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Abstract: Sweetness in food delivers a delightful sensory experience, underscoring the crucial
role of sweeteners in the food industry. However, the widespread use of sweeteners has sparked
health concerns. This underscores the importance of developing and screening natural, health-
conscious sweeteners. Our study represents a groundbreaking venture into the discovery of such
sweeteners derived from egg and soy proteins. Employing virtual hydrolysis as a novel technique,
our research entailed a comprehensive screening process that evaluated biological activity, solubility,
and toxicity of the derived compounds. We harnessed cutting-edge machine learning methodologies,
specifically the latest graph neural network models, for predicting the sweetness of molecules.
Subsequent refinements were made through molecular docking screenings and molecular dynamics
simulations. This meticulous research approach culminated in the identification of three promising
sweet peptides: DCY(Asp-Cys-Tyr), GGR(Gly-Gly-Arg), and IGR(Ile-Gly-Arg). Their binding affinity
with T1R2/T1R3 was lower than −15 kcal/mol. Using an electronic tongue, we verified the taste
profiles of these peptides, with IGR emerging as the most favorable in terms of taste with a sweetness
value of 19.29 and bitterness value of 1.71. This study not only reveals the potential of these natural
peptides as healthier alternatives to traditional sweeteners in food applications but also demonstrates
the successful synergy of computational predictions and experimental validations in the realm of
flavor science.

Keywords: sweetness; virtual protein hydrolysis; taste prediction; molecular dynamics simulation;
electronic tongue

1. Introduction

Sweetness, one of the five basic tastes, provides a pleasurable sensory experience and
enhances human satisfaction with food, and sweetening compounds are widely used in
the food industry [1]. However, epidemiological studies have shown that excessive sugar
intake increases susceptibility to obesity, type 2 diabetes, cardiovascular diseases (CVDs),
metabolic syndrome, and dental caries, thereby impacting human health [2–4]. Obesity has
become a prominent health issue, leading to reduced life expectancy and quality of life.
Thus, the excessive consumption of sucrose and other high-calorie sweeteners is associated
with numerous health problems.

Faced with growing health concerns related to the consumption of traditional sugars,
the search for alternative sweeteners has become increasingly important. Thus, the food
industry has been seeking healthier low-calorie sweeteners that do not compromise taste.
Non-sugar sweeteners (NSS), also known as non-nutritive sweeteners (NNS), intense sweet-
eners (IS), or low-calorie sweeteners (LCS), including saccharin, cyclamate, aspartame,
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sucralose, neotame, acesulfame K, stevia, monk fruit, and advantame, are frequently used
as sugar substitutes in food formulations. Although LCS offer high sweetness potency and
reduced calories, their taste characteristics differ from sucrose and may produce undesir-
able aftertastes [5], which could affect consumer acceptance. For example, acesulfame K,
stevia, and monk fruit often come with noticeable bitterness and metallic tastes [6]. Su-
cralose shares similar sweetness characteristics with sucrose without causing any apparent
bitterness. Nonetheless, it may produce some undesirable flavors in products of different
textures [7]. Moreover, unlike sucrose, sucralose does not degrade quickly. While it reaches
its maximum sweetness rapidly, it leaves behind a pleasant, lingering sweet aftertaste [6].

Beyond sensory impacts, the effects of NSS on human health remain controversial.
While some studies suggest a potential association between saccharin intake and bladder
cancer, a significant association with other types of cancer has not been systematically ob-
served in meta-analyses of case–control studies or prospective cohort studies [8,9]. Besides
the controversy over NSS and cancer, the impact of NSS on human metabolism is also
increasingly scrutinized. Health concerns related to metabolic effects include increased risk
of overweight and obesity due to compensatory increases in food intake, type 2 diabetes,
cardiovascular diseases, and metabolic syndrome [10]. NSS may disrupt the gut microbiota,
leading to a decrease in gut microbes associated with obesity and insulin resistance [11].
Another concern regarding the safety of aspartame is its potential carcinogenicity. Aspar-
tame has been reported to induce oxidative stress in several tissues, including the liver
of rodents, characterized by potential carcinogens [12]. Large prospective cohort studies
have further raised concerns about its carcinogenicity, with findings suggesting a positive
correlation between aspartame intake and overall cancer risk [13,14].

