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Abstract: In this study, we designed a novel electrochemical sensor by modifying a glass carbon
electrode (GCE) with Pd confined mesoporous carbon hollow nanospheres (Pd/MCHS) for the
simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The structure and
morphological characteristics of the Pd/MCHS nanocomposite and the Pd/MCHS/GCE sensor are
comprehensively examined using SEM, TEM, XRD and EDX. The electrochemical properties of the
prepared sensor are investigated through CV and DPV, which reveal three resolved oxidation peaks
for AA, DA, and UA, thereby verifying the simultaneous detection of the three analytes. Benefiting
from its tailorable properties, the Pd/MCHS nanocomposite provides a large surface area, rapid
electron transfer ability, good catalytic activity, and high conductivity with good electrochemical
behavior for the determination of AA, DA, and UA. Under optimized conditions, the Pd/MCHS/GCE
sensor exhibited a linear response in the concentration ranges of 300–9000, 2–50, and 20–500 µM for
AA, DA, and UA, respectively. The corresponding limit of detection (LOD) values were determined
to be 51.03, 0.14, and 4.96 µM, respectively. Moreover, the Pd/MCHS/GCE sensor demonstrated
outstanding selectivity, reproducibility, and stability. The recovery percentages of AA, DA, and UA in
real samples, including a vitamin C tablet, DA injection, and human urine, range from 99.8–110.9%,
99.04–100.45%, and 98.80–100.49%, respectively. Overall, the proposed sensor can serve as a useful
reference for the construction of a high-performance electrochemical sensing platform.

Keywords: electrochemical sensor; Pd/MCHS; ascorbic acid; dopamine; and uric acid

1. Introduction

Ascorbic acid (AA), dopamine (DA), and uric acid (UA) are small bioactive molecules
that are widely distributed in human blood, urine, and the central nervous system, playing
a crucial role in human metabolism and the circulatory system [1–3]. AA, as an antioxidant,
participates in various biological reactions and is used as a therapeutic agent for scurvy,
acquired immune deficiency syndrome (AIDS), and cancers [4–6]. DA is an excitatory
neurotransmitter, regulating endocrine as well as mental and physical activities. A lack
of DA can cause heart disease, Parkinson’s disease, and other neurological diseases in
humans [7,8]. UA is the primary end product of the metabolic breakdown of purine
nucleotides, and it is one of the most important antioxidants in human fluids, such as urine
and serum. Excessive UA in the human body can cause several diseases, such as gout,
hypertension, arthritis, and hyperuricemia [9–11]. Therefore, there is an urgent need to
develop a rapid, sensitive, and reliable method for the simultaneous detection of AA, DA
and UA, considering their concurrent presence in physiological processes [12–15].

Until now, numerous analytical techniques have been applied for the detection of
AA, DA, and UA, such as fluorescence spectroscopy [16,17], colorimetry [18,19], capillary
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electrophoresis [20,21], and high-performance liquid chromatography [22]. Despite achiev-
ing excellent reproducibility, wide detection range, and high accuracy, these conventional
methods require complex separation processes, a high level of professionalism, and time-
consuming procedures, limiting their broader application. By contrast, the electrochemical
methods offer numerous advantages, including simple operation, rapid response, high
sensitivity, low cost, and high feasibility, demonstrating their potential in the rapid de-
tection of trace target molecules [23–25]. However, when AA, DA, and UA coexist in a
sample, their oxidation peak potentials usually overlap when using bare glassy carbon
electrode (GCE), so it is difficult to detect them simultaneously. To address this issue,
novel electrode materials have been developed by modifying GCE for the distinguishing of
these three analytes, such as metal oxide/carbon composite material [26], nitrogen–carbon
material [27], and carbon matrix composite material [28].

