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Abstract: β-halogenated enol esters and ethers are versatile building blocks in organic synthesis,
which has attracted increasing attention. In this study, we report the facile trans-oxyiodination
and oxychlorination of alkynes, leading to the direct construction of versatile halogenated enol
esters and ethers. This transformation features an easy operation, optimal atomic economy, a strong
functional group tolerance, broad substrate scope, and excellent trans-selectivity. Employing highly
electrophilic bifunctional N–X (halogen) reagents was the key to achieving broad reaction generality.
To our knowledge, this transformation represents the first oxyhalogenation system employing N–X
(halogen) reagents as both oxylation and halogenation sources.

Keywords: catalyst-free; oxyiodination; oxychlorination; alkynes; N–X (halogen) reagents

1. Introduction

Multi-substituted enol esters and ethers have been widely applied in natural prod-
ucts and bioactive molecules (Scheme 1A) [1–4]; they also serve as versatile building
blocks [5–11] in organic synthesis, medicinal chemistry, and polymer chemistry. Alkynes
are fundamental and easy-to-access starting materials in organic synthesis. The stereose-
lective installation of O-centered functional groups in alkynes has become an attractive
alternative for synthesizing enol esters/ethers. Despite the significance of hydroalkoxyla-
tion [12,13], the scope of alkynes has mainly been focused on terminal alkynes, which lead
to disubstituted enol esters/ethers. Introducing halogen atoms into organic molecules is
an important step in organic synthesis [14–21], as halogen groups could serve as versatile
synthetic handles for further transformations [22–24]. The oxyhalogenation of alkynes is a
straightforward route to β-halogenated enol esters and ethers by simultaneously installing
O-centered groups and halogen groups into C–C triple bonds. Considerable progress has
been achieved in the intramolecular oxyhalogenation of alkynes that were initiated through
nucleophilic cyclization, leading to the formation of halogenated O-containing heterocycles.
However, there are only a few existing examples of the intermolecular oxyhalogenation of
alkynes [25–32] via the employment of electrophilic halogenation reagents and additional
acid, alcohol, or phenol nucleophiles (Scheme 1B). Furthermore, intermolecular oxyhalo-
genation systems without additional nucleophiles have remained largely underdeveloped.
This core challenge could be attributed to a lack of efficient bifunctional oxyhalogenation
reagents. The development of novel bifunctional reagents, or exploring new reaction modes
of existing halogenation reagents, is highly desirable.
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kynes, delivering amino-halogenation products (Scheme 1C) [33–36]. In 1999, the Wille 
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Liu group [35] achieved the copper-catalyzed chloramination of terminal alkynes, leading 

to the regio- and stereoselective formation of (E)-β-Chloro-enesulfonamides. In 2014, the 

Liang and Zhang group [36] accomplished the cis-amino-halogenation of terminal alkynes 

with N-haloimides via alkynyl halide intermediates. N-iodosaccharin is a highly active 

electrophilic iodination source [37–42] due to the saccharin anion that is released; how-

ever, in previous reports, this reagent has never been employed as a bifunctional reagent. 

Inspired by reports that employ saccharin anions as O-centered nucleophilic source 

[43,44], here, we evaluate the possibility of employing N-iodosaccharins as novel bifunc-

tional oxyiodination reagents. Based on our previous works [45–52] on the development 

of sustainable transformations, we now report on the intermolecular oxyiodination and 

oxychlorination of alkynes that employ N-iodosaccharin or N-chlorobenzenesulfonimide 

(NCBSI) [53–55] as bifunctional reagents (Scheme 1D). 
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Scheme 1. Motivation for oxyhalogenation of alkynes.

On the other hand, N–X (halogen) reagents [14–17], such as NBS, NIS, or NFSI, are the
most significant electrophilic halogenation reagents with extremely important applications
in organic synthesis. They also serve as bifunctional reagents in addition to alkynes,
delivering amino-halogenation products (Scheme 1C) [33–36]. In 1999, the Wille and
Lüning group [34] achieved the radical amino-bromination of alkynes. In 2011, the Liu
group [35] achieved the copper-catalyzed chloramination of terminal alkynes, leading to the
regio- and stereoselective formation of (E)-β-Chloro-enesulfonamides. In 2014, the Liang
and Zhang group [36] accomplished the cis-amino-halogenation of terminal alkynes with N-
haloimides via alkynyl halide intermediates. N-iodosaccharin is a highly active electrophilic
iodination source [37–42] due to the saccharin anion that is released; however, in previous
reports, this reagent has never been employed as a bifunctional reagent. Inspired by reports
that employ saccharin anions as O-centered nucleophilic source [43,44], here, we evaluate
the possibility of employing N-iodosaccharins as novel bifunctional oxyiodination reagents.
Based on our previous works [45–52] on the development of sustainable transformations,
we now report on the intermolecular oxyiodination and oxychlorination of alkynes that
employ N-iodosaccharin or N-chlorobenzenesulfonimide (NCBSI) [53–55] as bifunctional
reagents (Scheme 1D).

