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S1 Clustering antibody and antigen sequences

We used CD-HIT [1, 2] to cluster the sequences, with the cutoff set to 0.8 for the concatenated
sequences of antibody CDRs, and 0.9 for antigen sequences. We used the command-line
interface (CLI) of CD-HIT. The commands we used for sequence clustering are:

# command for antibody

cd-hit -i ab.fasta -o ab -c 0.8 -T 0 -d 0 -l 4 -sc 0 -G 0 -g 1 -p 1 -aS 0.9

# command for antigen

cd-hit -i ag.fasta -o ag -c 0.9 -T 0 -d 0 -l 4 -sc 0 -G 0 -g 1 -p 1 -aS 0.9

Note that CD-HIT can give different results even with exactly the same input parameters.
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S2 Image generation

For each patch, the four boundaries, i.e. the maximum and minimum values of the atom or
residue coordinates along the x-axis and y-axis were determined. Based on these, we defined
a frame able to fully enclose the patch. The left (top) boundary of the frame was computed
as the largest number which is a multiple of 5 and smaller than the left (top) boundary of
the patch. Similarly, the frame’s right (bottom) boundary was computed as the smallest
number which is a multiple of 5 and larger than the right (bottom) boundary of the patch.
For most patches, the frame’s boundaries are -25Å on the top and left and +25Å on the
right and bottom, i.e. the frame is a 50Å × 50Å square. For the patches with a different
frame, padding or cropping was applied.

If the radius of an atom is set to 1Å and if we take a 1:1 Å-pixel ratio in ImaPEp-atom’s
image, an atom will likely take up less than a pixel of space. We thus decided to utilize a
1:4 Å-pixel ratio. As a result, all patch images have 200 × 200 pixels. The resulting image
contains many blank regions around the colored area. To reduce the model complexity we
cropped all the images to 100× 100 pixels.

In ImaPEp-atom, we used the same size for the circles representing the atoms. The van
der Waals radii of oxygen, nitrogen, carbon and sulfur atoms are equal to 0.60, 0.65, 0.70

Table S1: Radius (in Å) [3], polarizablity [4], isoelectric point [5], and hydrophobicity (Kyte-
Doolittle scale [6]) of the 20 amino acid residues. The min-max scaled values are given in
parentheses.

Residue Radius Polarizability Charge Hydrophobicity

Gly 1.9 0.03 (0.0) 6.06 (0.4) -0.4 (0.46)
Ser 2.4 1.6 (0.13) 5.7 (0.35) -0.8 (0.41)
Thr 2.8 2.7 (0.22) 5.6 (0.34) -0.7 (0.42)
Ala 2.3 1.1 (0.09) 6.11 (0.40) 1.8 (0.7)
Val 2.91 3.2 (0.26) 6.02 (0.39) 4.2 (0.97)
Leu 3.15 4.2 (0.35) 6.04 (0.39) 3.8 (0.92)
Ile 3.09 4.3 (0.35) 6.04 (0.39) 4.5 (1.0)
Cys 2.5 2.7 (0.22) 5.15 (0.28) 2.5 (0.78)
Met 3.1 5.1 (0.42) 5.71 (0.35) 1.9 (0.71)
Phe 3.4 8.0 (0.66) 5.76 (0.36) 2.8 (0.81)
Asp 2.8 3.0 (0.25) 2.98 (0.0) -3.5 (0.11)
Glu 3.05 4.1 (0.34) 3.08 (0.01) -3.5 (0.11)
Asn 2.85 3.7 (0.3) 5.43 (0.31) -3.5 (0.11)
Gln 3.05 4.8 (0.4) 5.65 (0.34) -3.5 (0.11)
Pro 2.8 4.3 (0.35) 6.3 (0.43) -1.6 (0.32)
His 3.1 6.3 (0.52) 7.64 (0.6) -3.2 (0.14)
Lys 3.15 5.2 (0.43) 9.47 (0.83) -3.9 (0.07)
Arg 3.16 8.5 (0.7) 10.76 (1) -4.5 (0)
Tyr 3.45 8.8 (0.73) 5.63 (0.34) -1.3 (0.36)
Trp 3.6 12.1 (1) 5.88 (0.37) -0.9 (0.4)
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and 1.00 Å, respectively [7], and thus cover 3 or 4 pixels. For simplicity, we considered all
atom radii equal to 1 Å or 4 pixels. All atoms of the same residue were colored in the same
way, according to their polarizability, isoelectric point and hydrophobicity. The values of
polarizability and isoelectric points were directly taken from [4] and [5], respectively. For
hydrophobicity, we used the Kyte-Doolittle scale [6]. Each of the three metrics were min-max
scaled to the [0-1] range; see Table S1 for more details.

