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Abstract: An increased demand for natural products nowadays most specifically probiotics (PROs) is
evident since it comes in conjunction with beneficial health effects for consumers. In this regard, it is
well known that encapsulation could positively affect the PROs’ viability throughout food manu-
facturing and long-term storage. This paper aims to analyze and review various double/multilayer
strategies for encapsulation of PROs. Double-layer encapsulation of PROs by electrohydrodynamic
atomization or electrospraying technology has been reported along with layer-by-layer assembly and
water-in-oil-in-water (W1/O/W2) double emulsions to produce multilayer PROs-loaded carriers.
Finally, their applications in food products are presented. The resistance and viability of loaded
PROs to mechanical damage, during gastrointestinal transit and shelf life of these trapping systems,
are also described. The PROs encapsulation in double- and multiple-layer coatings combined with
other technologies can be examined to increase the opportunities for new functional products with
amended functionalities opening a novel horizon in food technology.

Keywords: probiotics; double/multiple layer coatings; encapsulation; functional food products

1. Introduction

An increased food demand with specific health benefits arises from the adoption of
healthier lifestyles. Consequently, the strategy for fruitful acceptance and marketing of
new foods counts on (i) the idea of food quality and authenticity across the supply chain,
and (ii) the boosted functionalities promoting added value [1–3]. Natural or processed
foods fortified with bioactive natural compounds can be considered as functional food
products [4–7]. Once managed in outlined qualitative and quantitative amounts, these
new functional products could offer valuable health benefits to consumers [8]. In this vein,
the expansion of probiotic (PRO) products is a significant research area for the market of
functional foods [9]. Economic prognostications assume a rise to USD 7 billion for PRO
dietary supplements between 2015 and 2025 worldwide [10].

Derived from the Greek word “for life”, PROs are defined as “live microorganisms
that, when administered in adequate amounts, confer a health benefit to the host” [11]. Nu-
merous bacterial species such as Lactobacillus, Bacillus Lactococcus, Streptococcus, Pedio-
coccus, Bifidobacterium, and Propionibacterium are well recognized as PROs. Additionally,
fungi and yeasts including Saccharomyces cerevisiae, S. Boulardii and S. carisbergensis,
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Aspergillus niger and A. oryzae are also investigated as PROs [12]. PROs are naturally
considered as functional ingredients due to their wellness-enhancing capabilities [13]. In
this line, PROs have various human health benefits such as the enhancement of intestinal
microbial balance, prevention of pathogenic growth through the production of antimi-
crobial compounds, modulation and control of the innate immune systems, unveiling
antimutagenic activities, and stopping/inhibiting cancers [14–18].

Currently, the most commonly utilized genera as PROs to support healthy intestinal
function in humans are Bifidobacterium and Lactobacillus. Certain specific species within
these groups have obtained the GRAS (Generally Recognized As Safe) status as conferred by
the FDA (Food and Drug Administration) [19]. Other non-pathogenic microorganisms have
also been used as PROs. Strains from Pediococcus, Propionibacterium, Bacillus, Bacteroides,
Streptococcus, Enterococcus, Escherichia, and Saccharomyces are the most significant. Next-
generation PROs with health benefits include Akkermansia muciniphila, Faecalibacterium
prausnitzii, and Eubacterium hallii [20].

Practically, to apply therapeutic impacts on the host, the probable PRO strain viable
cells in food products should be at least 106 CFU/g (or CFU/mL) during the product’s
shelf life [21]. However, the survival of a PRO is significantly affected by the rough
gastrointestinal tract (GIT) conditions, as the low acidic pH of the bile acids and gastric
environment [22]. In addition, it should be noted that numerous intrinsic and extrinsic
factors have also been perceived as damaging the stability and viability of a PRO during
food processing and preparation, along with the extended storage time [23,24]. To vanquish
these contests, encapsulation methods have been realized to preserve the PRO’s viability.
Encapsulation is an innovative approach in which PRO strains can be trapped inside a
selective supportive membrane [25–27]. Once efficaciously applied, this technique could
evade cell mass degradation, and accomplish a battered release in the gut in a satisfactory
amount [28]. The result of this engineering process is an easy-to-handle encapsulated
powder with uniform homogeneity through the food process [29].

The immobilization of cells through encapsulation techniques can be approximately
considered as “macroencapsulation” and “microencapsulation” being affected by the
size of the polymeric carriers [30]. Carriers developed through the macro-encapsulation
process typically range from a few mm to cm while those in the range of 1–1000 µm
are shaped through the microencapsulation process [30,31]. To protect PROs, several
encapsulation technologies viz. emulsions, extrusion, coacervation, and drying methods
such as freeze-drying, spray-drying, and fluidized bed drying have been implemented and
industrialized [32]. In this regard, the proper encapsulation technique is identified based
on the (i) characteristics of the PRO, (ii) the operative circumstances of the encapsulation
process, (iii) the biomaterials’ feature, (iv) the suitable particle size for PRO loading without
compromising the sensory quality of the end product, (v) the release mechanism/rate, and
(vi) the storage conditions [33]. By preventing direct contact between the PRO and food
ingredients, encapsulation techniques could retain the PRO’s viability throughout the food
manufacturing process and long-term storage.

This article aims to analyze and review various double/multilayer strategies for
encapsulation of PROs. In addition, here, we focus on the encapsulation of PROs within
double/multilayer coatings and beads. Finally, their applications in food products are
presented. Our manuscript provides relevant new insights and perspectives beyond the
available reviews, and the key findings showed that the encapsulation of PROs in double-
and multiple-layer coatings combined with other technologies was examined to increase
the opportunities for new functional products. The comprehensive integration of these
subtopics in a single review article is what makes this manuscript unique.

2. Encapsulation of Probiotics in Monolayer Beads/Carriers—Fundamentals
and Mechanisms

Given the connection between human gut health and PROs, consumer interest in
purchasing foods that contain PROs, or as supplements, is steadily increasing. At the
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same time, this increasing trend is also reflected in the global PROs market with a forecast
referring to USD 911 million for 2026 and an annual growth rate of 8.3% [34,35]. The
beneficial effects of PROs are correlated with both the strain used and the dose administered
when consumed in an adequate population, and in all cases, these effects need to be proven
both by in vitro experiments, in animals and human studies [36,37]. PRO microorganisms,
to exert their potential valuable effects on the human body, must remain unaffected by
harsh environmental conditions and maintain their characteristics when they colonize the
human GIT [38].