2. Results and Discussions

We utilized 1-phenyl-1-pentyne (1a) and N-iodosaccharin (2a) as model substrates
to test the designed transformation. The oxyiodination of alkyne proceeded when 1a
(0.2 equiv) and 2a (1.0 equiv) in dichloromethane (DCM) were employed as the solvent,
yielding the corresponding product 3a in a 68% yield (Table 1, Entry 1). A simple adjust-
ment in the ratio of 1a and 2a improved the yield of product 3a by 86% (Entry 2). However,
further increasing the amount of 2a had no noticeable effect on the yield (Entry 3). Alter-
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native solvents were tested (Entries 4–8), and we found that dichloroethane (DCE) and
perfluorotoluene (PhCF3) exhibited a similar efficiency to DCM, while toluene and acetoni-
trile (CH3CN) provided substantially reduced yields. Methanol (MeOH) proved unsuitable
for this transformation. Importantly, the reaction could be conducted under ambient condi-
tions, providing oxyiodination products 3a in 86% yields (Entry 9). Remarkably, exclusive
regioselectivity and stereoselectivity were achieved in all cases.

Table 1. Optimization of intermolecular oxyiodination of alkynes.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 18 
 

 

in the ratio of 1a and 2a improved the yield of product 3a by 86% (Entry 2). However, 

further increasing the amount of 2a had no noticeable effect on the yield (Entry 3). Alter-

native solvents were tested (Entries 4–8), and we found that dichloroethane (DCE) and 

perfluorotoluene (PhCF3) exhibited a similar efficiency to DCM, while toluene and ace-

tonitrile (CH3CN) provided substantially reduced yields. Methanol (MeOH) proved un-

suitable for this transformation. Importantly, the reaction could be conducted under am-

bient conditions, providing oxyiodination products 3a in 86% yields (Entry 9). Remarka-

bly, exclusive regioselectivity and stereoselectivity were achieved in all cases. 

Table 1. Optimization of intermolecular oxyiodination of alkynes. 

 
Entry 2a Solvent Yield (%) a 

1 1.0 equiv DCM 68 

2 1.2 equiv DCM 86 

3 1.5 equiv DCM 85 

4 1.2 equiv CH3CN 13 

5 1.2 equiv DCE 80 

6 1.2 equiv Toluene 45 

7 1.2 equiv PhCF3 74 

8 1.2 equiv MeOH n.d. 

9 b 1.2 equiv DCM 86 

Reaction conditions: 1-1 (0.2 mmol), 2a, Solvents (2 mL), 25 °C, under N2 atmosphere for 6 h. a Yield 

of the isolated product based on 1-1. n.d. = not detected. b Reaction was carried out under air. 

Considering the easy operation, Table 1 Entry 9 was identified as the standard con-

dition to investigate the generality and limitation of the oxyiodination system. First, the 

substituent effect of the aryl group for aryl-substituted internal alkynes was investigated. 

The top section of Scheme 2 reveals that various aromatic internal alkynes bearing elec-

tron-donating (e.g., alkyl, tosylate, and methoxy), electron-withdrawing (such as trifluo-

romethyl, trifluoromethoxy, and ester carbonyl), and halogen groups were well tolerated, 

affording the desired iodinated enol ethers 3a-3j in moderate to high yields (52–91%). No-

tably, electron-donating groups in para-substituted internal aryl alkynes 1-2 and 1-3 ex-

hibited high reactivity (3b, 90%; 3c, 91%). However, strong electron-donating 1-methoxy-

4-(prop-1-yn-1-yl)benzene 1-4 provides 3d only in a moderate yield. Moreover, internal 

alkynes with an electron-withdrawing capacity at aromatic rings could deliver β-io-

dinated enol ethers with acceptable yields (3e-3g, 68–75%). This indicates a broad sub-

strate scope for alkynes. Meta- and ortho-substituted aryl alkynes were tolerated, forming 

3h and 3i in 69% and 81% yield, respectively. The structure of 3i was confirmed through 

X-ray single crystal diffraction (CCDC 2304082). Even di-substituted internal aryl alkyne 

was a suitable substrate for this transformation, affording enol ethers 3j in 73% yields. 

Naphthalene and heteroaromatics were compatible for this transformation, as identified 

by the formation of 3k and 3l. Then, the scope of aliphatic groups for aryl-substituted 

internal alkynes was evaluated, revealing the compatibility of alkyl (3m), chloride (3n, 

3o), strained rings (3p), and ether (3q). These substrates provided the corresponding prod-

ucts with 72–92% yields. In all cases, specific regio- and stereo-specificity were observed. 