A mesoporous carbon hollow sphere (MCHS) is a three-dimensional carbon material
with large cavities and porous carbon shells, exhibiting uniform geometry, tunable porosity,
a large surface area, and small particle size [29,30]. Consequently, it has been widely
applied in catalysis [31], supercapacitors [32], drug release [33], batteries [34], and energy
storage [35]. Palladium (Pd) nanoparticles, as noble metal nanomaterials, have garnered
considerable research interest owing to their excellent catalytic activity, cost-effectiveness,
and abundant availability. Nonetheless, the small size of Pd nanoparticles increases their
surface free energy, causing their aggregation into larger nanoparticles. This leads to a
significant decline in both the catalytic activity and stability of the resultant nanocom-
posite [36,37]. In the structure, metallic Pd nanoparticles are dispersed in the network of
an MCHS, which not only affords a boost to conductivity but also greatly alleviates the
aggregation of active sites. Simultaneously, the unique hollow structure facilitates the
efficient mass transport and shortens the transmission path of electrons in the nanocom-
posite. Notably, nitrogen atoms within the MCHSs expose additional active sites that
coordinate with Pd nanoparticles, forming robust Pd–N bonds [38]. This ensures the tight
anchoring of Pd nanoparticles, endowing the nanocomposite with exceptional stability and
electrochemical performance [39,40]. This feature can be helpful in the detection of AA, DA,
and UA. However, to the best of our knowledge, the modification of GCE with a Pd-doped
MCHS (Pd/MCHS) to realize the simultaneous determination of the three analytes has not
yet been reported.

In this study, we applied a GCE modified with a Pd/MCHS nanocomposite for the
concurrent detection of AA, DA, and UA. The distinctive hollow cavity structure of an
MCHS not only facilitated the uniform dispersion of Pd nanoparticles but also prevented
their aggregation during the fabrication process. The prepared Pd/MCHS/GCE sensor
exhibited excellent sensitivity and selectivity in the individual detection of each analyte as
well as in the simultaneous detection of the triad. According to the above considerations,
the electrochemical sensor based on the Pd/MCHS nanocomposite proposed in this paper
provides an efficient and sensitive method for the detection of biological small molecules,
broadens the application range of the Pd/MCHS nanocomposite, and enriches the sensing
mechanism in the field of biological sensors.

2. Results and Discussion
2.1. Characterization of Pd/MCHS

SEM and TEM were used to reveal the microscopic morphologies of the Pd/MCHS/GCE
and Pd/MCHS nanocomposites. The SEM image in Figure 1a shows that the Pd/MCHS/GCE
has regular spherical morphology with a rough surface. The electrode surface appears
as a broken ball, indicating that the nanocomposite has a hollow mesoporous structure
with a size of approximately 345 nm, which contains uniformly dispersed Pd nanopar-
ticles [41]. This arrangement significantly enhances the surface area of the Pd/MCHS
material. According to the TEM image in Figure 1b, the Pd/MCHS nanocomposite exhibits
a uniform spherical structure, where the diameter of spheres is approximately 362 nm, the
diameter of the hollow structure is approximately 220 nm, and the thickness of the porous
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carbon shell is approximately 71 nm. Moreover, the Pd nanoparticles are evenly distributed
within the MCHS material, avoiding particle aggregation, which highlights the outstanding
anchoring capability of an MCHS. Notably, the hollow carbon nanosphere structure of
the Pd/MCHS nanocomposite provides additional active sites through radical channels,
facilitating electrode/electrolyte contact and enhancing the electrochemical performance of
the prepared sensor [35].
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In the high-resolution TEM (HRTEM) image of the Pd/MCHS nanocomposite (Figure 1c),
an obvious interplanar spacing of 0.23 nm, corresponding to Pd (111), is observed for the
ultrafine Pd nanoparticles. This indicates a face-centered cubic (fcc) structure of the Pd
crystal lattice [29,42]. The elemental distribution of the Pd/MCHS nanocomposite was
examined through EDS. The element mapping images in Figure 1d–g verify the homo-
geneous distribution of C, O, N, and Pd across the Pd/MCHS framework. Remarkably,
the Pd nanoparticles are uniformly dispersed in the Pd/MCHS nanocomposite without
any aggregation. These findings validate the successful synthesis of finely dispersed Pd
nanoparticles firmly anchored onto the electrocatalytic substrate.

The crystal structure of the Pd/MCHS nanocomposite was examined by XRD, and
the results are shown in Figure 2. The sample exhibits a distinct diffraction peak at 24.6◦,
which is attributed to the (002) facet of graphitic carbon, confirming the presence of an
amorphous structure. Furthermore, the fcc structure of the Pd crystal is confirmed by the
diffraction peaks at 40.0◦, 46.0◦, and 68.0◦, corresponding to the (111), (200), and (220)
facets, respectively [43].