In order to release the PROs from the encapsulation material, specific environmental
conditions such as pH, temperature, and enzyme activity must be met [39]. Acidic gastric
fluid contains water, hydrochloric acid, electrolytes, mucus, hormones, and digestive
enzymes, e.g., lipase, renin, and pepsinogen. This particular composition, with a pH = 0.9
to 1.5–3.0, reduces the microbial population. In addition, the enzymes ribonuclease and
deoxyribonuclease, as well as the pro-enzymes prochymotrypsin, protrypsin, proelastase,
procarboxypeptidases, α-amylase, pancreatic lipase, and small intestine break down the
PROs cells and are an important factor in their degradation [40]. Actually, the PROs strains,
while they manage to reach GIT after oral administration through the gastric fluid, adhere
only slightly to the intestinal mucosa, with the result that most of them are excreted with
the feces [41].

In order to survive, distribute, and find their targets, PROs have to deal with a multi-
tude of factors related to oxygen concentration, UV light, enzyme-mediated degradation,
water activity, and antimicrobial action of bile salts, as well as competition phenomena
caused by other bacteria [42]. Moreover, their survival in extremely low gastric pH remains
one of the biggest challenges [43]. From the processing and production of food containing
PROs to its consumption, the main concern is protecting the PROs cells (Figure 1). It is
important to maintain the viability of probiotics through the conditions encountered during
the manufacturing procedure (temperature, oxygen, shear, etc.), storage (moisture, oxygen,
and temperature related to packaging and storage), and passage through the GIT (acidic
pH of stomach and bile salts in the small intestine) [44].
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Efforts currently being made by researchers are aimed at developing encapsulation
technologies with the aim of protecting PROs in the human body and releasing them
at targeted sites [46]. There are four main types of targeted delivery systems. The first
one is called pH-responsive delivery systems and the pH of different sites of the body
provides an idea for targeted delivery of PROs. Actually, the microenvironment in different
sites of the human body has different pHs, and specific design is carried out according
to the pH range of the target site. The second one is called the enzyme-specific response
delivery system. In this case, the design depends on specific enzymes present in different



Molecules 2024, 29, 2431 4 of 26

microenvironments. The third one is called the immune-response delivery system, and
usually targets specific sites that have a clear effect on PROs, such as lungs, tumors, etc. The
last one is called targeted delivery to disease markers and signaling molecules. In disease
states, inflammatory sites within the body produce far more disease markers and signaling
molecules than normal. The presence of these disease markers and signaling molecules is
being explored as a potential trigger mechanism for encapsulated PROs [46].

Through these techniques, significant viability rates of PROs are ensured as they
approach the specific positions for which they are intended [47] while at the same time,
their injuries or various cellular alterations are limited or reduced [38]. The wall that
surrounds the PROs cells creating protective carriers during the encapsulation process is
called the carrier [22] and aims to ensure the viability of the PROs throughout their journey
from food to the colon [37], where they are most beneficial to the host [48]. Therefore,
designing formulations and robust vehicles that will achieve targeted delivery remains as a
challenge [49]. Wall, membrane, shell, external phase, or matrix material are some other
words used for the carrier material [50].

The success of PROs encapsulation in terms of the functionality and viability of specific
PRO strains is highly dependent on the encapsulation technique, the use of specific types of
polymeric carriers, beads, carriers, matrices, and the type of microorganism. Among these
widely used types are polysaccharides, lipids, and proteins or their chemically, physically,
and enzymatically modified versions [47,51,52]. The use of polysaccharides and proteins
helps to increase the durability of the structural integrity and cohesion while acting on
the permeability of O2 or CO2 gases. On the contrary, the incorporation of lipids into the
mixture enhances its resistance to water vapor [50]. By changing the composition of the
coating and/or core material, or by modifying the chemical and/or physical treatments
to which the carriers are exposed, it is possible to induce significant changes in the final
characteristics of the carrier [50]. In the “microencapsulation” according to the size, car-
riers can be classified as macro- (>5000 µm), micro- (0.2 to 5000 µm), and nano-carriers
(<0.2 µm) [50].

Since living cells of PRO strains must survive for an extended period and withstand
the gastric environment and temperatures, various encapsulation techniques have been
developed [42,53]. In encapsulation, a semipermeable membrane or matrix of a highly
sensitive component is used [54]. The formation of a matrix during the process prevents
the release of PROs into the product, making certain polymers more effective at encapsula-
tion [55] and establishing an ideal microenvironment to support their survival and stability.
Carriers are the ideal form of delivery of PROs to the GIT, particularly when addressing
PRO formulations in liquid or powder form. Carriers can be present in solid form, with a
soluble container that is either soft or hard [56]. The hard form is most commonly used in
PROs and diluents, glidants, disintegrants or fillers are some of the excipients that carriers
carry, the existence of which contributes to maintaining the physiology of PROs cells [57].
Different shell materials achieve the release and controlled delivery of the PROs cells from
the carriers to selected sites or targets of the GIT [58].

Among the most commonly used proteins are whey proteins, caseins, and gelatin,
while alginate, chitosan, and starch are the most known polysaccharides utilized as coating
materials for PROs [47]. Fats of animal or plant origin, resins, and waxes are the main
lipids used in encapsulation of PROs. Fish oil, butter, or lard can be used to produce fat of
animal origin while sunflower oil, corn, or olive oil can be used to produce fat of vegetable
origin [50]. Many researchers have documented the improved viability and high encapsula-
tion efficiency of these coating materials for the encapsulation of PROs [59,60]. Depending
on their functionality, the polymeric matrices used in encapsulation are distinguished into
those related to sensitivity to pH, redox, and enzymes (Figure 2).



Molecules 2024, 29, 2431 5 of 26

Molecules 2024, 29, x FOR PEER REVIEW 5 of 27 
 

 

of animal origin while sunflower oil, corn, or olive oil can be used to produce fat of vege-
table origin [50]. Many researchers have documented the improved viability and high en-
capsulation efficiency of these coating materials for the encapsulation of PROs [59,60]. 
Depending on their functionality, the polymeric matrices used in encapsulation are dis-
tinguished into those related to sensitivity to pH, redox, and enzymes (Figure 2). 

 
Figure 2. Polymeric carriers for enhanced delivery of probiotics (adapted from [44]). 

Polymers used in PROs encapsulation must be characterized by biocompatibility, bi-
odegradability, processability, and PROs friendliness [44]. Other natural conventional bi-
odegradable polymers used for the encapsulation of PROs are pectin, guar gum, dextran, 
chondroitin sulfate, cyclodextrin, xanthan gum, inulin, amylose, and locust bean gum 
shellac, while some synthetic polymers are Eudragit, polyvinyl acetate phthalate, hydrox-
ypropyl ethylcellulose phthalate, cellulose acetate phthalate, and cellulose acetate trimelli-
tate [44]. 