In some cases, such as diaryl (3r) or dialkyl-substituted alkynes (3s, 3t), a reduced reaction 

efficiency was noted, despite their tolerance. In addition, terminal alkynes were used to 

explore the scope of this system further, delivering the desired enol ethers 3u and 3v in 

Entry 2a Solvent Yield (%) a

1 1.0 equiv DCM 68
2 1.2 equiv DCM 86
3 1.5 equiv DCM 85
4 1.2 equiv CH3CN 13
5 1.2 equiv DCE 80
6 1.2 equiv Toluene 45
7 1.2 equiv PhCF3 74
8 1.2 equiv MeOH n.d.

9 b 1.2 equiv DCM 86
Reaction conditions: 1-1 (0.2 mmol), 2a, Solvents (2 mL), 25 ◦C, under N2 atmosphere for 6 h. a Yield of the
isolated product based on 1-1. n.d. = not detected. b Reaction was carried out under air.

Considering the easy operation, Table 1 Entry 9 was identified as the standard con-
dition to investigate the generality and limitation of the oxyiodination system. First, the
substituent effect of the aryl group for aryl-substituted internal alkynes was investigated.
The top section of Scheme 2 reveals that various aromatic internal alkynes bearing electron-
donating (e.g., alkyl, tosylate, and methoxy), electron-withdrawing (such as trifluoromethyl,
trifluoromethoxy, and ester carbonyl), and halogen groups were well tolerated, affording
the desired iodinated enol ethers 3a-3j in moderate to high yields (52–91%). Notably,
electron-donating groups in para-substituted internal aryl alkynes 1-2 and 1-3 exhibited
high reactivity (3b, 90%; 3c, 91%). However, strong electron-donating 1-methoxy-4-(prop-
1-yn-1-yl)benzene 1-4 provides 3d only in a moderate yield. Moreover, internal alkynes
with an electron-withdrawing capacity at aromatic rings could deliver β-iodinated enol
ethers with acceptable yields (3e-3g, 68–75%). This indicates a broad substrate scope for
alkynes. Meta- and ortho-substituted aryl alkynes were tolerated, forming 3h and 3i in
69% and 81% yield, respectively. The structure of 3i was confirmed through X-ray single
crystal diffraction (CCDC 2304082). Even di-substituted internal aryl alkyne was a suitable
substrate for this transformation, affording enol ethers 3j in 73% yields. Naphthalene and
heteroaromatics were compatible for this transformation, as identified by the formation
of 3k and 3l. Then, the scope of aliphatic groups for aryl-substituted internal alkynes
was evaluated, revealing the compatibility of alkyl (3m), chloride (3n, 3o), strained rings
(3p), and ether (3q). These substrates provided the corresponding products with 72–92%
yields. In all cases, specific regio- and stereo-specificity were observed. In some cases,
such as diaryl (3r) or dialkyl-substituted alkynes (3s, 3t), a reduced reaction efficiency
was noted, despite their tolerance. In addition, terminal alkynes were used to explore the
scope of this system further, delivering the desired enol ethers 3u and 3v in 61% and 68%
yields, respectively. For 1,3-enynes, oxyiodination was preferred to occur at olefin units,
as identified by the formation of 4a. However, N-chlorosaccharin and N-bromosaccharin



Molecules 2023, 28, 7420 4 of 18

failed to deliver the desired oxyhalogenation products under standard conditions, likely
owing to their considerably low electrophilic reactivity.
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Scheme 2. Scope for anti-oxyiodination of alkynes. Reaction conditions: 1 (0.2 mmol), N-
iodosaccharin 2a (1.2 equiv), DCM (2 mL), r.t., 6 h. Yield of the isolated product. a 24 h. b 2a
(0.2 mmol) and 1 (1.2 equiv) was employed, and yield was calculated based on 2a.