XPS was employed to further verify the successful fabrication of the Pd/MCHS
nanocomposite. The peaks corresponding to C, N, and Pd are evident in the XPS spectrum
of nanocomposite (Figure 3a). The results were consistent with the EDS elemental mapping.
The high-resolution C 1s spectrum shows distinct peaks corresponding to different carbon
bonds: sp2 C=C at 284.6 eV, C-N at 285.4 eV, C=O at 286.9 eV, and COOH at 289.5 eV
(Figure 3b). Furthermore, the N 1s spectra exhibits discernible peaks representing pyridinic
N (397.58 eV), Pd–N (399.5 eV), pyrrolic N (400.54 eV), and oxidized nitrogen species
(405.3 eV) (Figure 3c). Notably, the interaction between pyridine N and Pd nanoparticles
(Pd–N) is strong, which is ascribed to the more negative charges and diffuse orbitals
associated with pyridine N. This interaction can effectively prevent the agglomeration
of Pd nanoparticles, thereby enhancing the electrocatalytic activity and stability of the
Pd/MCHS nanocomposite. The Pd 2p spectrum reveals a pair of peaks at 335.6 and
341.0 eV, which correspond to the metallic Pd (PdO) in the Pd/MCHS nanocomposite.
Additionally, the peaks at 338.0 and 343.3 eV are attributed to the Pd–N interaction or PdO
species (Figure 3d) [39].
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2.2. Electrochemical Behavior of the Pd/MCHS/GCE Sensor

CV was employed to assess the interfacial charge transfer properties of GCE and the
Pd/MCHS/GCE sensor. As illustrated in Figure 4a, distinct redox peaks are evident in
the CV curve of unmodified GCE, which indicates the quasi-reversible electrochemical
response of Fe(CN)6

3−/4−. The modification of the GCE surface with Pd/MCHS results in
a significant increase in the redox peak current. This suggested that the Pd/MCHS/GCE
sensor had a large electrochemical active area, which can be ascribed to the synergistic
effect of MCHS and Pd nanoparticles in promoting the electron transfer ability.

EIS is an effective method for evaluating the electrochemical features of a sensor by
monitoring the changes in the charge transfer resistance (Rct) on the electrode surface.
As shown in Figure 4b, an obvious semicircle is observed in the high frequency region of
GCE. After the modification with the Pd/MCHS material, the semicircle diameter notably
decreases. This reduction can be attributed to the enhanced electrical conductivity of the
Pd/MCHS nanocomposite, facilitating the transfer of electrons in the redox reaction. The
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EIS curves are in agreement with the CV results, further verifying the successful assembly
of the proposed electrochemical sensor.
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Figure 4. CV (a) and EIS (b) curves of GCE and Pd/MCHS GCE sensor in 0.1 M of KCl solution
containing 5 mM [Fe(CN)6]3−/4−: (i) bare GCE; (ii) Pd/MCHS/GCE sensor. (c) CV curves of 1000 µM
AA (ii), 40 µM DA (iii), 80 µM UA (iv), and mixed solution of 1000 µM AA, 40 µM DA, 80 µM UA in
0.1 M PBS (pH 3.0) at GCE (i) and Pd/MCHS/GCE sensor (v).

The individual electrochemical behaviors of AA, DA, and UA on the Pd/MCHS/GCE
sensor were investigated by CV (Figure 4c). In the mixed solution of AA (1000 µM), DA
(40 µM), and UA (80 µM), the oxidation peaks are located at 0.126, 0.396, and 0.54 V,
respectively. Under an AA concentration of 1000 µM, the observed oxidation peak was
chemically irreversible, which was attributed to the transformation of the hydroxyl group
into a carbonyl group in the furan ring of AA. This oxidation pathway of AA can be ex-
pressed by the following equation R1 (Figure 5). Similarly, in 0.1 M PBS solution containing
40 µM DA, a distinctive pair of redox peaks is observed, indicative of the two-electron
oxidation of DA to dopamine quinone, which is subsequently reduced back to DA. This
redox transformation was shown in equations R2. In addition, in a 0.1 M PBS solution
containing 80 µM UA, well-defined oxidation peaks are observed. The CV curve elucidates
that UA is oxidized to a quinonoid form, and the corresponding oxidation pathway was
presented in equation R3 [44,45]. Thus, the Pd/MCHS/GCE sensor demonstrates excellent
ability for the simultaneous determination of the three analytes of interest.
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Figure 5. Electrochemical response of AA, DA, and UA on the Pd/MCHS/GCE sensor.