3. Monolayer Versus Double/Multilayer Coatings 
Spray-drying, freeze-drying (also referred to as lyophilization or cryodesiccation), 

spray chilling (also called congealing or spray cooling), electrospraying, extrusion, fluid-
ized bed drying, layer-by-layer (LbL), and other physicochemical techniques such as co-
acervation and emulsification are some of the most commonly used techniques for encap-
sulation of PROs [38,50]. Among the commonly applied techniques in the industry for 
encapsulation of sensitive bioactive substances such as PROs is spray-drying, since it is 
extremely flexible in terms of operation with different wall materials, consumes relatively 
lower energy, and is characterized by high yield [59]. The core material is dispersed in a 
solution that includes the coating material, the resultant dispersion is homogenized and 
then sprayed into the drying chamber, which causes the solvent to evaporate in order to 
take a dry powder [47,59]. In freeze-drying, the PROs’ cell suspension is frozen at a low 
temperature, sublimated from ice to water vapor under vacuum conditions, and water is 
removed from the PROs solution to obtain a lyophilized powder [47]. In extrusion, a so-
lution of polymer (typically a hydrocolloid) is mixed with the PROs cells. With the help 
of a syringe needle, the suspension is poured into a high-pressure solution of a cross-link-
ing agent, resulting in the formation of a gel [61]. The emulsification process is defined by 
the dispersed phase including a cell polymer suspension and either vegetable oil, mineral 
oil, or an organic solution as the continuous phase. The emulsion results from the homog-
enization of the mixture and the surfactants. 

During the creation of the carrier, its size is controlled, and this results in the approval 
of the product in terms of organoleptic characteristics [61]. In addition to that, size reduc-
tion may improve the application properties and physicochemical characteristics. The re-
duction in particle size also improves the consistency of the product and possible negative 

Figure 2. Polymeric carriers for enhanced delivery of probiotics (adapted from [44]).

Polymers used in PROs encapsulation must be characterized by biocompatibility,
biodegradability, processability, and PROs friendliness [44]. Other natural conventional
biodegradable polymers used for the encapsulation of PROs are pectin, guar gum, dex-
tran, chondroitin sulfate, cyclodextrin, xanthan gum, inulin, amylose, and locust bean
gum shellac, while some synthetic polymers are Eudragit, polyvinyl acetate phthalate,
hydroxypropyl ethylcellulose phthalate, cellulose acetate phthalate, and cellulose acetate
trimellitate [44].

3. Monolayer versus Double/Multilayer Coatings

Spray-drying, freeze-drying (also referred to as lyophilization or cryodesiccation),
spray chilling (also called congealing or spray cooling), electrospraying, extrusion, flu-
idized bed drying, layer-by-layer (LbL), and other physicochemical techniques such as
coacervation and emulsification are some of the most commonly used techniques for en-
capsulation of PROs [38,50]. Among the commonly applied techniques in the industry for
encapsulation of sensitive bioactive substances such as PROs is spray-drying, since it is
extremely flexible in terms of operation with different wall materials, consumes relatively
lower energy, and is characterized by high yield [59]. The core material is dispersed in a
solution that includes the coating material, the resultant dispersion is homogenized and
then sprayed into the drying chamber, which causes the solvent to evaporate in order to
take a dry powder [47,59]. In freeze-drying, the PROs’ cell suspension is frozen at a low
temperature, sublimated from ice to water vapor under vacuum conditions, and water
is removed from the PROs solution to obtain a lyophilized powder [47]. In extrusion, a
solution of polymer (typically a hydrocolloid) is mixed with the PROs cells. With the help
of a syringe needle, the suspension is poured into a high-pressure solution of a cross-linking
agent, resulting in the formation of a gel [61]. The emulsification process is defined by the
dispersed phase including a cell polymer suspension and either vegetable oil, mineral oil, or
an organic solution as the continuous phase. The emulsion results from the homogenization
of the mixture and the surfactants.

During the creation of the carrier, its size is controlled, and this results in the approval
of the product in terms of organoleptic characteristics [61]. In addition to that, size reduction
may improve the application properties and physicochemical characteristics. The reduction
in particle size also improves the consistency of the product and possible negative effects on
its texture are eliminated [62]. PROs in the aqueous phase (W1) containing cryoprotectants
such as disaccharides, proteins, polyalcohols, and complex mixtures are encapsulated
through emulsions to improve the resilience of PROs against harsh GIT conditions [63].

Among the most extensively used polysaccharides as an encapsulation matrix is
alginate. Alginate hydrogels (beads) could be an interesting option in PROs encapsulation.
Their structure is composed of the two monosaccharides a-L-guluronic acid (G) and D-
mannuronic acid (M). The fact that alginates do not dissolve in acidic gastric conditions
makes them ideal for the protection of PROs in acidic gastric juice. In addition, their
carboxyl groups form hydrogels with divalent cations [64]. In fact, the presence of divalent
cross-linking cations creates a mild gelation, the result of which is the insolubilization
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of PROs formulations in acids. Among the various divalent cations (Mg2+, Sr2+, Ba2+),
Ca2+ is widely used to form alginate hydrogels [64]. Alginic carriers (beads) are not only
advantageous in enhancing the survival rate, stability, and targeted delivery of PROs
but also present additional advantages related to simple, fast, and low-cost production.
Alginates when combined with other biopolymers in hydrogel production are shown to be
more effective in both encapsulation ability and viability of PROs compared to the use of
alginates alone. Le and Trinh [65] managed to maintain the cell density of Bacillus clausii,
Saccharomyces boulardii, and L. acidophilus until 120 min following double encapsulation
(hydrogel of gelatin and alginate gels); also, their cell viability significantly improved.

There are many types of multilayer coatings, containing diverse materials that are
typically effective for encapsulating PROs. Recently, Jeon et al. [51] achieved improved
viability and storage stability of PRO bacteria under various temperatures after freeze-
drying and enhanced their adhesion to intestinal cells, using quadruple-coated PRO strains
containing red ginseng dietary fiber [51]. Coating materials included the combination
of red ginseng dietary fiber (RDF) with basic amino acids (L-arginine, L-histidine, and
L-lysine), tara gum, and rice protein powder. Sekhavatizadeh et al. [66] encapsulated L.
acidophilus in sodium alginate and galbanum (Ferula gummosa Boiss) gum (second layer)
microspheres to evaluate the survival under simulated GIT circumstances in PRO Tahini
halva. Encapsulated L. acidophilus survived under refrigerated conditions for 18 days, the
survival of viable cells improved up to 72 ◦C, while the survival rate under heat stress
was 50.13%.