We consider that the highly electron-deficient bisphenylsulfonimide may improve the
electrophilic activity of N–X (X: halogen) reagents, thereby promoting the formation of
halogenated products. Gratefully, when employing N-chlorobenzenesulfonimide (NCBSI)
as the chlorination reagent, we obtained trans-oxychlorination products in chloroform
under a N2 atmosphere (details for optimization conditions see Supplementary Materials,
Table S1). The scope of the oxychlorination of alkynes was subsequently examined, and
results are summarized in Scheme 3. The desired enol sulfinimidates (5a-5p) were obtained
in moderate-to-high yields with specific anti-selectivity. Internal aryl alkynes bearing
different aliphatic substituents, such as alkyl (5a-5f), bulky tertiary butyl (5d), and cy-
clopropyl (5e, 5f), were tolerated, delivering anti-oxychlorination products in 58–86%
yields. Terminal aryl alkyne was also suitable for this conversion, with 5g achieving an
81% yield. We next investigate the substituent effect of the aryl rings in internal alkynes
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for oxychlorination system. Aryl alkynes bearing electron-donating (5h), phenyl (5i), and
halogen (5j-5k) groups at the para-position, performed effectively (71–88%). Notably, the
structure of 5j was confirmed through X-ray single crystal diffraction (CCDC 1829383).
Meanwhile, the electron-withdrawing group, including ester carbonyl (5l), trifluoromethyl
(5m), and trifluoromethoxy (5n), that substituted aryl acetylenes generated a slightly low
yield (41–46%). Moreover, meta- and ortho-substituted aryl alkynes were applicable for the
reaction, delivering 5o and 5p in 54% and 46% yield, respectively.
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3. Mechanistic Investigation

Several preliminary mechanistic studies were conducted in order to shed insight onto
this transformation (Scheme 4A upper). The addition of radical scavengers, such as buty-
lated hydroxytoluene (BHT; 40 mol%) or 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO;
40 mol%), showed no considerable impact on the yields, indicating that the oxyiodination
may not proceed via a radical pathway. Competitive amino iodination products were
obtained for 1-methoxy-4-(prop-1-yn-1-yl)benzene 1-4 or styrene 1-32 (Scheme 4A lower,
Scheme 4B), indicating that there was equilibration between N-centered and O-centered
nucleophile. Moreover, it was found that styrene 1-32 exhibited a higher reactivity than
alkynes 1-17, which is consistent with their electrophilic reactivity (Scheme 4B). A plausible
mechanism was proposed based on the control experiment and on previous reports [45]
(Scheme 4C). The process begins with the selective coordination of alkyne triple bonds and
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halogenating reagents, generating a cyclic halonium onium intermediate A by releasing a
saccharin anion B1N or benzenesulfonamide anion B2N. The released B1N or B2N could
resonate to the O-centered nucleophiles B1O or B2O. Owing to its steric hindrance, halo-
nium onium intermediate preferred to be opened by O-centered nucleophiles, resulting in
anti-selective oxyhalogenation.
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4. Materials and Methods
4.1. Materials and Instruments

All chemicals were obtained from commercial sources and were used as they were
received, unless otherwise noted. All reactions were carried out using a test tube or a
pressure tube. The reactions were monitored with the aid of thin-layer chromatography
(TLC) on 0.25 mm precoated silica gel plates. Visualization was carried out with a UV light
and a aqueous potassium permanganate stain. Melting points were measured on Büchi
B-540 apparatus. NMR spectra were recorded on a 500 or 600 MHz NMR spectrometer
in the solvent indicated. The chemical shift is given in dimensionless δ values and is
frequency-referenced, relative to TMS in 1H and 13C NMR spectroscopy. HRMS data
were obtained on a Bruck microtof. Column chromatography was performed on silica gel
(200–300 mesh) using ethyl acetate/hexanes.

4.2. The General Procedure for the Synthesis of 3

The reaction tube equipped with a magnetic stir bar was charged with 2a (0.24 mmol,
74.1 mg), DCM (2 mL), and 1 (0.2 mmol). The test tube was then sealed off with a screw
cap, and the reaction mixture was stirred at room temperature for 6.0 or 24 h. After the
reaction was completed, as indicated by TLC analysis, the mixture was extracted using
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DCM (2 × 10 mL). The combined organic phases were dried over anhydrous Na2SO4,
and the solvent was evaporated under a vacuum. The residue was purified via column
chromatography (petroleum ether/ethyl acetate 10:1 (v/v)) to provide the corresponding
product 3.

(E)-3-((2-iodo-1-phenylpent-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3a

1-1 (0.2 mmol, 28.8 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3a (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), yellow
solid (83.7 mg, 86%), crystallization in CDCl3, mp. 140–142 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.86 (d, J = 7.2 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.77 (td, J = 7.2,
1.2 Hz, 1H), 7.73 (td, J = 7.8, 1.2 Hz, 1H), 7.60–7.58 (m, 2H), 7.39–7.35 (m, 3H), 2.57 (t,
J = 7.2 Hz, 2H), 1.72–1.65 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ
167.3, 147.0, 143.9, 135.3, 134.3, 133.6, 130.3, 129.8, 128.2, 126.2, 123.3, 122.1, 98.7, 39.8, 22.3,
13.1. Mass spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C18H16INNaO3S+ ([M + Na]+),
475.9788, found, 475.9790.