The dynamic surface area of GCE and the Pd/MCHS/GCE sensor was calculated
by using Randles–Sevcik equation (Ip = (2.69 × 105) n3/2A D0

1/2v1/2c0
∗) (where n is the

number of electrons involved in the reaction, i.e., equal to 1, A is effective area of electrode,
D0 is diffusion coefficient (for K3[Fe(CN)6] is 7.6 × 10−6 cm2/s, v is scan rate and c0

∗

is concentration of K3[Fe(CN)6] (1.0 mM)). From the slope of the plot seen in Figure 6,
Ip = f (v1/2), the effective surface area of GCE and the Pd/MCHS/GCE sensor were found
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to be 0.0206 and 0.115 cm2. The effective surface area of the proposed sensor was obviously
increased, which is conducive to the enrichment of target molecules on the sensor, the
occurrence of electrochemical reactions, and the sensitive detection of small biological
molecules [46–48].
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The recognition mechanism of the Pd/MCHS/GCE sensor for the three target molecules
is described as follows. The Pd/MCHS nanocomposite can provide abundant surface ac-
tive sites, increase the collision probability between materials and target molecules, and
finally enhance the detection signal of target molecules. Furthermore, the N doping in
the Pd/MCHS nanocomposite improves the catalytic activity and biocompatibility of the
materials, so that the electrons can be efficiently transferred between the Pd/MCHS/GCE
sensor and the target molecules, which is conducive to the sensitive detection of AA, DA,
and UA. The Pd/MCHS nanocomposite provides a favorable microenvironment to the
target analyte. A small amount of AA, DA, and UA can trigger the composite to release a
large number of signal molecules, resulting in a strong response signal, thereby achieving
the rapid detection of AA, DA, and UA.

2.3. Optimization of Experimental Conditions
2.3.1. Effect of Different Buffer Solutions

The electrochemical behavior of AA, DA and UA on the Pd/MCHS/GCE sensor
depends on various factors, such as the type of supporting buffer solution, pH value, the
amount of Pd/MCHS nanocomposite, and scan rate. To obtain the optimal supporting
buffer solution, the CV method was utilized to examine the oxidation behavior of AA, DA,
and UA in PBS (i), citric acid-sodium citrate buffer solution (ii), Britton–Robinson (B–R)
solution (iii), acetic acid sodium acetate buffer solution (ABS) (iv), and glycine-hydrochloric
acid buffer solution (v), and the results are shown in Figure 7. Compared with the other four
buffer solutions, PBS exhibited the highest electrochemical response in the detection of AA,
DA and UA, and the corresponding peak currents are 36.24, 44.08, and 48.43 µA, respectively.
Therefore, PBS was chosen as the buffer solution in the subsequent measurements.
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Figure 7. Effect of supporting electrolyte type on the sensor response: (i) PBS, (ii) citric acid-sodium
citrate buffer solution, (iii) Britton–Robinson (B–R) solution, (iv) ABS, and (v) glycine-hydrochloric
acid buffer solution.

2.3.2. Effect of pH

The impact of buffer pH on the current response of the Pd/MCHS/GCE sensor for the
determination of 1000 µM AA, 40 µM DA, and 80 µM UA, was systematically investigated
over a range of pH values from 2.5 to 5, and the results are shown in Figure 8a. It can
be seen in Figure 8b that the peak potential (Ep) exhibited a discernible negative shift
as the pH of the electrolyte increases. This indicated a concurrent electron and proton
transfer during the electrochemical oxidation reaction [49,50]. The relationship between
Ep and pH can be expressed as follows: Ep (V) = 0.0503 pH + 0.294 (R2 = 0.995) for AA,
Ep (V) = 0.0347 pH + 0.513 (R2 = 0.995) for DA, and Ep (V) = 0.0383 pH + 0.668 (R2 = 0.993)
for UA. Figure 8c further illustrates that the peak currents of these analytes depend on the
pH value of the buffer solution. Consequently, 0.1 M PBS at pH 3.0 was selected as the
supporting electrolyte solution for this experiment.
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Figure 8. (a) CV curves for the oxidation of AA (1000 µM), DA (40 µM), and UA (80 µM) on the
Pd/MCHS/GCE sensor under various pH values ranging from 2.5 to 5 (a–f); (b) influence of pH on
the oxidation peak potentials; (c) influence of pH on the oxidation peak current: (i) AA; (ii) DA, and
(iii) UA.