In ImaPEp-resi, we represented each residue as a solid circle centered on the Cµ pseu-
doatom [8] defined as the average of the coordinates of all its heavy side chain atoms. The
radius of the circles are related to the residue size; we took the values of [3]. The coloring
scheme is the same as the one used in ImaPEp-atom.

Moreover, we introduced a distance-based color reduction mechanism. We computed
a ”signed distance” between the 3D coordinates of each atom/residue and the paratope-
epitope PCA plane. Normally, the PCA plane lies between the paratope and epitope and we
artificially defined its side in the direction of most epitope atoms/residues as the ”epitope
side” and the other as the ”paratope side”. Paratope atoms/residues located at the epitope
side were considered as closer to the epitope and their distances were considered as positive,
whereas the sign of those at the paratope side were negative; and vice versa for the epitope
atoms/residues. The signed distances were mapped by sigmoid functions to squeeze them to
the [0-1] range, generating a series of [0-1] scaled distance-based values, which were used as
color reduction coefficient multiplying the original RGB vectors to finalize the colors used in
2D pictures. With this color-reduction system, atoms/residues which are more distant from
the binding partner are represented in lighter colors. Moreover, if two atom/residues have
an overlap in the image, the one with a more positive distance is put on top of the other.
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S3 Dataset construction

Negative samples were created separately for the training set and the test set. These samples
were generated by three mechanisms:

• Non-cognate antibody-antigen pairing. We first took the non-redundant antigen
set (in which antigens have a pairwise sequence identity of 90% at most), and chose for
each antigen up to three non-cognate antibodies from the non-redundant antibody set
(in which CDR sequences have a pairwise sequence identity of 80% at most) to pair with
it. To increase the level of difficulty, we further clustered the non-redundant antibody
sequences with a cutoff of 60%. For each antigen, all the non-cognate antibodies we
chose have a sequence identity over 60% and below 80%.

• Interface rotation. For each paratope-epitope image pair, one image was rotated
with respect to the other to create a negative sample. To further increase the level of
difficulty of the learning task, we chose a relatively small rotational angle, which was
randomly and uniformly sampled from 20° to 40°. Considering that a typical antibody-
antigen interface has an area of about 1000 Å2 [7], and assuming the interface is a circle,
we can estimate it has a radius of about 15 Å. Thus, when an interface is rotated by
20° to 40°, each point on the edge of the circle is displaced by 5-10 Å, as calculated
with the formula:

L = 2× a× sin(θ/2) (S1)

where a denotes the length of the axis of rotation and θ is the rotational angle. This
range of displacements appears to be large enough to destroy the interactions originally
formed in the antibody-antigen interface.

• Interface translation. In each image pair, one image was translated with respect to
the other. With the same objective as for interface rotations, the displacements were
constrained to relatively small values. We translated one of the images of a pair both
along the x-axis and y-axis by a displacement uniformly sampled from 8 to 16 pixels.
As mentioned above, 4 pixels in our images are equivalent to 1 Å. So, a displacement of
8 to 16 pixels along one axis is equivalent to a translation of 2 to 4 Å. For simplicity, we
regarded the equivalent displacement in the 3D space as 2

√
3(≈ 3.5) Å to 4

√
3(≈ 6.9)

Å, which is sufficient to destroy the interactions.
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S4 Evaluation metrics

The most commonly used threshold-dependent and threshold-independent metrics for bi-
nary classifications were used in this study: balanced accuracy (BAC), Matthews’s correla-
tion (MCC), area under receiver operating characteristic curve (AUROC) and area under
precision-recall curve (AUPRC). These metrics are defined as follows, where TP, TN, FP
and FN are true positives, true negatives, false positives and false negatives, respectively:

• BAC= 1
TPR+TNR

, where TPR= TP
TP+FN

and TNR= TN
TN+FP

. BAC values are between 0
and 1, with 0.5 being the random value and 1 the perfect value.

• MCC= TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. MCC values are beween -1 and 1, with 0

being the random value and 1 the perfect value.

• AUROC: The receiver operating characteristic curve (ROC) curve is the plot of the
true positive rate (TPR) as a function of the false positive rate (FPR= FP

FP+TN
) at

each threshold setting. All predicted scores are considered as thresholds values. The
AUROC value is the area under ROC curve. It is between 0 and 1, with 0.5 being the
random value and 1 the perfect value.