(E)-3-((2-iodo-1-(p-tolyl)pent-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3b

1-2 (0.2 mmol, 31.6 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3b (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (84.5 mg, 90%), crystallization in CDCl3, mp. 106–108 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.85 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.76 (td, J = 7.2,
1.2 Hz, 1H), 7.72 (td, J = 7.8, 1.2 Hz, 1H), 7.48 (d, J = 7.8 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H),
2.57–2.55 (m, 2H), 2.35 (s, 3H), 1.70–1.64 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H). 13C NMR {1H}
(150 MHz, CDCl3) δ 167.3, 147.1, 143.9, 139.9, 134.3, 133.5, 132.4, 130.2, 128.9, 126.2, 123.3,
122.1, 98.3, 39.9, 22.3, 21.4, 13.1. Mass spectrometry: HRMS (ESI-TOF) (m/z): Calcd for
C19H18INNaO3S+ ([M + Na]+), 489.9944, found, 489.9950.

(E)-4-(1-((1,1-dioxidobenzo[d]isothiazol-3-yl)oxy)-2-iodohex-1-en-1-yl)phenyl
4-methylbenzenesulfonate 3c

1-3 (0.2 mmol, 65.6 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3c (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (116.3 mg, 91%), crystallization in CDCl3, mp. 109–111 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.86 (d, J = 7.2 Hz, 1H), 7.80 (dt, J = 7.2, 4.2 Hz, 2H), 7.75 (td,
J = 7.2, 0.6 Hz, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.55–7.50 (m, 2H), 7.29 (d, J = 7.8 Hz, 2H),
7.00–6.93 (m, 2H), 2.63–2.55 (m, 2H), 2.42 (s, 3H), 1.63–1.58 (m, 2H), 1.41–1.31 (m, 2H), 0.90
(t, J = 7.2 Hz, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.2, 150.2, 145.6, 145.4, 143.8, 134.5,
134.1, 133.7, 131.9, 129.8, 128.5, 125.8, 123.3, 122.3, 122.1, 99.7, 37.7, 30.9, 21.7, 21.6, 13.8.
Mass spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C26H24INNaO2S2

+, ([M + Na]+),
659.9982, found, 659.9990.

(E)-3-((2-iodo-1-(4-methoxyphenyl)prop-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3d

1-4 (0.2 mmol, 29.2 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3d (PE/EtOAc = 5:1,
Rf = 0.28) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), colorless
oil (47.2 mg, 52%). NMR spectroscopy: 1H NMR (500 MHz, CDCl3) δ 7.87 (d, J = 7.3 Hz, 1H),
7.83 (d, J = 7.4 Hz, 1H), 7.80–7.75 (m, 1H), 7.73 (td, J = 7.5, 1.1 Hz, 1H), 7.53 (d, J = 8.8 Hz,
2H), 6.89 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 2.57 (s, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ
166.8 (C=N), 160.5, 147.2, 143.4, 134.3, 133.6, 131.7, 127.3, 126.2, 123.4, 122.1, 121.7, 113.6, 86.2
(C-I), 53.0, 26.4. Mass spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C17H14INNaO4S+

([M + Na]+), 477.9580, found 477.9594.

(E)-2-(2-iodo-1-(4-methoxyphenyl)prop-1-en-1-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide
3d′

1-4 (0.2 mmol, 29.2 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3d′ (PE/EtOAc = 5:1,
Rf = 0.32) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), colorless
oil (14.6 mg, 16%). NMR spectroscopy: 1H NMR (500 MHz, Chloroform-d) δ 8.08 (d,
J = 6.7 Hz, 1H), 7.96–7.79 (m, 3H), 7.48 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 3.80 (s,
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3H), 2.71 (s, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ 159.9, 157.2 (C=O), 138.1, 135.0, 134.4,
131.6, 131.3, 126.7, 125.6, 121.1, 113.5, 109.7 (C-I), 54.4, 30.5. Mass spectrometry: HRMS
(ESI-TOF) (m/z): Calcd for C17H14INNaO4S+ ([M + Na]+), 477.9580, found 477.9580.

