) 131/252 (52.0%) 0.102
Highly active efficacy therapy (%) 8/10 (80.0%) 114/246 (46.3%) 0.073

Smoke (%) 4/14 (28.6%) 83/252 (32.9%) 0.931
Vitamin D—median (IQR) 23.9 (17.55–30.76) 23.9 (17.55–30.76) 0.431

BMI (kg/m2)—median (IQR) 23.6 (21.30–26.23) 23.6 (21.30–26.23) 0.334
EBV positive serology (%) 13/14 (92.9%) 205/252 (81.3%) 0.544

An additional four patients developed inflammatory demyelinating events within
the second month after vaccine exposure (three patients after the second dose and one
patient after the booster dose); three patients received heterologous vaccination (ChAdOx1-
S/mRNA BNT162b2), and one patient received BNT162b2. Patients’ characteristics, type of
onset, clinical recovery, and radiological patterns are shown in Supplementary Table S2
and did not differ from patients with non-vaccine-related new diagnoses of MS.

2.3. Comparison of HLA-DRB1 Genotyping before and during COVID-19 Pandemic

HLA genotyping was performed on plasma samples collected from 49 MS patients:
17 patients with disease onset before the COVID-19 era (control group 1), 18 patients with
disease onset during the COVID-19 era but not vaccine-related (control group 2), and all
14 patients with a post-vaccine new diagnosis of MS (cases). HLA-DRB1 alleles in the
three groups are reported in Table 3 and Supplementary Table S3. The allele frequencies of
HLA-DRB1*15 were 17.6% and 22.2% in control groups 1 and 2, respectively, but none of
the patients with a new diagnosis of MS post-COVID-19 vaccine resulted in HLA-DRB1*15
at least in one of the two alleles, while HLA-DRB1*08pos and HLA-DRB1*10pos MS patients
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were present only in the subgroup of our cohort with a vaccine-related disease onset
(Figure 4).
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Figure 3. In the first diagram, the distribution of vaccines in our cohort (266 patients) is represented;
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presented a post-vaccine MS onset.

Table 3. Comparison among 17 patients with disease onset in the pre-COVID-19 era (control group
1), 18 patients with disease onset in the post-COVID-19 era but not vaccine-related (control group 2),
and all 14 patients with a post-vaccine new diagnosis of MS (cases). Most relevant HLA-DRB1 alleles
are displayed as allele frequencies. Sums of positives were not intended as a total due to the presence
for each MS patient of two alleles that in a few cases are present in homozygosis.

HLA-DRB1 Alleles of Patients with a New Diagnosis of MS.

HLA-DRB1 Alleles Pre-COVID-19 Era

COVID-19 Era

Vaccine-Unrelated
Onset

Vaccine-Related
Onset

HLA-DRB1*01, n (%) 2.0 (11.8) 4.0 (22.2) 2.0 (14.3)

HLA-DRB1*03, n (%) 5.0 (29.4) 6.0 (33.3) 3.0 (21.4)

HLA-DRB1*04, n (%) 3.0 (17.6) 2.0 (11.1) 2.0 (14.3)

HLA-DRB1*07, n (%) 5.0 (29.4) 4.0 (22.2) 2.0 (14.3)

HLA-DRB1*11, n (%) 5.0 (29.4) 3.0 (16.7) 2.0 (14.3)

HLA-DRB1*13, n (%) 4.0 (23.5) 3.0 (16.7) 5 (35.7)

HLA-DRB1*15, n (%) 3.0 (17.6) 4.0 (22.2) 0



Int. J. Mol. Sci. 2024, 25, 4556 7 of 15
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 4. HLA-DRB1 haplotypes. Comparison of HLA-DRB1 haplotypes (both alleles) among 17 
patients with disease onset in the pre-COVID-19 era (control group 1), 18 patients with disease onset 
in the post-COVID-19 era but not vaccine-related (control group 2), and 14 patients with a post-
vaccine new diagnosis of MS (cases). Each line indicates a single patient. Positive HLA-DRB1 alleles 
with a square filled in light blue for heterozygous and dark blue for homozygous. In the red box, 
the column concerning HLA-DRB1*15 is not expressed in the subgroups of MS patients with disease 
onset related to vaccination. 

  

pre-COVID19
on

se
t o

cc
ur

re
d 

du
rin

g 
C

O
VI

D
-1

9 
pa

nd
em

ic

vaccine 
related 
onset

vaccine 
unrelated 

onset

01 03 07 08 10 11 12 13 14 15 1604HLA-DRB1*

heterozygous homozygous

Figure 4. HLA-DRB1 haplotypes. Comparison of HLA-DRB1 haplotypes (both alleles) among
17 patients with disease onset in the pre-COVID-19 era (control group 1), 18 patients with disease
onset in the post-COVID-19 era but not vaccine-related (control group 2), and 14 patients with a
post-vaccine new diagnosis of MS (cases). Each line indicates a single patient. Positive HLA-DRB1
alleles with a square filled in light blue for heterozygous and dark blue for homozygous. In the red
box, the column concerning HLA-DRB1*15 is not expressed in the subgroups of MS patients with
disease onset related to vaccination.