• AUPRC: The precision-recall curve (PRC) is the plot of the precision or positive pre-
dictive value (PPV= TP

TP+FP
) as a function of the recall or TPR at each threshold

setting. The AUPRC value is the area under PRC curve. It is between 0 and 1, with
0.5 being the random value and 1 the perfect value.
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S5 Tables and Figures

Table S2: Balanced accuracy (BAC), Matthews correlation coefficient (MCC), area under
the receiver operating characteristic curve (AUROC) and under the precision-recall curve
(AUPRC), computed in 10-fold cross validation, using the per-atom pipeline ImaPEp-atom.
Each single model was trained on a Dsubtrain set and applied to the corresponding Dval set
and the independent Dtest set.

Dval Dtest

Model BAC MCC BAC MCC AUROC AUPRC

1 0.68 0.40 0.80 0.62 0.90 0.77
2 0.65 0.37 0.75 0.54 0.89 0.74
3 0.69 0.40 0.79 0.58 0.89 0.75
4 0.60 0.22 0.75 0.54 0.89 0.74
5 0.72 0.45 0.76 0.53 0.89 0.74
6 0.65 0.32 0.75 0.51 0.88 0.72
7 0.70 0.45 0.75 0.54 0.88 0.73
8 0.66 0.36 0.76 0.53 0.88 0.73
9 0.70 0.43 0.76 0.54 0.89 0.75
10 0.67 0.36 0.77 0.56 0.89 0.74

Table S3: Balanced accuracy (BAC), Matthews correlation coefficient (MCC), area under
the receiver operating characteristic curve (AUROC) and under the precision-recall curve
(AUPRC), computed in 10-fold cross validation, using the per-residue pipeline ImaPEp-resi.
Each single model was trained on a Dsubtrain set and applied to the corresponding Dval set
and the independent Dtest set.

Dval Dtest

Model BAC MCC BAC MCC AUROC AUPRC

1 0.77 0.58 0.82 0.64 0.92 0.81
2 0.75 0.50 0.83 0.65 0.92 0.82
3 0.73 0.48 0.81 0.65 0.93 0.83
4 0.81 0.61 0.83 0.64 0.91 0.79
5 0.68 0.43 0.75 0.58 0.92 0.81
6 0.72 0.49 0.76 0.60 0.92 0.82
7 0.74 0.54 0.81 0.65 0.92 0.83
8 0.78 0.54 0.83 0.64 0.92 0.80
9 0.82 0.65 0.83 0.66 0.93 0.82
10 0.81 0.62 0.84 0.66 0.92 0.80
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Table S4: Performance of ImaPEp-resi and 18 selected scoring functions (computed using
CCharPPI [9]) on the docking poses of the Dockground dataset [10]. Each value in the TOP
5% column represents the number of antibody-antigen complexes (out of 24) for which the
model ranks the near-native pose within the top 5%. Similarly, the TOP 10% and TOP 20%
columns indicate the number of complexes for which the near-native pose is ranked within
the top 10% and 20%, respectively. The average rank column displays the average ranking
of the near-native pose across the 24 complexes considered.

Scoring Function TOP 5% TOP 10% TOP 20% Average Rank

ImaPEp 6 6 10 26.7
ELE 8 11 13 24.5
HBOND2 2 3 8 42.9
VDW 3 4 4 62.2
AP DCOMPLEX 3 4 7 43.2
AP DFIRE2 7 11 14 25.7
AP PISA 7 10 14 29.2
AP dFIRE 8 11 13 29.5
AP T2 1 1 4 49.5
CP PIE 0 1 1 80.1
LK SOLV 0 0 0 60.9
FIREDOCK 4 8 16 22.6
FIREDOCK AB 0 1 1 57.5
FIREDOCK EI 3 8 14 22.8
ROSETTADOCK 0 0 1 61.5
ZRANK 4 6 8 40.9
ZRANK2 0 1 1 58.5
PYDOCK TOT 8 14 18 17.3
SIPPER 0 0 0 94.1
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S6 Comparison of per-residue and per-atom models

We compared the per-residue and per-atom representations used in ImaPEp. We started
by analyzing the distance to the PCA plane, used as the fourth feature, and compared it
in both representations. A distance value is associated with each residue in the per-residue
model, and with each atom in the per-atom model. Thus, the distance of a given residue
is a single value in the per-residue model; in the per-atom model, it is a set of N values
(with N the number of heavy side chain atoms), where some atoms might have a normalized
distance value very close to 1 and others, very close to 0. In such case, atoms with high
distance values have high feature values (and thus appear brighter in the images) and those
with close-to-zero distance values are nearly invisible.