Sweet peptides, a class of peptides that exhibit natural sweetness derived from food
sources or synthesized through amino acid synthesis, have garnered contemporary interest.
In recent years, several peptides from natural foods, such as pufferfish [15], mulberry
seeds [16], and soy sauce [17], have been reported to elicit sweetness, serving as low-calorie
substitutes for sugar in food and beverages. With growing consumer health consciousness,
sweet peptides hold significant potential for application in the food industry.

The latest advancements in computational biology and bioinformatics have paved the
way for in silico identification and characterization of bioactive peptides, streamlining the
discovery process. Virtual hydrolysis, bioactivity prediction, and machine learning-based
flavor prediction offer high-throughput, cost-effective alternatives to traditional experi-
mental methods. There have been several successful cases, including umami, bitterness
blocking peptides, etc. [18–20]. Moreover, computational studies, especially those utilizing
machine learning for sweetness research, have been extensively carried out [21–23] but
have not been applied to the screening of sweet peptides.

In summary, there is an urgent need for sweeteners that are healthier and safer for
individuals with diabetes. Sweet peptides from natural sources offer a low glycemic index
and do not cause blood sugar spikes, making them a valuable alternative for diabetic
individuals and others aiming to maintain stable blood sugar levels. Naturally derived
protein hydrolysates are safer than synthetic alternatives because they do not introduce
potentially harmful molecules that can arise during artificial synthesis. This extraction
process minimizes the risk of contaminants and ensures that the sweet peptides remain safe
for consumption. Egg and soy proteins are both abundant and cost-effective. By using these
sources, we can produce sweet peptides at scale, ensuring availability and affordability
while also utilizing byproducts from the food industry, which enhances sustainability.

In this study, we aimed to identify and validate sweet peptides derived from egg
and soy proteins through an integrative approach combining virtual hydrolysis, machine
learning predictions, computational screening, and experimental validation. By employing
a series of bioinformatics tools and molecular simulation techniques, we screened peptides
for promising sweetness characteristics and non-toxicity. Predictions confirmed that these
peptides exhibit no issues related to absorption, distribution, metabolism, excretion, or
toxicity (ADMET). Specifically, they showed no toxicity concerning hERG blockers, hu-
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man hepatotoxicity, drug-induced liver injury, Ames toxicity, rat oral acute toxicity, skin
sensitization, carcinogenicity, eye corrosion, eye irritation, or respiratory toxicity.

The selected peptides were then subjected to testing with an electronic tongue to
comprehensively assess their taste properties. Our workflow is illustrated in Figure 1.
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Figure 1. An overview of the process for identifying and validating sweet peptides, including
virtual hydrolysis, machine learning-based sweetness prediction, molecular dynamics simulation,
and electronic tongue.

This research contributes to the development of food science, especially sweeteners,
offering a novel methodology for discovering natural sweeteners. By elucidating the
potential of egg and soy protein-derived peptides as sweetening agents, our findings bring
hope for the development of healthier food products, aligning with the growing consumer
demand for natural and nutritional sugar alternatives.

2. Results and Discussion
2.1. Identification of Sweet Peptides

Virtual hydrolysis of proteins was conducted using three typical enzymes: pepsin,
trypsin, and chymotrypsin. We chose 2–6 peptides since it is widely known that sweet-
tasting molecules are typically small; larger molecules cannot fit into the sweet taste
receptor’s binding pocket. This is why both sugars and sweetener molecules are small,
whereas larger polysaccharides lack sweetness. This process resulted in the identification of
629 peptides, ranging from 2 to 6 amino acids, derived from soy protein, and 203 peptides
from egg protein. Using PeptideRanker (http://distilldeep.ucd.ie/PeptideRanker, 1 Jan-
uary 2024), peptides with a predicted activity greater than 0.5 were considered to have
high biological activity. After merging and deduplication, 150 peptides were identified as
having high biological activity. These peptides and their respective predicted scores are
listed in Table S1. PepCalc was used to calculate solubility, with 56 peptides exhibiting
favorable solubility, as detailed in Table S2. Four deep learning methods were employed
for sweetness prediction, and the comprehensive results are presented in Table S3. The
heatmap of prediction results, as shown in Figure 2, indicates that values above 0.5 are
considered sweet.