2.3.3. Effect of the Amount of Pd/MCHS

The optimal loading amount of Pd/MCHS material on the GCE electrode was investi-
gated through seven control experiments using different amounts of Pd/MCHS (2, 4, 6, 8,
10, 12, and 14 µL). It can be seen in Figure 9 that, as the amount of Pd/MCHS increases, the
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peak current of AA, DA, and UA grows dramatically and reaches its maximum value at
6 µL. Then, the current response rapidly decreases with a further increase in the amount
of Pd/MCHS. This may be because the elevated amount of Pd/MCHS leads to its aggre-
gation, which hinders the interfacial transport of electrons. These results suggested that
6 µL was the optimal amount of Pd/MCHS for the oxidation of AA, DA, and UA on the
Pd/MCHS/GCE sensor.
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Figure 9. (a) CV curves for the oxidation of AA (1000 µM), DA (40 µM), and UA (80 µM) on the
Pd/MCHS/GCE sensor under different amounts of modifier ranging from 2 µL to 14 µL (a–g).
(b) Effect of the amount of Pd/MCHS dispersion on the oxidation peak current: (i) AA, (ii) DA, and
(iii) UA.

2.3.4. Effect of Scan Rate

Figure 10a shows the electrochemical response of the Pd/MCHS/GCE sensor in 0.1 M
PBS (pH 3.0) solution containing 1000 µM AA, 40 µM DA, and 80 µM UA at different
scan rates. As the scan rate increases from 10 to 250 mV·s−1, both oxidation and reduction
peak currents increase linearly. Figure 10b–d displays the linear relationship between the
peak current (I) and scan rate (v), which can be described using the following regression
equations: IAA = 0.283 CAA + 15.923 (R2 = 0.999), IDA = 0.612 CDA + 0.011 (R2 = 0.999), and
IUA = 0.506 CUA + 3.541 (R2 = 0.999). These findings indicated that the electrochemical
oxidation process of the Pd/MCHS/GCE sensor toward AA, DA, and UA follows a surface-
controlled mechanism [51].
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The above experiments were used to determine the optimal conditions for the applica-
tion of the Pd/MCHS/GCE sensor in the electrochemical detection of AA, DA, and UA.

2.3.5. Selection of Analytical Method

In order to select the best technique method, square wave voltammetry (SWV) and differ-
ential pulse voltammetry (DPV) were used to investigate the effects of the Pd/MCHS/GCE
sensor with an AA, DA and UA mixed solution, and the obtained signals are shown in
Figure 11. The working parameters of SWV were as follows: the amplitude was 25 mV, the
frequency was 15 Hz; the DPV had an amplitude of 50 mV and a pulse width of 200 mV.
Because the three compounds exhibited higher peak currents and better peak shape in
when separated further and further, DPV was used to analyze AA, DA, and UA in the
following experiments.
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2.4. Individual and Simultaneous Determination of AA, DA, and UA

DPV with high sensitivity and resolution was employed for the determination of
AA, DA, and UA under optimal conditions. As depicted in Figure 12a,c,e, when keep-
ing the concentrations of the two analytes constant while increasing the concentration
of the third analyte, a consistent variation in the peak current value of the third ana-
lyte was observed. As seen in Figure 12b,d,f, the linear relationship between the peak
current value (Ip) and concentration (C) can be described by the following equations:
Ip (µA) = 0.00269 CAA (µM) + 15.940, Ip (µA) = 2.644 CDA (µM) − 1.757, Ip (µA) = 1.145 CDA
(µM) + 14.436, and Ip (µA) = −0.198 CUA (µM) + 0.039. The limit of detection (LOD) values
were calculated to be 31.10, 0.036, and 5.00 µM, respectively.

When varying the AA concentration and keeping the DA and UA concentrations
constant, AA is more likely to form a stable adsorption layer in the Pd/MCHS/GCE sensor.
DA and UA will compete with AA for the adsorption site on the sensor, and continue to be
crowded out, affecting their mass transmission and diffusion behavior, which resulted in
its peak current increasing with the change of concentration. The same current changes
occurred when DA and UA concentrations change.