(E)-3-((2-iodo-1-(4-(trifluoromethyl)phenyl)pent-1-en-1-yl)oxy)benzo[d]isothiazole 3e

1-5 (0.2 mmol, 42.4 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3e (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), yellow
oil (70.8 mg, 68%). NMR spectroscopy: 1H NMR (500 MHz, CDCl3) δ 7.87 (d, J = 7.5 Hz,
1H), 7.82 (d, J = 7.5 Hz, 1H), 7.79 (t, J = 7.5 Hz, 1H), 7.76–7.72 (m, 3H), 7.64 (d, J = 8.0 Hz,
2H), 2.59 (t, J = 7.5 Hz, 2H), 1.73–1.63 (m, 2H), 0.98 (t, J = 7.5 Hz, 3H). 13C NMR {1H}
(150 MHz, CDCl3) δ 167.3, 145.4, 143.8, 138.8, 134.6, 133.7, 131.5 (q, J = 33.0 Hz), 130.9,
125.8, 125.3 (q, J = 4.5 Hz), 123.7 (q, J = 271.5 Hz), 123.2, 122.2, 100.1, 39.8, 22.3, 13.1. 19F
NMR (565 MHz, CDCl3) δ −62.92. Mass spectrometry: HRMS (ESI-TOF) (m/z): Calcd for
C19H15F3INNaO3S+, ([M + Na]+), 543.9662, found, 543.9661.

(E)-3-((2-iodo-1-(4-(trifluoromethoxy)phenyl)pent-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-
dioxide 3f

1-6 (0.2 mmol, 25.6 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3f (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), yellow
oil (80.9 mg, 75%). NMR spectroscopy: 1H NMR (600 MHz, CDCl3) δ 7.87 (d, J = 7.8 Hz,
1H), 7.82 (d, J = 7.2 Hz, 1H), 7.79 (t, J = 7.8 Hz, 1H), 7.74 (t, J = 7.8 Hz, 1H), 7.64 (d, J = 8.4 Hz,
2H), 7.22 (d, J = 8.4 Hz, 2H), 2.58 (t, J = 7.2 Hz, 2H), 1.71–1.65 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H).
13C NMR {1H} (150MHz, CDCl3) δ 167.3, 149.9, 145.6, 143.8, 134.5, 133.8, 133.7, 132.2, 125.9,
123.3, 122.2, 120.4, 120.3 (q, J = 256.5 Hz) 99.8, 39.8, 22.3, 13.1. 19F NMR (565 MHz, CDCl3) δ
−57.64. Mass spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C19H25F3INNaO4S+, ([M +
Na]+), 559.9611, found, 559.9624.

methyl (E)-4-(1-((1,1-dioxidobenzo[d]isothiazol-3-yl)oxy)-2-iodopent-1-en-1-yl)benzoate 3g

1-7 (0.2 mmol, 40.4 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3g (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), yellow
oil (75.6 mg, 74%). NMR spectroscopy: 1H NMR (600 MHz, CDCl3) δ 8.05 (d, J = 8.4 Hz,
2H), 7.86 (d, J = 7.2 Hz, 1H), 7.84 (d, J = 7.2 Hz, 1H), 7.79 (t, J = 7.2 Hz, 1H), 7.75 (t, J = 7.2 Hz,
1H), 7.69 (d, J = 8.4 Hz, 2H), 3.91 (s, 3H), 2.60 (t, J = 7.2 Hz, 2H), 1.73–1.64 (m, 2H), 0.98 (t,
J = 7.2 Hz, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.3, 166.3, 145.8, 143.7, 139.5, 134.5,
133.7, 131.0, 130.4, 129.5, 125.8, 123.2, 122.2, 99.7, 52.2, 39.8, 22.2, 13.1. Mass spectrometry:
HRMS (ESI-TOF) (m/z): Calcd for C20H18INNaO5S+ ([M + Na]+), 533.9843, found, 533.9848.

(E)-3-((1-(3-bromophenyl)-2-iodopent-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3h

1-12 (0.2 mmol, 44.4 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3h (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), yellow
solid (73.2 mg, 69%), crystallization in CDCl3, mp. 111–113 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.86 (d, J = 7.8Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.79 (td, J = 7.8,
1.2 Hz, 1H), 7.74 (td, J = 7.2, 1.2 Hz, 1H), 7.70 (t, J = 1.8 Hz, 1H), 7.59–7.57 (m, 1H), 7.50–7.48
(m, 1H), 7.26–7.25 (m, 1H), 2.58–2.56 (m, 2H), 1.70–1.64 (m, 2H), 0.97 (q, J = 7.8 Hz, 3H).13C
NMR {1H} (150 MHz, CDCl3) δ 167.3, 145.4, 143.8, 137.2, 134.5, 133.6, 132.8, 132.7, 129.8,
129.5, 125.9, 123.3, 122.2, 122.0, 99.9, 39.8, 22.3, 13.1. Mass spectrometry: HRMS (ESI-TOF)
(m/z): Calcd for C18H15BrINNaO3S+ ([M + Na]+), 553.8893, found, 553.8899.