3. Discussion

Our study showed a different HLA genotype pattern in patients with relapsing–
remitting MS onset within one month after the COVID-19 vaccine compared to both
patients with non-vaccine-related MS onset and patients with MS onset before the COVID-
19 pandemic. The genotype of HLA is not modifiable by immune response in any case,
but, interestingly, we observed that certain HLA haplotypes recurred more frequently in
patients with MS onset within one month after the COVID-19 vaccine. In this case, the
genotype is a prerequisite, and probably the immune system after the vaccine in selected
people with a genetic predisposition and probably with certain HLA haplotypes can
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enhance specific mechanisms of response, in some cases protective and others dangerous.
Self-reactive mechanisms are largely involved in MS pathogenesis, where CNS-reactive T
and B cells play a prominent role [39–42]. Thus, peripherally activated T cells specific for
myelin antigens become able to cross the blood–brain barrier [43,44]. After reaching CNS,
they recognize specific targets able to re-stimulate them through local antigen-presenting
cells (APCs) [45–47], causing damage to myelin sheaths and recruitment of other immune
cells [48–51], leading to demyelination. The T cell-mediated self-reactivity against myelin
is strongly linked to the human leucocyte antigen HLA-DRB1*15 allele (HLA-DR2) [52].
Although it is well known that the HLA-DRB1*15 haplotype represents a single genetic
factor with the strongest association with MS [36], especially with relapsing–remitting MS
(OR = 3.08), more recent genome-wide association studies (GWASs) dissected the various
and heterogeneous universe of genes associated with MS [37,38], while cell-specific fine-
mapping revealed the complexity of these interactions, providing novel evidence about the
potential genetic mechanisms that independently involve T and B cells in the pathogenesis
of MS [53]. These findings are embedded in the long-standing debate regarding the
aetiology of MS, corroborating the causal role of both CD4 T cells, including Th17 T cells,
and memory B cells [3,54,55], confirmed by the highly effective therapies targeting these
subpopulations [56].

In this study, we intended to compare relapsing–remitting MS cohorts based on
their onset in three distinct periods: before and during the COVID-19 era, distinguishing
between MS patients with demyelinating event onset within 1 month after COVID-19
vaccination and patients with non-vaccine-related MS onset. The time interval by which to
define a temporal relationship between a triggering event (e.g., a vaccine) and the onset
of MS is controversial. We established a one-month timeframe based on recent literature
about inflammatory events related to SARS-CoV-2 vaccination [26]; the same timeframe
was chosen by Alluqmani in his case–control study including thirty-two patients with
vaccine-related MS onset [31].

The association between COVID-19 vaccination and MS onset is still debated in the
literature [57,58]. Havla and Coll. described a case of MS onset in a 28-year-old woman
six days after the first dose of the BNT162b2 mRNA vaccine [28]. Khayat-Khoei and
Coll. described three cases of new-onset MS or neuromyelitis optica and four cases of
exacerbation of known stable MS within 21 days after the first or second dose of the mRNA-
1273 or the BNT162b2 vaccines [29]. Toljan and Coll. described a series of five patients who
developed MS during 1-day and two-month timeframes after an mRNA-based COVID-19
vaccine [31]. In the Oxford COVID Vaccine Trial, one case of MS reactivation 10 days after
the first dose of the ChAdOx1 vaccine was observed among 11,636 participants [32]. Rinaldi
and Coll. collected three cases of MS onset occurring within 35 days after the COVID-19
vaccine and performed a systematic review that included 47 cases of MS onset/reactivation
after the COVID-19 vaccine [33]. To avoid confounding, we evaluated only demyelinating
events at disease onset in our study, not including cases of MS reactivation as reported in
other works [33,59,60]. In our study, we were not able to find any demographic, clinical,
or radiological differences between patients with post-vaccine new-onset MS and patients
with non-vaccine-relate MS onset. Establishing a causal relationship between vaccination
against COVID-19 and the onset of MS is outside the objectives of this study, although
the mean number of new MS onset cases per year was not different before and during the
COVID-19 era in our centre. To confirm or deny a causal association between vaccination
against COVID-19 and MS onset, one or more case–control studies in large populations
will be needed, as was the case for vaccinations against HBV and HPV [10].