Furthermore, the concurrent detection of AA, DA and UA with different concentrations
was thoroughly examined under the optimal experimental conditions. Figure 13 shows the
variation in the current response as a function of the concentrations of AA, DA, and UA.
The linear concentration ranges for AA, DA, and UA were determined to be 300–9000 µM,
2–50 µM, and 20–500 µM, with LOD values of 51.00, 0.14, and 4.96 µM, respectively. These
findings demonstrated that the Pd/MCHS/GCE sensor can accurately determine AA, DA,
and UA.
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Figure 12. DPV curves of Pd/MCHS/GCE sensor in PBS (pH = 3.0, 0.1 M) solution containing
(a) 10 µM DA, 200 µM UA, and different con-centrations of AA from 500 to 9000 µM; (c) 1000 µM AA,
200 µM UA, and different concentrations of DA from 0.5–10 µM to 10–50 µM; (e) 1000 µM AA, 10 µM
DA, and different concentrations of UA from 8 to 450 µM. A linear relationship is observed between
Ip and the corresponding concentration (C) of (b) AA, (d) DA, and (f) UA.
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Figure 13. (a) DPV curves of Pd/MCHS/GCE sensor in PBS (pH = 3.0, 0.1 M) solution containing
300–9000 µM AA, 2–50 µM DA, and 20–500 µM UA. A linear relationship is observed between the
peak current (Ip) and concentration (C) of (b) AA, (c) DA, and (d) UA.
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A comparative analysis with other sensors revealed that the Pd/MCHS/GCE sensor
exhibited a desirable linear range for the measurement of AA, DA, and UA (Table 1).
Notably, the proposed sensor demonstrated a relatively lower LOD, which is attributed to
the abundant surface active sites, excellent electrical conductivity, and suitable N doping in
the Pd/MCHS nanocomposite. Overall, with a straightforward electrochemical assembly
strategy, a novel sensing platform with a Pd/MCHS modified electrode can be constructed,
which displayed remarkable performance for the detection of AA, DA, and UA.

Table 1. Comparison between the electrochemical performance of the proposed and other reported
electrode sensors for the detection of AA, DA, and UA.

Electrode
Linear Range (µM) Limit of Detection (µM)

Refs.
AA DA UA AA DA UA

MWCNT-PEDOT/GCE 100–2000 10–330 10–250 100 10 10 [28]
ERGO/GCE 500–2000 0.5–60 0.5–60 250 0.5 0.5 [52]

Bare GCE 0–190 0–160 0–100 7.66 11.34 5.63 [53]
SDS/CPE - 10–196 60–654 - 7.71 35.88 [54]
GEF/CFE 73.52–2305.53 1.36–125.69 3.98–371.49 73.52 1.36 3.98 [55]

Au-RGO/GCE 240–1500 6.8–41 8.7–53 51 1.4 1.8 [56]
Pd/MCHS/GCE a 500–9000 0.8–50 8–450 31.10 0.036 5.00 This work
Pd/MCHS/GCE b 300–9000 2–50 20–50 51.00 0.14 4.96 This work

a Individual analysis; b Simultaneous analysis.

2.5. Reproducibility, Stability, and Anti-Interference Performance of Pd/MCHS/GCE Sensor

The reproducibility and stability of the Pd/MCHS/GCE sensor were investigated in a
0.1 M PBS solution with a pH of 3.0, containing 1000 µM AA, 40 µM DA, and 80 µM UA
using DPV technology under the optimal conditions. The reproducibility of the sensor was
evaluated by fabricating six identical modified electrodes for the mixed solution, ensuring
consistency in the manufacturing process. As shown in Table 2, the average relative
standard deviation (RSD) for AA, DA, and UA are 4.60%, 1.96%, and 2.82%, respectively,
signifying the excellent reproducibility of the Pd/MCHS/GCE sensor. Furthermore, the
fabricated sensor was maintained at 4 ◦C for 10 days to evaluate its stability, and the current
response of the electrode was randomly monitored at 1, 3, 5, 7, and 10 days. As shown in
Figure 14, after storage for 10 days, the peak current density of AA, DA, and UA decreased
by only 12.64%, 12.40%, and 10.83%, respectively, verifying the excellent stability of the
Pd/MCHS/GCE sensor.