(E)-3-((1-(2-fluorophenyl)-2-iodopent-1-en-1-yl)oxy)benzo[d]isothiazole 3i

1-13 (0.2 mmol, 32.4 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3i (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (76.1 mg, 81%), crystallization in CDCl3, mp. 106–108 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.86 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.77 (td, J = 7.2,
0.6 Hz, 1H), 7.72 (td, J = 7.8, 0.6 Hz, 1H), 7.67 (td, J = 7.2, 1.8 Hz, 1H), 7.40–7.36 (m, 1H), 7.19
(td, J = 7.8, 0.6 Hz, 1H), 7.09 (t, J = 9.6 Hz, 1H), 2.60 (t, J = 7.2 Hz, 2H), 1.72–1.66 (m, 2H), 0.99
(t, J = 7.2 Hz, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.2, 159.9 (d, J = 250.0 Hz), 159.1,
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143.8, 142.4, 134.4, 133.6 (d, J = 21.0 Hz), 132.0 (d, J = 8.1 Hz), 126.0, 124.0 (d, J = 3.5 Hz),
123.4, 123.3, 122.1, 115.8 (d, J = 21.0 Hz), 102.5, 39.5, 22.2, 12.9. Mass spectrometry: HRMS
(ESI-TOF) (m/z): Calcd for C18H15FINNaO3S+ ([M + Na]+), 493.9694, found, 493.9677.

(E)-3-((1-(2,4-difluorophenyl)-2-iodopent-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3j

1-14 (0.2 mmol, 36.0 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3j (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (71.6 mg, 73%), crystallization in CDCl3, mp. 109–111 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.86 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.79 (td, J = 7.2,
1.2 Hz, 1H), 7.74 (td, J = 7.2, 1.2 Hz, 1H), 7.67 (td, J = 8.4, 6.6 Hz, 1H), 6.93 (td, J = 8.0, 2.4 Hz,
1H), 6.84 (td, J = 8.4, 2.4 Hz, 1H), 2.60 (t, J = 7.2 Hz, 2H), 1.71–1.63 (m, 2H), 0.99 (t, J = 7.2 Hz,
3H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.2, 164.0 (dd, J = 253.1, 11.9 Hz), 160.5 (dd,
emphJ = 253.4, 12.1 Hz), 143.7, 141.6, 135.0 (dd, J = 10.1, 3.2 Hz), 134.5, 133.7, 125.9, 123.4,
122.1, 119.7 (dd, J = 15.1, 3.6 Hz), 111.5 (dd, J = 21.3, 3.5 Hz), 104.3 (t, J = 25.1 Hz), 103.3,
39.4, 22.2, 12.9. 19F NMR (565 MHz, CDCl3) δ −105.54–−105.48 (m, 1F), −107.30–−105.25
(m, 1F). Mass spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C18H14F2INNaO3S+ ([M +
Na]+), 511.9599, found, 511.9610.

(E)-3-((2-iodo-1-(naphthalen-2-yl)pent-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3k

1-15 (0.2 mmol, 38.8 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3k (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (65.6 mg, 65%), crystallization in CDCl3, mp. 146–148 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 8.10 (s, 1H), 7.86–7.80 (m, 5H), 7.74–7.70 (m, 2H), 7.67 (dd, J = 8.4,
1.2 Hz, 1H), 7.51–7.47 (m, 2H), 2.62 (t, J = 7.2 Hz, 2H), 1.74–1.68 (m, 2H), 1.01 (t, J = 7.2 Hz,
3H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.4, 146.9, 143.7, 134.3, 133.6, 133.5, 132.6, 132.5,
130.3, 128.5, 127.9, 127.7, 127.2, 127.1, 126.4, 126.0, 123.3, 122.1, 99.1, 39.9, 22.3, 13.1. Mass
spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C22H18INNaO3S+ ([M + Na]+), 525.9944,
found, 525.9949.

(E)-3-((2-iodo-1-(thiophen-2-yl)pent-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3l

1-16 (0.2 mmol, 30.0 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3l (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), browm
solid (56.3 mg, 61%), crystallization in CDCl3, mp. 103–105 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.89 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.80 (td, J = 7.8,
1.2 Hz, 1H), 7.76 (td, J = 7.8, 1.2 Hz, 1H), 7.49 (dd, J = 4.2, 1.2 Hz, 1H), 7.38 (dd, J = 4.8, 1.2 Hz,
1H), 7.03 (dd, J = 4.8, 4.2 Hz, 1H), 2.61–2.59 (m, 2H), 1.71–1.64 (m, 2H), 0.95 (t, J = 7.2 Hz,
3H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.4, 144.0, 141.5, 135.6, 134.5, 133.7, 131.1, 127.9,
126.8, 125.9, 123.3, 122.2, 99.9, 40.7, 22.5, 13.1. Mass spectrometry: HRMS (ESI-TOF) (m/z):
Calcd for C16H14INNaO3S2

+ ([M + Na]+), 481.9352, found, 481.9355.