http://distilldeep.ucd.ie/PeptideRanker
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Figure 2. Heatmap of machine learning predictions, displaying the sweetness prediction results for
peptides, with values above 0.5 indicating sweetness.

WLN predicted 4 peptides, HGNN 5, AttentiveFP 10, and GraphSAGE 10. After
merging and deduplication, 15 potential sweet peptides were identified: SC, CS, SGG, MD,
CQ, DGF, MGD, GR, GGR, CR, IGR, GDMDY, DCY, MDF, and MDSF. Toxin prediction was
conducted to ensure the peptides’ suitability for food consumption, and all potential sweet
peptides were found to be non-toxic, as shown in Table 1.
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Table 1. Toxicity prediction results of peptides.

Peptide
Sequence SVM Score Prediction Hydrophobicity Steric

Hindrance Sidebulk Hydropathicity Amphipathicity Hydrophilicity Net
Hydrogen Charge pI Mol wt

SC −0.8 Non-Toxin −0.11 0.57 0.57 0.85 0 −0.35 0.5 0 5.85 208.24
CS −0.8 Non-Toxin −0.11 0.57 0.57 0.85 0 −0.35 0.5 0 5.85 208.24

SGG −0.79 Non-Toxin 0.02 0.63 0.63 −0.53 0 0.1 0.33 0 5.88 219.23
MD −0.8 Non-Toxin −0.23 0.77 0.77 −0.8 0 0.85 0.5 −1 3.8 264.31
CQ −0.8 Non-Toxin −0.32 0.65 0.65 −0.5 0.62 −0.4 1 0 5.85 249.3

DGF −0.82 Non-Toxin 0.02 0.71 0.71 −0.37 0 0.17 0.33 −1 3.8 337.36
MGD −0.81 Non-Toxin −0.1 0.74 0.74 −0.67 0 0.57 0.33 −1 3.8 321.38

GR −0.79 Non-Toxin −0.8 0.68 0.68 −2.45 1.23 1.5 2 1 10.11 231.27
GGR −0.78 Non-Toxin −0.48 0.68 0.68 −1.77 0.82 1 1.33 1 10.11 288.34
CR −0.8 Non-Toxin −0.86 0.65 0.65 −1 1.23 1 2 1 8.6 277.35
IGR −0.82 Non-Toxin −0.29 0.69 0.69 −0.13 0.82 0.4 1.33 1 10.11 344.45

GDMDY −0.83 Non-Toxin −0.2 0.74 0.74 −1.36 0 0.48 0.6 −2 3.57 599.67
DCY −0.74 Non-Toxin −0.22 0.69 0.69 −0.77 0 −0.1 0.67 −1 3.8 399.44
MDF −0.84 Non-Toxin 0.05 0.75 0.75 0.4 0 −0.27 0.33 −1 3.8 411.5

MDSF −0.92 Non-Toxin −0.03 0.69 0.69 0.1 0 −0.12 0.5 −1 3.8 498.59
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2.2. Peptides Screening Based on Structure

The Ramachandran plot validation of the T1R2 and T1R3 structures was in Figure S2.
The molecular docking energies of the 15 peptides with T1R2 and T1R3 receptors are
displayed in Table 2. Comparing them to aspartame as a control, peptides such as DGF,
IGR, GGR, DCY, and MD showed promising binding free energies, suggesting a stronger
affinity to the sweet taste receptors and potentially conferring sweetness.

Table 2. Molecular docking energy of the predicted sweet peptides (kcal/mol).