The distance oversensitivity of the ImaPEp-atom model might be one of the reasons of its
slightly lower average performance. An example in which this oversensitivity contributes to
the correct classification of the entry is shown in Figure S1, where the paratope and epitope
come from a complex between the H1N1 influenza virus neuraminidase of the 2009 pandemic
and a neutralizing Ab (PDB ID: 4QNP). As seen in the box at the bottom left of the epitope
images (b) and (e), the color of some atoms (in (e)) is brighter than the color of the residue
(in (b)). This gives rise in the backward feature map to a darker red region in the per-atom
model (f) compared to the same region in the per-residue model (c). In general, the problem
is that atoms that are very close to the binding interface have a weight that is likely to be
too strong and, on the average yield incorrect classifications.

In addition, the fine-granularity of the per-atom representation can also increase the
probability of shape incompatibility of the represented interfaces in the images. As shown in
Figure S1, the regions outlined by the top boxes in the images contain atoms in the epitope
image (e) but not in the paratope image (d) in the per-atom model, whereas they contain
residues in both the paratope image (a) and epitope image (b) in the per-residue model. This
yields a negative (blue) contribution to the binding score of ImaPEp-atom (f), and a slightly
positive (red) contribution in ImaPEp-resi (c). This contributes to the correct classification
of the entry by the per-residue method and to its misclassification by the per-atom method.
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Figure S1
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S7 3D distances in the 2D representation

It is widely accepted that protein-protein binding affinity is correlated with non-covalent
interactions occurring at the interfaces, which are defined by shape complementarity and
residue types. The goal of this analysis is to study whether our way of representing the Ab-
Ag interfaces retains sufficient information about these interactions. In principle, the circles
representing interacting residues with opposite charges in the epitope and paratope should
have similar location in their respective images or a good alignment and the ”distance” in
the images should be related to the real distance between the two residues.

To analyze this, we selected four native Ab-Ag complexes (PDB IDs: 3MXW, 6ORO,
5ESV and 5JZ7) and identified the ionic interactions across the interface. For each interac-
tion, we compared the sum of the distances of each of the two interacting residues to the
PCA plane computed by ImaPEp with the real distances between the side chain geometric
centers Cµ of these two residues. The result is shown in Table S5, and the paratope and
epitope images of these complexes are shown in Figure S2.

We found that, overall, the residues that are in interaction are well aligned in the 2D
representation of the paratope-epitope pairs, with sometimes a minor displacement of their
geometrical position, as can be seen in Figure S2.a-d in which the residues involved in the
ionic interactions listed in Table S5 are represented.

However, the distances computed by ImaPEp and used as features do not correspond
exactly to the real distance observed in the 3D complex structure. The true distance between
the interacting residues anticorrelates only weakly with the summed ImaPEp distance (Table
S5). The reason for this lies in the 3D to 2D dimensional reduction to two PCA planes that,
moreover, do not coincide.

Table S5: Analysis of the ionic interactions between paratope and epitope of Ab-Ag com-
plexes with PDB IDs 3MXW, 6ORO, 5ESV and 5JZ7. The real distance is between the
nitrogen carrying the positive charge and the oxygen carrying the negative charge, the Cµ

distance is between side chain centroids, and the ImaPEp distance is defined in Section S2.
Note that more positive ImaPEp distances correspond to atoms that are closer, whereas
more negative ImaPEp distances correspond to atoms that are more distant.

PDB ID Residue 1 Residue 2 Real distance (Å) Cµ distance (Å) ImaPEp distance (Å)

3MXW Asp-A147 Arg-H098 2.6 5.47 -0.14
3MXW Lys-A087 Glu-H032 3.0 5.89 1.05
3MXW Arg-A153 Glu-H032 5.5 7.07 1.47
3MXW Lys-A087 Glu-H097 2.7 5.04 5.18
3MXW Arg-A153 Glu-H097 3.7 4.50 5.60
6ORO Lys-G171 Asp-L050 2.8 5.34 -0.75
6ORO Lys-G171 Asp-L053 5.9 5.53 0.22
5ESV Lys-G171 Glu-H030 3.7 5.49 3.45
5JZ7 Arg-F059 Asp-I050 5.0 4.02 4.28
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Figure S2: Images of the paratope-epitope interfaces of 3MXW (a), 5ESV (b), 5JZ7 (c) and
6ORO (d). For each image pair, the paratope image is on the left and the epitope image is on
the right. The residues making a ionic Ag-Ab interaction are labelled using their one-letter
code followed by their chain name and residue number, and outlined with orange rectangles.
Other residues are only labelled with their amino acid code.
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