In terms of safety, ensuring the biocompatibility of encapsulation materials is paramount.
Natural food-grade polymers like alginate and chitosan are GRAS, whereas synthetic poly-
mers may require a more thorough safety evaluation. Meanwhile, both the encapsulation
material and the PROs dosage need to meet the human daily intake limits [67].

High doses or frequent intake of PROs can increase the risk of intestinal flora
imbalance [46].

The coating material can arrange in one, two, or more coating layers containing the
core material. An ideal coating material should have the following desirable characteristics:
be chemically inert with the core material; be able to seal and contain the core material
inside the capsule; capability to provide protection against unfavorable conditions; and be
sustainable and cheap. To date, no ideal coating exists yet that fits for all purposes, mainly
because the coating characteristics cannot be simultaneously improved [50].

4. Different Multilayer Techniques for Encapsulation of Probiotics

PROs can be protected from harsh conditions by various double- and multiple-layer
coatings as described below.

4.1. Electrohydrodynamic Atomization

Recently, electrohydrodynamic atomization (EHDA) or electrospraying technology
has been utilized for downsizing carriers, as demonstrated by [68]. Electrohydrodynamic
(EHD) processing is a method of generating liquid droplets through the application of
a large electrical potential difference [68]. EHDA, characterized by a simple and adapt-
able experimental setup, is capable of generating monodisperse charged carriers from
viscous polymeric solutions. This method offers several advantages over conventional
encapsulation approaches such as freeze-drying and spray-drying. Charged carriers exhibit
higher deposition efficiency in comparison to uncharged ones, and their movement can be
readily controlled through external electric fields. This approach does not entail the use of
severe temperatures or organic solvents and hence can be used for the encapsulation of live
PROs cells [47,69]. The application of electrical force using an electrospinning technique
allows for the formation of charged threads within micro/nano fibers from a polymer
solution [70]. To date, electrospinning has been mainly used for the encapsulation of PROs
in an electrospun monolayer using different biopolymers, although its use in multilayers is
not limited. Recently, encapsulated L. rhamnosus GG (LGG) cells, in multilayer poly-lactic-
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co-glycolic acid-pullulan-poly-lactic-co-glycolic acid, electrospun nanofibers were reported;
enhanced delivery of the cells and enhanced viability and shelf life after electrospinning
was achieved [70].

Encapsulation of PROs using electrospinning is displayed in Table 1.

Table 1. Encapsulation of PROs using electrospinning.

Probiotic
Strain Polymer Solvent Processing

Conditions Average Diameter Reference

L. plantarum Ca-alginate (A)/chitosan
(Ch)

A: water
Ch: water at pH 3.5

9.5 kV
100 mm
5 mL/h

300–550 µm [71]

L. acidophilus
Core: alginate/glycerol
Shell: egg albumen and

stearic acid
Water

8 kV
6 cm

10 mL/h
450 µm [72]

Bifidobacterium
longum

WPC, Fibersol® (F)
Maltodextrin (M), Zein (Z);

PVP

F and M: water
WPC: skimmed milk

Z: ethanol
PVP: water

Not specified
WPC: 2.47 µm

F: 87 µm
M: 1.95 µm

[73]

B. animalis
subsp. lactis

Bb12

Novel nanofiber mats
consisting of chitosan

(CS)/poly(vinyl alcohol)
(PVA), inulin (INU) as a

prebiotic

CS inacetic acid (0.5 M)
PVA in water

18 kV
Tip-to-collector
distance: 15 cm

0.1 mL/h

117.5 to 217.6 nm [74]

Lactobacillus
strains

Gum Arabic (GA)-based
nanofibers and pullulan Deionized water

16 kV
0.4 mL/h,

Tip-to-collector
distance: 10 cm

Nanofibers with a
smaller diameter [75]

L. plantarums
Polylactic acid and

fructooligosaccharide

Dichloromethane and
N, N-

Dimethylformamide

16 kV,
0.1–0.25 mL/h

Electrospun fibers

[76]

PVA/silk fibroin n/a n/a [77]

L. paracasei
PVA and sodium-alginate Water 15–27 kV

0.4–1.6 mL/h [78]

Eudragit L100 and
Na-alginate Alcohol 15 kV

1.0 mL/h [79]

Electrohydrodynamic encapsulation employs similar physical methods as EHDA and
can be considered as a version of EHDA [80]. The latter employed EHDA to co-encapsulate
Bifidobacterium lactis and L. plantarum individually with either inulin or resistant starch
within carriers made of Ca-alginate/chitosan. In this method, the extrusion of a polymeric
solution including active materials is carried out through a capillary nozzle and atomization
into ultra-fine droplets occurs due to powerful electrical forces. Solidification of the droplets
into hydrogel particles following immersion in a gelling bath can occur [81]. The use of
biodegradable and non-toxic wall materials or matrices, which serve to protect live cells,
appears highly significant as well [82]. Electrohydrodynamic processes (EHD), including
electrospraying and electrospinning, have recently emerged as innovative encapsulation
approaches for PROs [83]. The surface of biopolymer solution droplets is being charged by
high-voltage electrostatic fields, hence initiating the ejection of a liquid jet using a spinneret
(Figures 3 and 4, Table 1).
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The electrical field corresponds to the reduction in the Taylor cone that then forms a
steady and sustainable jet, which, due to its elongational viscosity, forms fibers. Approach-
ing the electrode meter, the jet is narrower and forms an open spindle [84].

Modifying the dimensions and shapes of fibers and carriers generated through EHD
is attainable by fine-tuning the EHD processing parameters such as applied potential,
electric field, spinning distance, and flow rate, along with adjusting solution parameters
including conductivity, viscosity, surface tension, and dielectric constant [85,86]. Different
forms might appear in electrospraying, due to the Rayleigh–Plateau instability induced
by surface tension. A jet breaks into droplets in the Taylor cone (a conical form). Electrical
power allows the Taylor cone to distort the typical spherical meniscus shape [84]. In PROs
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encapsulation, jet mode and dripping mode appear as two modes of electrical atomization
processes. Electrospinning facilitates the injection of LAB into solid delivery systems,
concurrently achieving the dehydration of bacterial dispersion [87].