The HLA-DRB1 genotyping of MS patients reflects frequencies normally expected
both in line with the Italian reference population (allefrequencies.net, last visit to website: 6
June 2023) [61] and with what is generally expected in MS patient cohorts [34,35]. There is
a slight non-significant prevalence of certain alleles generally associated with autoimmune
diseases, and the haplotype combinations reflect those most frequent in the reference
population. Intriguingly, the genotyping of HLA-DRB1, comparing the patients based
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on disease onset (before or during the COVID-19 pandemic and related or unrelated to
SARS-CoV-2 vaccination), revealed that none of the MS patients with demyelinating event
onset within one month after COVID-19 vaccination expressed the HLA-DRB1*15 allele. In
contrast, the HLA-DRB1*08 and HLA-DRB1*10 alleles were expressed in the vaccine-related
onset cohort but not in the other two groups of MS patients with disease onset unrelated to
either SARS-CoV-2 infection or vaccination.

Although these observations regard a small number of individuals, these results are
intriguing and open to distinct speculations. First, the HLA-DRB1*15 allele generally aver-
ages around one-fifth of MS Caucasian Italian patients [34,35,56]. The fact that no patient
in this group presented the single genetic risk factor related to MS and was able to evoke a
mechanism mediated by abnormal antigen presentation and autoimmune T lymphocyte
recruitment processes may suggest that other potential mechanisms are predominant, prob-
ably triggered by the vaccination itself or other bystander effects following the vaccination.
This paper does not intend to find a causal link between COVID-19 vaccination and MS, in
line with the literature where this topic remains still controversial [28–31,59,60]. Heteroge-
neous humoral and cellular immune responses to the different doses and formulations of
COVID-19 vaccination have been widely reported [62,63]. In line with this, the alleles exclu-
sively expressed in the vaccine-related cohort, although rarely and poorly associated with
immune-related disorders, have been described to be predisposing risk factors for MS and
other autoimmune diseases (HLA-DRB1*08 [64,65]) and IgG4 mediated encephalopathies
and neuromyelitis optica (HLA-DRB1*10 [66–69]). The fact that HLA-DRB1*08pos and
HLA-DRB1*10pos MS patients are limited to the cohort of those with a disease onset related
to SARS-CoV-2 vaccination suggests a possible B cell or antibodies-mediated mechanism(s)
probably responsible for initiating or triggering the disease in individuals predisposed to
or at risk of developing MS.

Nevertheless, it will be interesting to follow up on the evolution of the disease in
these patients and to understand whether they will develop a more severe course over
time or be amenable to more targeted therapies. For example, we can speculate that they
might benefit from an approach more directed at the B cell compartment, being prevalent T
cell-independent mechanisms in their pathogenesis.

Our study has several limitations. It was not possible to analyse the HLA pattern for
all patients included in the study. However, we analysed all patients with a post-COVID-19
vaccine new diagnosis of MS and an equivalent number of patients in the two control
groups. Our study did not include a healthy individual control group. However, since
we enrolled only non-Sardinian Italian Caucasian patients, we used the data available on
the general Italian population as a reference for the frequencies of the HLA haplotypes.
Furthermore, being a single-centre study, its generalizability requires further confirmation.

A detailed discussion of the efficacy and safety of COVID-19 vaccination in patients
who already have a diagnosis of MS (whether or not being treated with disease-modifying
drugs) is outside the objectives of this study.

4. Materials and Methods
4.1. Study Population

This is a single-centre retrospective cohort study conducted at the MS Centre of
Fondazione Policlinico Universitario Agostino Gemelli IRCCS in Rome, a teaching hospital
that oversees about 1500 MS patients. Inclusion criteria encompassed all patients who
presented with a first neurological event suggestive of relapsing–remitting MS between
January 2018 and July 2022 and who were successively diagnosed with MS according to the
2017 revision of McDonald’s criteria [70]. Data were collected from the review of medical
records. For each patient, we evaluated the following characteristics at disease onset:
smoking habit; body mass index (BMI); vitamin D levels; exposure to EBV; the presence,
number, and localization of T2-FLAIR and gadolinium-enhancing lesions on magnetic
resonance imaging (MRI); and the Expanded Disability Status Scale (EDSS) score. We also
assessed clinical recovery after the first clinical event and after the first treatment started.
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Data on SARS-CoV-2 vaccination included the dates of administration of each dose and
the type of vaccine (BNT162b2—Comirnaty© (BioNTech/Pfizer, Mainz, Germany/New
York, NY, USA), mRNA-1273—Spikevax© (Moderna, Cmbridge MA, USA), ChAdOx1-S—
Vaxzevria© (AstraZeneca PLC, Cambridge, UK), and Ad26.COV2.S—Johnson&Johnson©,
Titusville, NJ, USA). For patients newly diagnosed with MS after 2020, we collected the time
from vaccination to disease onset. For patients presenting with MS within 1 month from
any dose of vaccine, we conducted genetic testing on blood samples, as well as in control
groups as described below. Written consent was obtained from all patients. Anonymized
data not published within this article are available upon request.