Table 2. Oxidation currents of 1000 µM AA, 40 µM DA, and 80 µM UA with six independent sensors.

i1 (µA) i2 (µA) i3 (µA) i4 (µA) i5 (µA) i6 (µA) RSD (%)

AA 30.84 32.73 33.00 34.72 34.54 34.67 4.60
DA 50.90 49.96 50.25 48.46 48.75 48.92 1.96
UA 52.14 51.89 51.23 49.95 49.58 48.53 2.82

To confirm the high selectivity of the Pd/MCHS/GCE sensor for the determination
of AA, DA, and UA, the recognition performance of the sensor for different substances
(KNO3, Na2SO4, Ca(NO3)2, sucrose, citric acid, and glucose) was investigated under a
voltage of 0.1 V (AA), 0.4 V (DA), and 0.55 V (UA), and the results were shown in Figure 15.
Compared to the current signal obtained from AA (1000 µM), DA (30 µM), and UA (30 µM),
the interfering species (2000 µM) do not induce an obvious current response. Due to the
attractive electronic properties and high catalytic activity of the Pd/MCHS nanocomposite,
it can provide electron tunneling, enabling electrons to transfer between the active site of
the nanocomposite and the Pd/MCHS/GCE sensor, and can selectively improve the mass
diffusion of the target molecule, so that the constructed electrochemical sensor shows a
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highly sensitive and selective electrochemical sensing performance in the detection of AA,
DA and UA.
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The amperometry method is an electrochemical method for the quantitative analysis of
electrochemically active substances by applying a constant potential to the study electrode.
Because this method can maintain constant potential and reduce the influence of the double
layer charging current, it is often used to detect real samples. Therefore, it was used to detect
AA, DA, and UA in a vitamin C tablet, DA injection, and human urine to assess the practical
feasibility of the Pd/MCHS/GCE sensor. The specific parameters were set as follows: the
initial potential was 0.55 V, the sampling interval was 0.1 s, and the sampling time was
1600 s. As shown in Figure 16, the recoveries were calculated based on the relationship
between ∆C and ∆I. The average recoveries of AA, DA, and UA in the Pd/MCHS/GCE
sensor were 99.8–110.9%, 99.04–100.45%, and 98.80–100.49%, respectively.

In order to verify the reliability of the electrochemical sensor method, the data of
real samples detected using a UV–Vis spectrophotometer were used for comparison. The
maximum absorption wavelengths of ascorbic acid and uric acid were 280 nm and 400 nm,
respectively. By drawing standard curves and adopting a standard addition method,
the recoveries of ascorbic acid and uric acid were in the range of 98.10–100.25% and
100.36–101.82% (Table 3), respectively, which was consistent with the data of real samples
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detected using the electrochemical sensor method, indicating that the electrochemical
detection of AA, DA and UA contents in real samples had strong feasibility.
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Table 3. Results of recoveries of AA and UA in real samples using UV–Vis spectrophotometer.

Samples Detected Found Recovery (%)

AA (µg) UA (µM) AA (µg) UA (µM) AA DA

1 10 2.79 9.81 ± 0.23 2.80 ± 0.13 98.10 100.36
2 12 2.99 12.03 ± 0.35 3.02 ± 0.18 100.25 101.00
3 15 3.29 14.93 ± 0.44 3.35 ± 0.22 99.53 101.82
4 20 3.79 20.03 ± 0.52 3.82 ± 0.31 100.15 100.79

3. Experimental Section
3.1. Chemicals and Materials

AA, DA, UA, citric acid, calcium nitrate, sucrose, glucose, SiO2, Na2PdCl4, sodium
hydroxide (NaOH), resorcol, formaldehyde, and tetraethyl orthosilicate (TEOS) were
purchased from Shanghai Macklin Biochemical Co., Ltd. Sodium hydrogen phosphate
(Na2HPO4), sodium dihydrogen phosphate (NaH2PO4), phosphoric acid (H3PO4), am-
monia (NH3·H2O), anhydrous alcohol (C2H6O), potassium nitrate (KNO3), and sodium
sulfate (Na2SO4) were procured from Tianjin Deen Chemical reagent Co., Ltd., Tianjin,
China. Al2O3 power and all electrodes were purchased from Shanghai Xianren Instrument.
All the chemicals and reagents are of analytical grade and used as received without fur-
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ther purification. Ultrapure water with a resistivity of 18.2 MΩ cm was used throughout
the experiment.