4.2. Layer-by-Layer Assembly

The LbL assembly has been employed for the fabrication of polymeric carriers en-
dowed with diverse applications and release characteristics [88–90]. In the LbL technique,
both natural and synthetic oppositely charged polymers are deposited in an alternating
fashion onto a negatively charged mammalian cell membrane through electrostatic ad-
sorption, thereby providing enhanced protection and a way to direct retention, proliferation,
and growth on intestinal surfaces without requiring release from the encapsulating ma-
trix [91]. The sequential adsorption of materials featuring opposing charges onto a template
in a systematic manner, thus leading to the formation of a polyelectrolyte shell, is required
for LbL assembly [92–94]. This technology presents an economical, readily available, and
manageable approach for crafting multilayer carriers with adjustable digestive resistance,
determined by factors such as the quantity, thickness, and barrier characteristics of the
shell layers [88,92,93,95]. According to the literature, the preparation of resistant starch
carriers with functional properties involves the construction of multiple calcium alginate
layers around beads formed with calcium alginate and starch. It has also been indicated
that enhancing the digestive resistance of starch in the interior of carriers and regulating its
fermentation in the colon can be accomplished by creating multilayered sodium alginate
shells around starch beads [96]. Figure 5 depicts layer-by-layer carriers for probiotics.
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LbL deposition of soy β-conglycinin and high methoxylated pectin was achieved by
preparation of fish oil-in-water emulsions using high shear mixing or homogenization
at 500 or 3000 psi as reported by [97]. A carrier composed of anionic alginate and the
LbL assembly [98] created cationic polycyclodextrins, with the target of inhibition and
elimination of pathogenic bacteria. Similarly, triple-layer beads consisting of alginate, Ferula
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assa-foetida gum, and Zedo (Amygdalus scoparia) gum were used to encapsulate L. reuteri
for application in a dairy dessert. Encapsulation was reported to enhance the viability of
L. reuteri (7.5 log CFU/g) during storage [60]. Asgari et al. [44] produced multilayer PRO-
loaded carriers. The LbL self-assembly process is a widely employed technique for PROs
encapsulation (Table 2), relying on the consecutive adsorption of particles with opposing
charges [99,100]. Layer-by-layer coating and multilayer carriers for probiotics are described
in Table 2.

Table 2. Layer-by-layer coating and multilayer carriers for probiotics.

Matrix/Carrier Food Probiotic Reference

Chitosan–alginate - Bifidobacterium breve [101]

Chitosan-coated alginate beads Pomegranate juice Lactobacillus plantarum [102]

Alginate–chitosan Yogurt Lactobacillus acidophilus [103]

Chitosan/dextran sulfate multilayer
polyelectrolytes - Saccharomyces boulardii [104]

Nanostructured polyelectrolyte layers - Lactobacillus acidophilus [105]

Chitosan and alginate - Bacillus coagulans [106]

Single bilayer of alginate–chitosan and its double bilayer - Lacticaseibacillus rhamnosus [107]

Chitosan and sulfated oat β-glucan Oat β-glucan L. acidophilus [100]

Positively charged inner soy β-conglycinin and
negatively charged outer high methoxyl pectin

Fish oil in water
emulsions [97]

Na-alginate shells around Ca-alginate/starch beads Corn starch Bacteroides, Prevotellaceae [96]

The LbL assembly of polyelectrolytes to create polyelectrolyte multilayer hollow
carriers (PMCs) featuring a core–shell structure with various functional properties has
become a well-established approach. PMCs exhibit diverse applications, including their
potential use as delivery vehicles for controlled and targeted release [108].

4.3. Water-in-Oil-in-Water (W1/O/W2) Emulsions

Emulsification of a W1/O emulsion in water results in a W1/O/W2 emulsion. This
type of emulsion is denoted as “multiple emulsion” or “double emulsion.” Double emul-
sions can encapsulate PROs due to the ability to be integrated into the internal aqueous
phase, protecting the external environment [109–111]. W1/O/W2 double emulsions are
usually fabricated by a two-step process method. A water-in-oil (W1/O) emulsion is fab-
ricated firstly, and then emulsified with external water phase [63]. Stability of a W1/O
emulsion is the key step in preparation and this needs to be accomplished under high shear
conditions. Following that, the re-dispersion of this emulsion takes place. This occurs in a
hydrophilic emulsifier. High shear leads to the collision of water droplets and results in
coalescence. Particle-stabilized Pickering emulsions (PEs) depend on Pickering stabilizers
(Section 4.4) and constitute PROs encapsulation. Double emulsions established with PROs
cells as the inner aqueous phase and various protective compounds have been reported by
Ding et al. [112]. Figure 6 depicts water-in-oil-in-water (W1/O/W2) emulsions.

The interfaces of both W1/O and O/W2 were stabilized using soybean lecithin
and polyglycerol polyricinoleate (PGPR), a widely used molecular surfactant [112]. Car-
boxymethyl konjac glucomannan–chitosan, a nano gel matrix, stabilized the outer aqueous
phase. Eslami et al. [113] studied the formation and stabilization of multiple emulsions
for L. dellbrueckii utilizing β-cyclodextrin (β-CD) inclusion complexes. A PRO-containing
aqueous phase and oil phase with Span-80 constitute the initial emulsion (W1/O). This
emulsion is then transferred to an outer aqueous solution of Tween-80 or β-CD and con-
tains W1/O/W2 emulsion. Encapsulation of different PROs in double emulsions can be
formulated with a variety of emulsifiers like sugar beet pectin, carboxymethyl konjac
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glucomannan-chitosan, PGPR, medium chain triglyceride (MCT) oil, Sweet whey, Inulin,
and β-cyclodextrin (Table 3).
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Table 3. Probiotic encapsulation using W1/O/W2 emulsions.