Peptide T1R2 T1R3 Sum

DGF −7.4 −8.2 −15.6
IGR −7.2 −7.8 −15
GGR −7.6 −7.1 −14.7
DCY −6.9 −7.8 −14.7

Aspartame −7 −7.2 −14.2
MD −6 −7.8 −13.8

MGD −6.8 −6.6 −13.4
GR −6.8 −6.4 −13.2
CR −6.7 −6.5 −13.2

MDF −6.9 −6.2 −13.1
CQ −6.6 −6.4 −13

MDSF −4.7 −7.9 −12.6
SGG −6.3 −5.7 −12
SC −5.6 −6.3 −11.9

GDMDY −3.8 −8 −11.8
CS −5.8 −5.6 −11.4

These peptides were subjected to 100 ns of molecular dynamics (MD) simulations,
and the initial contact residues from the docking are illustrated in Figure 3. The initial 3D
conformation of the peptide binding to the protein pocket is shown in Figure 4.

Post-MD simulation, trajectory analysis was conducted. As shown in Figure 5, the
Root Mean Square Deviation (RMSD) revealed the deviation of the complex from its initial
conformation [24,25]. Fluctuations in RMSD indicated conformational changes during the
simulation. T1R2 combined with DGF and MD showed significant RMSD fluctuations,
suggesting potential conformational transitions and possibly less stable binding. Similarly,
in the T1R3 system, RMSD peaked with DCY and MD, indicating significant conformational
changes and potentially less stable binding. The Radius of Gyration (Rg) revealed the
compactness of the complex; fluctuations suggest that the binding of peptides to the
sweet taste receptors is a dynamic process. Changes in Rg and conformation post-binding
altered the binding poses. The Solvent Accessible Surface Area (SASA) indicated that T1R2
combined with IGR and T1R3 with GGR had lower SASA, potentially indicating a tighter
binding [26,27].

The MM-PBSA method provided a more accurate prediction of binding energy, as it is
based on multiple structure calculations, accounting for dynamic changes during binding.
Every 5 ns, one frame was analyzed, totaling 20 frames per trajectory. The results are
presented in Table 3. DCY, GGR, and IGR showed higher affinity to T1R2, while GGR,
IGR, and DGF showed higher affinity to T1R3. Considering the affinity to both sweet
taste receptors, DCY, GGR, and IGR were selected for subsequent validation with the
electronic tongue.
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(J): T1R3-MD.
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Table 3. Results of MM-PBSA (kcal/mol).

Peptide T1R2 T1R3

DCY −17.73 ± 2.22 −1.91 ± 3.04
GGR −16.12 ± 2.17 −34.23 ± 3.90
IGR −43.07 ± 3.09 −20.86 ± 4.13
DGF −4.46 ± 2.36 −12.57 ± 2.19
MD 18.82 ± 4.09 −5.16 ± 4.60

2.3. Electronic Tongue Analysis

Prior to the electronic tongue experiments, the purity of the three selected peptides was
verified using high-performance liquid chromatography–mass spectrometry (HPLC-MS).
As illustrated in Figure S1, the purity of each peptide was confirmed to be greater than 95%.
Subsequent to this verification, a comprehensive taste assessment of these peptides was
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conducted using the electronic tongue. The data from three repeated experiments, along
with their averages, are presented in Table 4.

Table 4. Test results of electronic tongue.

Sample
Name

Parallel
Experiment

Number
Sourness Bitterness Astringency

Acidic
Bitterness
Aftertaste

Astringency
Aftertaste Umami Richness Saltiness Sweetness

Tasteless
point −13 0 0 0 0 0 0 −6 0

DCY

1 −2.33 6.68 7.82 1.06 −0.32 0.32 1.94 −12.96 16.48
2 −2.49 4.71 6.02 −0.83 −1.47 0.61 1.79 −13.32 17.10
3 −2.48 0.28 3.74 2.31 2.10 0.60 2.14 −13.20 17.68