3.2. Synthesis of Pd/MCHS Nanocomposite

Firstly, the Pd/MCHS nanocomposite was synthesized according to our previous
report. Briefly, 400 mg SiO2 was dissolved into a solution of ethanol (70 mL), H2O (10 mL),
and NH3·H2O (3 mL) under magnetic stirring for 30 min. Next, Na2PdCl4 (0.265 g) was
added in the above solution and stirred for 1 h at 300 rpm. Subsequently, resorcol (0.4 g),
formaldehyde (0.56 mL), and tetraethyl orthosilicate (TEOS) (3.46 mL) were added in the
solution, and the reaction mixture was continuously stirred for 24 h. After the completion
of the reaction, the mixture was consecutively washed with ethanol and ultrapure water to
remove the impurities and by-products. Then, the resulting black precipitate was dried
overnight at 60 ◦C under vacuum. The obtained precursor was heated to 800 ◦C for 2.5 h
in an Ar atmosphere at a rate of 2 ◦C/min. The silica template was removed with NaOH
(20%) to obtain the final product, denoted as Pd/MCHS [57].

3.3. Characterization and Electrochemical Methods

The morphology of the samples was examined using field emission scanning electron
microscopy (FE-SEM; JSM-7610FPlus microscope, JEOL, Tokyo, Japan) and transmission
electron microscopy (TEM; Talos F200i microscope, FEI, Hillsboro, OR, USA). The ele-
mental composition and chemical states were investigated through X-ray photoelectron
spectroscopy (XPS; Thermo Scientific ESCALAB 250Xi). The crystallographic information
was obtained using X-ray diffraction (XRD; Rigaku D/Max-2400). The electrochemical
measurements were performed using a CHI 660E electrochemical analyzer with a three-
electrode system. A saturated calomel electrode (SCE) and a platinum wire were used
as the reference and auxiliary electrodes, respectively, and either GCE or the modified
Pd/MCHS/GCE was used as the working electrode. Cyclic voltammetry (CV) and differen-
tial pulse voltammetry (DPV) curves were recorded within the potential range of 0.2 to 0.8 V.
The electrochemical impedance spectroscopy (EIS) tests were conducted in a 0.1 M KCl
solution containing 5 mM Fe(CN)6

3−/4− in the frequency range of 0.01–100 Hz. Further-
more, the amperometric response (I-t) curves were generated to assess the anti-interference
capability and conduct real sample analysis. These experiments were performed at con-
stant potentials of 0.1 V (AA), 0.42 V (DA), and 0.55 V (UA) under magnetic stirring at
50 rpm/min.

3.4. Analysis of Real Samples

Vitamin C tablets and DA injection solution were procured from a local pharmacy,
while the UA sample was obtained from a sophomore student at Henan University of
Science and Technology. The samples were prepared as follows. Firstly, 0.1 g of the vitamin
C tablet was ground and dissolved in 10 mL phosphate-buffered saline (PBS) solution to
obtain the actual AA sample. The 20 mg/2 mL DA injection solution and the urine sample
were each subjected to a tenfold dilution with 0.1 M PBS (pH = 3.0), without undergoing
additional treatment. To obtain the content of AA, DA, and UA in the actual samples,
the standard addition method was employed. The recovery percentages were calculated
as follows: Recovery (%) = (found/added) × 100%. This approach ensured a rigorous
quantitative assessment of the targeted analytes in the real-world samples.

3.5. Preparation of Modified Electrode

Firstly, the bare GCE was polished with 1 µm and 0.05 µm Al2O3 powders, followed by
ultrasonic cleaning with 0.5 M H2SO4 and anhydrous ethanol, respectively. Subsequently,
1 mg Pd/MCHS was sonicated in a solution containing 0.5 mL distilled water, 0.5 mL
anhydrous ethanol, and 6 µL Nafion for 10 min to prepare a homogeneous suspension.
Then, the homogeneous suspension (6 µL, 1 mg/mL) was dropped on the pretreated GCE
and dried using an infrared lamp to prepare the Pd/MCHS/GCE sensor. The preparation
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process of the Pd/MCHS/GCE sensor as well as the simultaneous detection of AA, DA,
and UA using the fabricated sensor were illustrated in Scheme 1.
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4. Conclusions

Our study has demonstrated the remarkable properties of the Pd/MCHS/GCE sensor
in the molecular recognition of AA, DA and UA, providing a promising avenue for future
research. The synergistic combination of MCHS and Pd has contributed to the excellent
sensing performance of the electrode sensor and provided a reference approach for the elec-
trochemical detection of small biological molecules. In addition, the non-toxic, profitable
and environmentally friendly process further increased the appeal of this new sensing
platform. Future studies can focus on the stability and repeatability of these electrochem-
ical sensors over long periods of time and under complex environmental conditions. In
addition, we can expand the performance of the Pd/MCHS/GCE sensor in serum and
clinical sample applications to provide data references for clinical applications.
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