Probiotic Emulsifier Reference

L. salivarius NRRL B- 30514 Sugar beet pectin [114]

L. reuteri Carboxymethyl konjac
glucomannan–chitosan [112]

L. plantarum Polyglycerol poliricinoleate (PGPR) [54]

L. reuteri MCT oil (Miglyol® 812) [115]

L. paracase PGPR [116]

L. rhamnosus Sweet whey [117]

L. rhamnosus Inulin [118]

L. delbrueckii β-cyclodextrin [113]

L. casei β-cyclodextrin [119]
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4.4. Multiple Pickering Emulsions

PEs have been employed in encapsulation, with differentiation in stabilization tech-
niques, such as the use of hybrid or protein nanoparticles [120], along with multiple or
high internal-phase PEs [121]. Pickering emulsions are stabilized by adsorbing nano- or
micro-sized solid particles at the oil–water interface to prevent coalescence of the emul-
sion droplets. The large interfacial adsorption energies of Pickering emulsifiers allow for
irreversible adsorption, unlike conventional emulsifiers [122]. PEs were prepared by stabi-
lization of hydroxypropyl methylcellulose (HPMC), a representative anionic polymer, with
chitosan and Lactococcus lactis IO-1 (L. lactis IO-1), as detailed by [123]. The PEs exhibited
the health-promoting attributes of chitosan coupled with the bacteriocin produced by L.
lactis exerting antibacterial activity. L. lactis negatively charged cells along with positively
charged chitosan modified bacterial properties and formed the basis of a soft hydrophobic
material for PEs. L. plantarum served as an emulsifier within PEs and their high internal
phase following encapsulation with WPI/EGCG covalent conjugate nanoparticles. Hence,
storage durability increased. A highly viscous or gel-like network is the characteristic of
HIPEs achieved with a minimal oil fraction (φ) = 0.74 [124]. WPI-EGCG covalent conjugates
forming nanoparticles were generated by a free-radical induction method [64]. This could
lead to the stabilization of PEs. A double PE for loading L. acidophilus aiming at targeted
delivery to the colon was developed by Wang et al. [125]. Double emulsions are considered
highly advantageous in the triggered release and flavor masking.

LbL could generate multilayer emulsion self-assembly on double emulsion tem-
plates as designed carriers, thereby improving encapsulation and facilitating controlled
release [126]. A typical formation of a multilayer emulsion involves the application of
additional layers covering the emulsion droplets. Feng et al. [127] constructed this emul-
sion through LbL self-assembly, employing inversely charged biopolymers that interact
through electrostatic attraction. Interfacial characteristics, e.g., size, charge, penetrability,
and rheology can be regulated by sequentially depositing cationic and anionic biopolymers
around emulsion particle templates [127]. Multilayer emulsions with thicker interface
layers typically exhibit enhanced stability, resisting the coalescence and flocculation of
emulsion droplets.

Ultrasound-assisted multilayer double PE carriers with WPI-EGCG covalent conju-
gates were reported to have a significant effect on the viability of L. plantarum strain liquid
during pasteurization and GIT digestion [128]. The double emulsion produced under an
ultrasonic intensity of 285 W exhibited a singular and narrow distribution, featuring the
smallest droplet size. Subsequently, the double emulsion particles were coated with chi-
tosan, alginate, and CaCl2. Chitosan and alginate are frequently employed as LbL materials
due to their opposing charges. After pasteurization and GIT digestion, three to four coating
layers exhibited comparable activity. However, formulations with three layers of coating
were found to be the most effective for the encapsulation of L. plantarum.

HIPEs, also referred to as high-concentration emulsions, possess a droplet concen-
tration surpassing the close packing limit, typically around 74% (v/v) according to Shi
et al. [129]. At these elevated concentrations, the droplets tend to undergo deformation,
adopting polyhedral shapes that are separated by thin films of the continuous phase. In
comparison to HIPEs stabilized by conventional surfactants, HIP-PEs necessitate fewer
stabilizers. They also exhibit higher internal-phase volumes, increased stability against
coalescence, enhanced storage stability, and contribute to less environmental pollution [130].
Probiotic encapsulation using PEs is described in Table 4.
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Table 4. Probiotic encapsulation using Pickering emulsions.

Emulsion Probiotics Pickering Stabilizer References

O/W HIPE L. plantarum Whey protein isolate
(WPI)/(-)-epigallocatechin-3-gallate [63]

L. rhamnosus GG β-lactoglobulin-propylene glycol alginate
composite nanoparticles [111]

W/O None tested Butyl methacrylate derivatives [131]

O/W L. casei Calcium alginate [132]

W/W
L. helveticus Microcrystal celluloses [133]

L. helveticus CICC 22536 Alginate [134]

O/W L. rhamnosus GG (LGG, ATCC 53103) β-lactoglobulin-propylene glycol alginate [111]

W/W L. plantarum Hydroxypropyl methylcellulose and dextran [135]

O/W

L. acidophilus NRRL B-4495,
Lactiplantibacillus plantarum NRRL B-4496 Gelatin [136]

Lactobacillus acidophilus BC Nanoparticles [125]

L. plantarum Alginate beads (emulbeads) [137]

L. casei ATCC 393 Silica particles [138]

5. Applications of Multilayer Encapsulated Probiotics in Food Products

The utilization of encapsulated PROs in food systems has been extensively explored,
finding common use in dairy products and more recently in nondairy alternatives (Figure 7).
Pandey et al. [139] prepared double emulsion carriers enclosing the L. plantarum NCDC
414 and γ-aminobutyric acid (GABA). Under refrigeration at 4 ◦C, all carriers exhibited
stability, with GABA encapsulation levels remaining >70% till 60 days. At 105–107 CFU/mL,
the encapsulated LAB was viable and retained its entrapment even after exposure to
sequential digestion. These authors concluded that ultrasonically produced PRO LAB
carriers have the potential for targeted intestinal delivery and food formulations. He
et al. [128] illustrated the influence of ultrasound-assisted multilayer W/O/W PE carriers
on the viability of L. plantarum on pasteurization and gastrointestinal digestion. Coated
with chitosan, alginate and CaCl2 at three to four layers possess comparable activity after
LAB PRO pasteurization/GIT digestion. At five coating layers, multilayered carriers
displayed the most viability; nonetheless, its particle size, measured at 108.65 µm, exceeded
the limit of human oral sensory perception (80 µm). To produce PRO yogurt, Mahmoodi
Pour et al. [140] established simple and multilayer emulsions by encapsulating L. rhamnosus
and L. plantarum. Compared to free PROs, in which a notable loss of survival was observed,
these authors stated that multilayer emulsion did not display a remarkable reduction in
survival in yogurt. In addition, the encapsulation did not alter the organoleptic properties
of the yogurt. Encapsulating PROs in simple emulsions led to a less homogenous structure
in yogurt.
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Jasińska et al. [141] prepared microbeads and microcapsules by extrusion as electro-
static and vibrating techniques. Compared to non-encapsulated strains, in the fermented
nonmilk beverages, the B. infantis ATCC15697 immobilized in alginate or low-methoxyl
pectin hydrogel particles meaningfully improved the survival rate of PROs strains during
storage. Karimi et al. [60] described a dairy dessert containing L. reuteri ATCC 23272 encap-
sulated by sodium alginate, Ferula assa-foetida gum, and Zedo (Amygdalus scoparia) gums.
Encapsulation enhanced the viability of the PRO strain at 7.5 Log CFU/g during storage. In
addition, the PRO strain resistant to high temperatures (to 72 ◦C) contributed to the hard-
ness value of the produced dessert. In addition, encapsulated L. reuteri pH value was closely
stable throughout the storage period. In another study by Chen et al. [142], the impact of the
xanthan–chitosan–xanthan system on B. bifidum BB01 viability in yogurt during 21 days of
storage (at 25 and 4 ◦C) was investigated. Findings revealed that xanthan–chitosan–xanthan
carriers and xanthan–chitosan carriers could enhance the survival of Bifidobacterium BB01
cells in yogurt. Core–shell capsules of L. acidophilus NCFM, prepared by alginate, locust
bean gum, and mannitol, were effectively combined in mulberry tea [143]. In an acidic
environment, the cells were well protected, and till the end of product storage (30 days) at
4 ◦C, the number of PRO LAB was 6.80 log CFU/mL, which encountered the minimum
prerequisite for PROs (106 CFU/mL).