4.2. SARS-CoV-2 Vaccination

In Italy, the COVID-19 vaccination campaign started on 27 December 2020. The
first vaccines available were mRNA vaccines and included BNT162b2–Comirnaty© (two
intramuscular injections 21 days apart) [71] and mRNA-1273—Spikevax© (two intramus-
cular injections 28 days apart) [72]. Non-replicating vector vaccines, namely ChAdOx1-
S—Vaxzevria© (two intramuscular injections 4–12 weeks apart) [73] and Ad26.COV2.S—
Johnson&Johnson© (only one intramuscular injection) [74], were available from February
2021 and April 2021, respectively.

Age and pre-existing medical conditions as the main variables associated with mortal-
ity from COVID-19 guided the order of priority for vaccination starting with people aged
over 80 and people at risk of developing severe COVID-19, including patients suffering
from neurological conditions such as MS [75]. Other categories were also identified as
priority groups, regardless of age and pre-existing medical conditions, such as caregivers
of frail people, social and healthcare workers on the frontline of the COVID-19 response,
school staff, etc. After that, vaccination was offered to the remaining population.

In April 2021, ChAdOx1-S and Ad26.CoV2.S. distribution was restricted to people
older than 60 years due to some reports of cases of severe thromboembolism in younger
people. Since then, the vaccination campaign has been carried out almost entirely through
mRNA-based vaccines (European COVID-19 vaccine-safety-update; website last visited: 31
May 2023) [76].

From October 2021, a booster dose with one of the two m-RNA vaccines (origi-
nal/omicron BA.1 or original/omicron BA.4–5) was offered to subjects who completed
the primary series in order of priority. Since April 2022, a second booster dose has been
gradually recommended to a wider target population once at least 120 days have elapsed
since the last dose or the last SARS-CoV-2 infection.

In Italy, 145,134,032 vaccine doses have been administered until July 2022 (Italian Task
Force COVID-19 update; website last visited: 13 March 2024) [77].

4.3. HLA-DR Genotyping

Genomic DNA for HLA-DR genotyping was extracted using QIAamp DNA Mini
kits (Qiagen GmbH, Hilden, Germany); it was amplified in the region of exon 2 of HLA-
DRB1 through PCR and then was reversely hybridized using the INNO-LiPA HLA-DRB1
plus kit (Fujirebio Italia, Pomezia, Italy), following the manufacturer’s instructions [77,78].
LiRAS software version 2.0 also provided by Fujirebio was used for the interpretation of
HLA-DRB1 probes on the hybridization strips to predict one-digit HLA-DRB1 [79,80].

4.4. Statistical Analysis

We described the general characteristics of the population with summary statistics.
We used the Mann–Whitney U-test and Pearson’s chi-square test/Fisher’s exact test as
appropriate to test differences between groups. We used the Shapiro–Wilk test as the
normality test. We evaluated univariate associations between patients diagnosed with MS
during the pre-COVID-19 era and during the COVID-19 era.

To define a possible temporal association between SARS-CoV-2 vaccination and the
onset of the acute demyelinating event, we established a one-month timeframe based on
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recent literature about inflammatory events related to SARS-CoV-2 vaccination [26]; a
two-month timeframe was also investigated according to the classical relationship between
demyelinating events and vaccination by Confavreux [81].

Since our patients were not randomized, we used propensity score matching (PSM) to
estimate differences in outcome measures between patients diagnosed after SARS-CoV-2
vaccination and all other patients, considering a maximum of one month between vacci-
nation and MS onset. Covariates included in this model were age, sex, smoke, positive
EBV serology, vitamin D serum levels, and BMI (kg/m2). The “greedy nearest neighbor”
matching method was used to find pairs of observations that have very similar propensity
scores, setting a caliper of 0.02. The significance threshold was set at 5%. All analyses
were performed using R software v.4.1.3 (https://www.r-project.org, accessed on 10 Octo-
ber 2023).

5. Conclusions

These data, although limited by the restricted number of patients, once again cor-
roborate and confirm the idea that the etiopathogenesis of relapsing–remitting MS can
be determined by a myriad of factors, of both genetic and environmental origins, whose
interactions lead in some individuals to the development of the disease and, more generally,
of autoimmune disorders [82–86]. Understanding these individual factors could have a
great impact on managing patients and choosing the best treatment options. Our study
also demonstrates the need for in-depth context-specific genetic and environmental data to
carefully delineate the causal role and the potential evolution of each MS case individually.
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