Mean value −2.43 3.89 5.86 0.85 0.10 0.51 1.96 −13.16 17.09

GGR

1 −13.37 10.65 8.38 0.61 −0.20 3.57 1.85 −6.47 23.15
2 −13.48 11.58 10.26 −0.74 −1.19 3.77 1.79 −6.94 22.80
3 −12.73 3.04 1.53 −1.13 −1.46 3.56 2.30 −7.05 22.41

Mean value −13.19 8.42 6.72 −0.42 −0.95 3.63 1.98 −6.82 22.79

IGR

1 −4.99 5.73 6.29 1.35 −0.35 1.56 1.47 −7.22 18.73
2 −5.28 2.19 2.16 0.88 0.46 1.71 1.46 −7.47 19.27
3 −5.03 −2.79 −0.98 −0.24 −0.77 1.56 1.94 −7.16 19.86

Mean value −5.10 1.71 2.49 0.66 −0.22 1.61 1.62 −7.28 19.29

In our analysis, the tasteless point, representing the output of the reference solution,
served as a benchmark. The reference solution, composed of KCl and tartaric acid, estab-
lished baseline taste values: −13 for sourness and −6 for saltiness. Thus, if a sample’s
taste value fell below the tasteless point, it indicated the absence of that particular taste;
conversely, higher values indicated presence.

To visualize the results more clearly, we employed a radar chart, as shown in Figure 6.
The chart revealed that all three peptides exhibited significant sweetness. Notably, DCY
and GGR both possessed a slight sourness, whereas IGR did not exhibit any sour taste.
Additionally, DCY and IGR showed minor bitter and astringent tastes, which might lead to
an unpleasant taste experience. Overall, DCY, IGR, and GGR were characterized as sweet
peptides. However, IGR, with its minimal off-tastes and a blend of sweet and sour notes,
appears to be more suitable for further application in food products.
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Our identification of IGR as the peptide with the most appealing taste profile demon-
strates the potential of bioactive peptides in flavor science. Through an innovative approach
that integrates advanced computational and experimental techniques, this research pro-
vides insights for developing naturally sourced sweeteners. By laying the foundation for
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healthier alternatives to traditional sweetening agents, it serves as a guide for future studies
in flavor science. The discovery of novel sweet peptides like DCY, GGR, and IGR opens up
new opportunities for natural sweeteners in the food industry. Their unique taste profiles
and high levels of safety make them ideal for low-calorie food and beverage products, of-
fering consumers healthier alternatives to conventional sweeteners. As consumer demand
leans toward more health-conscious ingredients, these peptides have significant potential
across diverse applications, from baked goods to beverages [28].

Further research should focus on developing efficient extraction and purification
methods to enhance the practical utility of these sweet peptides. Testing in various food ma-
trices will reveal the optimal conditions for their integration into commercial products [29].
In vivo studies should confirm their safety and efficacy as sweeteners to meet regulatory
standards. This work can be extended by exploring combinations with other natural
sweeteners to enhance flavor profiles, stability, and safety in a variety of food applications.
Understanding how these peptides interact with other ingredients will help formulate
innovative products that meet consumer preferences for health-conscious ingredients.
Collaborating with industry stakeholders can accelerate mass production and commercial-
ization while ensuring these naturally sourced sweeteners gain broader adoption in the
food industry.

3. Materials and Methods
3.1. Materials

The sweet peptides were synthesized at Wuhan Dangang Biotechnology Co., Ltd.
(Wuhan, China). The purity of peptides was over 95%, and their identities were confirmed
by mass spectrometry and high performance liquid chromatography.