PROs cultures including L. plantarum, L. casei, L. fermentum, Sc. Boulardii, and Lysini-
bacillus sphaericus were encapsulated by alginate-coated chitosan beads and introduced into
carrot and tomato juices. The viable cell count of Lysinibacillus sphaericus increased from
6.5 to 8.9 log CFU/mL, and Sc. boulardii increased from 5.2 to 7.6 log CFU/mL between



Molecules 2024, 29, 2431 16 of 26

24–42 h [144]. Over 5–6 weeks at 4 ◦C, the encapsulated cells showed higher viability
compared to the free cells in tomato and carrot juices; nevertheless, the beads negatively
affected the sensory properties of the produced juices. In another attempt, Nualkaekul
et al. [102] investigated the impact of multilayer coating of alginate beads on the survival
of encapsulated L. plantarum during storage in pomegranate juice at 4 ◦C at 6 weeks of
storage; cell concentration in pomegranate juice was > 5.5 Log CFU/mL for double-coated
beads. In contrast, for free cells and uncoated beads, the cells experienced mortality after
4 weeks of storage.

Arslan-Tontul et al. [145] incorporated double-layered carriers containing Sc. boulardii,
L. acidophilus, and B. bifidum in three cake samples named cream-filled, marmalade, and
chocolate-coated, after baking. For plain cake, carriers were inoculated into the center of the
cake mix and baked at 200 ◦C for 20 min. These authors noted that double-layered carriers
could enhance the survivability of PRO bacteria through the process of cake baking. In
this line, cream-filled PRO cake samples demonstrated improved cell survivability during
storage. During storage, cake staling had a partial impact on the sensorial features of the
cakes and the cake samples remained consumable even after being stored for 90 days. To
produce PRO bread, a fluidized bed-drying technique was applied by Mirzamani et al. [146]
to encapsulate L. Sporogenes. Under baking conditions, double-layered carriers resulted in
the highest heat resistance and, consequently, protected the coated PROs. By assessment
of encapsulated PROs viability in bread, these authors depicted that the employment of
chitosan and alginate in carriers could preserve L. Sporogenes and can be defined as a
practical approach in PROs bread production. More recently, Sekhavatizadeh et al. [66]
produced PRO halva by employing encapsulated L. acidophilus using sodium alginate and
galbanum gum. Encapsulated L. acidophilus contained a viable count at an acceptable level
(>106 CFU/g) under refrigerated conditions for up to 18 days. In addition, during storage,
the formed Tahini halva experienced a decrease in cell viability of 3.25 Log CFU/g.

Wong et al. [147] applied a dual coating to fresh-cut apple slices, initially using a bilayer
of PRO L. plantarum 299v that was incorporated into an edible coating solution containing
CMC, followed by a second zein coating. The apple slices were stored for 7 days at 4 ◦C, and
throughout this period, L. plantarum 299v maintained stability at a level > 6 Log CFU/g.
The bilayer PRO edible coating reduced weight loss, suppressed yeasts and mold growth,
and an inhibition in the proliferation of spiked Listeria monocytogenes was observed during
storage. Jantarathin et al. [148] demonstrated that encapsulation of L. acidophilus TISTR 1338
within a double-coated alginate bead with chitosan improved bacterial survival following
freeze-drying. Moreover, the use of prebiotics including inulin and Jerusalem artichoke
enhanced the viability of the encapsulated bacteria during the heating process. These
authors concluded that this could illustrate the protection of PRO bacteria during the
heating process in a shrimp-feeding machine.

There is evidence that PROs mixtures may be more effective than individual strains.
For instance, a mixture of Lb. acidophilus W70, Lb. casei, Lb. salivarius, Lactococcus lactis,
B. Bifidum, and B. infantis, as well as a mixture of Lb. paracasei B21060 and B21070 and Lb.
acidophilus B21190 and a mixture of Lb. casei and Lb. acidophilus inhibit more successfully
pathogen growth compared to each strain on its own. Different species may inhibit each
other by producing antagonistic agents or by competing for either nutrients or binding
sites within the GIT. Thus, a wide variety of genera in a multi-strain PROs mixture may
decrease its effectiveness [25] Table 5 summarizes applications of multilayer encapsulated
PROs in food products.
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Table 5. Applications of multilayer encapsulated probiotics in food products.

Material Encapsulation Technique Purpose of the Encapsulation Food Matrix Encapsulated Probiotic
Strain Reference

Dextran γ-aminobutyric acid
(GABA) and whey protein

Double emulsion
(W1/O/W2) microcapsules Stability, viability Food formulations L. plantarum NCDC 414 [139]

Chitosan(Chi), alginate (Alg),
and CaCl2(Ca)

Ultrasound-assisted
multilayer W/O/W PE

The role of ultrasonic homogenization on the
morphology of W1/O/W2 double emulsions,

viability
Granular food L. plantarum [128]

Multilayer emulsions Cell viability and physicochemical, rheological,
structural, and sensorial properties of yogurts Probiotic yogurts L. rhamnosus and L. plantarum [140]

Alginate or low-methoxyl
pectin hydrogel particles Extrusion Survival rate Fermented nonmilk

beverages
B. infantis

ATCC15697 [141]

Sodium alginate, Ferula
assa-foetida gum, and Zedo

(Amygdalus scoparia)
Microencapsulation Physicochemical properties, sensory attributes, and

probiotic survival Dairy dessert L. reuteri ATCC 23272 [60]

Xanthan–chitosan–xanthan Double-layer encapsulation Viability Yogurt B. bifidum BB01 [142]

Alginate, locust bean gum,
and mannitol Microencapsulation Viability Mulberry tea L. acidophilus NCFM, [143]

Alginate-coated chitosan
beads Microencapsulation Viability Carrot and tomato juices