3.2. Identification of Sweet Peptides
3.2.1. Virtual Enzymolysis of Protein

Using the sequences of soy protein (NCBI: KRH47534.1) [30], egg envelope protein
from Fundulus heteroclitus (GenBank: JAQ51092.1), egg envelope protein EeZPCc from
Engraulis encrasicolus (GenBank: ANS71336.1), and another egg envelope protein from
Fundulus heteroclitus (GenBank: JAQ89058.1), virtual hydrolysis was conducted. All these
sequences are available from the National Center for Biotechnology Information (NCBI),
which can be accessed at https://www.ncbi.nlm.nih.gov/ (accessed on 22 December 2023).
The ExPASy Peptide Cutter tool (http://web.expasy.org/peptide_cutter/) (accessed on
22 December 2023) [31] was used for the hydrolysis with three typical enzymes: pepsin
(pH > 1.3) (EC 3.4.26.1), chymotrypsin-high specificity (C-term to [FYW], not before P) (EC
3.4.21.2), and trypsin (EC 3.4.21.4). The peptides obtained from this hydrolysis were used
for subsequent predictions.

3.2.2. Prediction of Biological Activity, Water Solubility

Following virtual hydrolysis, dipeptides to hexapeptides were selected for bioactivity
prediction. PeptideRanker (http://distilldeep.ucd.ie/PeptideRanker/) (accessed on 22
December 2023) is a tool used for predicting the potential bioactivity of peptides, with the
prediction probability ranging from 0 to 1. Peptides with a score above 0.5 are identified as
bioactive [32,33], and peptides with favorable solubility predictions were chosen for further
analysis. RDKit was then used for converting peptide sequences to SMILES.

3.2.3. Prediction of Sweetness and Toxicity of Peptides

Subsequently, sweetness prediction was performed using four deep learning methods
available on the taste prediction website (https://www.tastepd.com/predict) (accessed
on 23 December 2023), which included WLN, HGNN5, AttentiveFP, and GraphSAGE. By
taking the union of the results predicted by these methods, we identified a preliminary
set of potential sweet peptides. Then, we conducted toxicity screening using ADMET lab
2.0 [34–36], retaining peptides predicted to be non-toxic.

https://www.ncbi.nlm.nih.gov/
http://web.expasy.org/peptide_cutter/
http://distilldeep.ucd.ie/PeptideRanker/
https://www.tastepd.com/predict
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3.3. Molecular Docking Screening

The amino acid sequences of T1R2 and T1R3 sweet taste receptors were retrieved from
the UniProt (T1R2, Primary accession: Q8TE23; T1R3, Primary accession: Q7RTX0). We
then constructed the 3D structure of T1R2/T1R3 multimer using Alphafold2 Colab [37,38].
The structure of peptides were generated using openbabel, and molecular docking was
performed with Autodock Vina 1.2.0 [39,40]. The size of the docking box was set to x = 60,
y = 60 and z = 60, and the spacing between grid points was set to 0.375 Å; ten docking
results were generated each, and the conformation of the optimal energy is selected.

3.4. Molecular Dynamics Simulation

Systems were designated as follows: T1R2-DCY, T1R2-DGF, T1R2-GGR, T1R2-IGR,
T1R2-MD, T1R3-DCY, T1R3-DGF, T1R3-GGR, T1R3-IGR, T1R3-MD. VGF domain of T1R2
(1-490) and T1R3(1-490) were used.

To conduct molecular dynamics simulations on ten different systems, the pmemd.cuda
module from AMBER 22 [41] was utilized. For the parameterization of proteins, peptides,
and water molecules, the ff14SB [42] and TIP3P [43] force fields in Amber22 were used, the
latter of which was also applied to create an octahedral water box around each system. This
box was designed with an 8 Å gap from the solute surface, and periodic boundary condi-
tions were established to mitigate edge effects. Sodium ions were added for neutralization.

The hydrogen-containing bonds were constrained through the SHAKE algorithm [44],
while the PME method [45] was employed for handling electrostatic interactions, main-
taining an 8 Å cutoff. Initial energy minimization, crucial for removing atomic clashes,
involved 500 steps each of steepest descent and conjugate gradient algorithms. Subse-
quently, the systems were gradually heated from 0 K to 300 K in a 50 ps period under the
NVT ensemble. The final step involved 100 ns simulations under the NPT ensemble for
system equilibration, utilizing a 2 fs timestep and a Langevin thermostat [46] with a 1 ps
collision frequency.

3.5. Taste Assessment of Peptides Using the Electronic Tongue

In the experimental setup of our study, we employed the SA402B Electronic Tongue
from Insent, Atsugi City, Japan, for taste analysis. This device utilizes a sophisticated
system of artificial lipid membrane sensors to detect a range of taste sensations. The
specific correlations between each sensor and the tastes they detect are detailed in Table 5
of this study.

Table 5. Matching information between sensors and tastes.

Sensor Taste Aftertaste

C00 Bitterness Acidic Bitterness Aftertaste
AE1 Astringency Astringency Aftertaste
CA0 Sourness ×
CT0 Saltness ×
AAE Umami Richness
GL1 Sweetness ×

Our test solutions included a reference solution, consisting of 30 mM potassium
chloride and 0.3 mM tartaric acid, which served as the baseline liquid. For cleaning the
electrodes, two distinct solutions were prepared: a negative electrode cleaning solution,
comprising 100 mM hydrochloric acid mixed with 30% ethanol by volume, and a positive
electrode cleaning solution, made up of 10 mM potassium hydroxide, 100 mM potassium
chloride, and 30% ethanol by volume.

In preparing the samples, we maintained a solution concentration of 0.1 mg/mL. The
protocol for the SA402B Electronic Tongue test involved a multi-step process. Initially, the
sensors were cleaned in their respective solutions for 90 s, followed by cleaning in the
reference solution for 120 s, repeated twice. The sensor was then zeroed at the equilibrium
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position for 30 s. During the testing phase, each test lasted for 30 s, with the immediate
taste value being output. This was succeeded by a brief 3 s cleaning with the reference
solution, after which the sensor was inserted into a new reference solution for an additional
30 s to assess the aftertaste. The taste sensors—C00, AE1, CA0, CT0, AAE, and GL1—were
subjected to this procedure four times. The first cycle of each test was discarded, and the
average of the last three cycles was computed to obtain the final taste analysis results. This
rigorous methodology ensured a reliable and accurate assessment of the taste properties of
the samples.

4. Conclusions

In this study, we embarked on a comprehensive analysis of peptides derived from egg
and soy proteins. Utilizing a virtual hydrolysis approach, we conducted a multifaceted
screening process that encompassed assessments of biological activity, solubility, and
toxicity. This was complemented by machine learning-based predictions of sweetness
and molecular docking screening, and it was further refined through molecular dynamics
simulations. The culmination of this rigorous process was the identification of three sweet
peptides—DCY, GGR, and IGR—using the electronic tongue for validation. Our findings
revealed IGR as the peptide with the most favorable taste profile. This comprehensive
approach, integrating advanced computational and experimental techniques, not only
underscores the potential of these peptides in food applications but also sets a precedent
for future studies in the field of flavor science. The methodologies and insights gained
from this research open avenues for the exploration and development of novel, naturally
sourced sweeteners, contributing significantly to the food industry’s pursuit of healthier
and more palatable alternatives to traditional sweetening agents.

The identification of novel sweet peptides like DCY, GGR, and IGR offers the food
industry new possibilities for naturally sourced sweeteners. These peptides can be used in
low-calorie food and beverage products, providing consumers with healthier alternatives to
traditional sweeteners. Their unique taste profiles, combined with natural origins and high
safety levels, make them suitable for a wide range of applications, from baked goods to
beverages. This research lays the groundwork for the formulation of innovative, palatable
products that align with growing consumer preferences for health-conscious ingredients.

In future research, we recommend further exploration in the following areas: develop
more efficient and scalable extraction and purification processes for these sweet peptides to
enhance their practical utility; conduct in vivo studies to confirm the safety and efficacy of
these peptides as sweeteners, ensuring regulatory compliance and consumer safety; and
investigate the stability and taste profile of these peptides in a variety of food matrices,
identifying the best conditions for integrating them into food and beverage products. By
working closely with industry stakeholders, we will surely address challenges in the mass
production and commercialization of these naturally sourced sweeteners.
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