L. plantarum, L. casei, L.
fermentum, Sc. Boulardii, and

Lysinibacillus sphaericus
[144]

Chitosan-coated alginate
beads Microencapsulation Probiotic survival Pomegranate juice L. plantarum [102]

Gum Arabic and
β-cyclodextrin Spray-drying and chilling Textural and sensorial properties of the cake

samples and probiotic survival Cake Sc. boulardii, L. acidophilus and
B. bifidum [145]

Alginate or xanthan gum as
the first layer and gellan or
chitosan as the outer layer

Microencapsulation Viability Bread L. Sporogenes [146]

Sodium alginate–galbanum
(Ferula Gummosa Boiss) gum Extrusion Physicochemical, and textural properties of Tahini

halva and probiotic viability Tahini halva L. acidophilus [66]
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6. The Resistance and Viability of Probiotics Loaded in Multilayer Carriers

The aptitude of the wall materials to arrange a layer avoiding contact with severe
conditions touches the survival of freeze-dried probiotics under GI conditions [149]. By
exposure to simulated GI fluids, Moayyedi et al. [150] concluded that encapsulated L. rham-
nosus with WPI/Persian gum/inulin displayed ~8 logs CFU/g. The buffering capacity of
wall materials protects PROs against the GI, providing a good shield for probiotics [151,152].
Sometimes, the survival of probiotics is increased due to their acid and bile tolerance.

Sodium alginate microbeads crosslinked with calcium ions find limitations and cannot
be stabilized in the stomach leading to rapid degradation [153]. The structure of microcap-
sules produced is preserved by complex coacervation under gastric conditions as reported
by Barajas-Álvarez et al. [149]. In this study, the control release properties and viability of
probiotics are regulated by the microcapsule composition. For instance, higher protection
of L. reuteri is shown for gelatin: sodium caseinate compared to gelatin: GA.

The viability of PROs in foods could be touched by low pH, H2O2 and dissolved
O2 content, presence of competing microorganisms and inhibitors, aw, and processing
and storage T [154]. The resistance of sensitive PRO against adverse conditions can be
augmented by the use of O2-impermeable containers, stress adaptation during cultivation,
and the incorporation of micronutrients [155,156].

The practicality of the freeze-dried probiotic powders can be enhanced by the em-
ployment of a functional coating layer. Hot-melt coating includes the addition of coating
material acting as a melt rather than a dispersion by a fluid bed coater [157,158], and
minimization of exposure time to heat and moisture occurs. By hot-melt fluid bed coating,
Jacobsen et al. [159] applied cetostearyl alcohol/olive oil/beeswax to L. acidophilus LA3
and B. longum BB536. Throughout intestinal transit, the coating system presented good
release. Moussavi et al. [160] discussed the dependence of probiotic storage stability and
gastrointestinal transit tolerance on species and carrier type. The addition of Lacticaseibacil-
lus rhamnosus GG (LG), Limosilactobacillus reuteri ATCC 55730 (LR), Bifidobacterium animalis
subsp. lactis BB-12 (Bb), Propionibacterium jensenii 702 (PJ), and combinations in orange juice
and bottled water also affected them significantly.

Greater benefits to the consumer could be provided by probiotic combinations com-
pared to single-strain preparations [161]. How well the cells in a probiotic product can
survive in the GIT and then mediate the desired health benefit while passing through the
human body is a question discussed thoroughly in the review by Wendel [162].

7. Conclusions

Recently, PROs have received increasing attention for their exceptional health bene-
fits and biological potential. Nonetheless, the constrained stability observed during food
processing and storage, especially under the harsh conditions of the GIT, significantly
compromised the anticipated benefits, thereby limiting their applications. In this line,
encapsulation of PROs within double/multiple layer coatings proposes an ample food
solution. Once applied efficiently, the encapsulation technique has the potential to improve
the PROs’ resistance to the harsh gastric environment and facilitate controlled release,
ensuring effective delivery of PROs to the intended site of action. These novel delivery
approaches for PROs are a humble, supple, and economical technology for the fabrication
of various PROs multi-coating layers. On account of these structural benefits, the encap-
sulation of PROs in double- and multiple-layer coatings is revealed to (i) display high
encapsulation efficiency, (ii) improve the bioavailability and stability, and (iii) accomplish
targeted delivery and continued release. Recent progress in the encapsulation of PROs
in double- and multiple-layer coatings was highlighted, along with their food potential
applications. Presently, in the medical segment, the production of multilayer fiber struc-
tures at the industrial level is achievable; nevertheless, its employment in food science and
agriculture is quiet in the initial phases of expansion.

The exploitation and changes of encapsulation of PROs in double- and multiple-
layer coatings with other technologies can be examined to increase the opportunities
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for new products with amended functionalities. In this sense, partnerships between
manufacturers and researchers are obligatory to construct industrial-level encapsulation
of PROs in double- and multiple-layer coatings’ engines, hence enhancing throughput.
Additionally, the regulation by the government agencies on the application of these new
carriers in the food industry is highly desirable to guarantee the application of PROs food
products. In the near future, the fruitful application of encapsulation of PROs in double-
and multiple-layer coatings could open a novel horizon in food technology, presenting a
commercialization opportunity.
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137. Karakaş, C.Y.; Yildirim, R.M.; Karadag, A. Encapsulation of Lactobacillus plantarum ELB90 by electrospraying in a double emulsion
(W1/O/W2) loaded alginate beads to improve the gastrointestinal survival and thermal stability. J. Sci. Food Agric. 2023, 103,
3427–3436. [CrossRef]

138. Mardani Ghahfarokhi, V.; Pescarmona, P.P.; Euverink, G.-J.W.; Poortinga, A.T. Encapsulation of Lactobacillus casei (ATCC 393) by
Pickering-Stabilized Antibubbles as a New Method to Protect Bacteria against Low pH. Colloids Interfaces 2020, 4, 40. [CrossRef]

139. Pandey, P.; Mettu, S.; Mishra, H.N.; Ashokkumar, M.; Martin, G.J.O. Multilayer co-encapsulation of probiotics and γ-amino
butyric acid (GABA) using ultrasound for functional food applications. LWT Food Sci. Technol. 2021, 146, 111432. [CrossRef]

140. Mahmoodi Pour, H.; Marhamatizadeh, M.H.; Fattahi, H. Encapsulation of Different Types of Probiotic Bacteria within Conven-
tional/Multilayer Emulsion and Its Effect on the Properties of Probiotic Yogurt. J. Food Qual. 2022, 2022, e7923899. [CrossRef]
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