(E)-3-((2-iodo-1-phenylprop-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3m

1-17 (0.2 mmol, 42.7 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3m (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (60.9 mg, 72%), crystallization in CDCl3, mp. 154–156 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.85 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.76 (td, J = 7.2,
1.2 Hz, 1H), 7.72 (td, J = 7.8, 1.2 Hz, 1H), 7.61–7.59 (m, 2H), 7.39–7.36 (m, 3H), 2.59 (s,
3H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.2, 147.1, 143.8, 135.0, 134.4, 133.6, 130.1, 129.8,
128.2, 126.0, 123.4, 122.1, 89.0, 27.3. Mass spectrometry: HRMS (ESI-TOF) (m/z): Calcd for
C16H12INNaO3S+ ([M + Na]+), 447.9475, found, 447.9468.

(E)-3-((6-chloro-2-iodo-1-(p-tolyl)hex-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3n

1-20 (0.2 mmol, 41.3 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3n (PE/EtOAc = 5:1,
Rf = 0.3) wa purified by column chromatography on silica gel (PE/EtOAc = 10:1), yellow
oil (77.3 mg, 75%). NMR spectroscopy: 1H NMR (600 MHz, CDCl3) δ 7.85 (d, J = 7.2 Hz,
1H), 7.82 (d, J = 7.2 Hz, 1H), 7.77 (td, J = 7.2, 1.2 Hz, 1H), 7.72 (td, J = 7.2, 1.8 Hz, 1H), 7.48
(d, J = 8.4 Hz, 2H), 7.18 (d, J = 7.8 Hz, 2H), 3.55 (t, J = 6.0 Hz, 2H), 2.63–2.62 (m, 2H), 2.35
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(s, 3H), 1.84–1.82 (m, 4H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.3, 147.4, 143.8, 130.0,
134.4, 133.6, 132.2, 130.1, 128.9, 126.0, 123.3, 122.1, 97.2, 44.6, 37.3, 31.2, 26.2, 21.4. Mass
spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C20H19ClINNaO3S+ ([M + Na]+), 537.9711,
found, 537.9705.

(E)-3-((3-chloro-2-iodo-1-phenylprop-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3o

1-21 (0.2 mmol, 30.0 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3o (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (84.4 mg, 92%), crystallization in CDCl3, mp. 146–148 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.88 (t, J = 7.8 Hz, 2H), 7.80–7.79 (m, 1H), 7.76 (dt, J = 7.2, 1.2
Hz, 1H), 7.64–7.62 (m, 2H), 7.41–7.39 (m, 3H), 4.53 (s, 2H).13C NMR {1H} (150 MHz, CDCl3)
δ 167.2, 150.5, 143.8, 134.6, 133.8, 133.8, 130.6, 129.9, 128.4, 125.6, 123.5, 122.3, 90.5, 48.3.
Mass spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C16H11ClINNaO3S2

+ ([M + Na]+),
480.9085, found 481.9071.

(E)-3-((2-cyclopropyl-2-iodo-1-(p-tolyl)vinyl)oxy)benzo[d]isothiazole 1,1-dioxide 3p

1-23 (0.2 mmol, 42.7 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3p (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (80.4 mg, 86%), crystallization in CDCl3, mp. 103–105 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.86 (d, J = 7.2 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.76 (t, J = 7.2 Hz,
1H), 7.72 (t, J = 7.8 Hz, 1H), 7.48 (d, J = 7.8 Hz, 2H), 7.18 (d, J = 7.8 Hz, 2H), 2.35 (s, 3H),
1.54–1.49 (m, 1H), 0.83 (d, J = 6.6 Hz, 4H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.3, 147.8,
143.9, 139.8, 134.2, 133.5, 132.9, 130.1, 128.9, 126.4, 123.4, 122.1, 103.3, 21.4, 16.9, 10.0. Mass
spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C19H16INNaO3S+ ([M + Na]+), 487.9788,
found, 487.9790.

(E)-3-((3-ethoxy-2-iodo-1-phenylprop-1-en-1-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3q

1-24 (0.2 mmol, 32.0 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3q (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (80.0 mg, 85%), crystallization in CDCl3, mp. 162–164 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.87 (d, J = 7.8 Hz, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.78 (td, J = 7.8,
1.2 Hz, 1H), 7.73 (td, J = 7.2, 1.2 Hz, 1H), 7.63–7.60 (m, 2H), 7.41–7.38 (m, 3H), 4.33 (s,
2H), 3.54 (q, J = 7.2 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ
167.4, 148.9, 143.9, 134.7, 134.5, 133.6, 130.1, 130.0, 128.3, 126.0, 123.3, 122.2, 95.2, 71.9, 66.0,
15.0. Mass spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C18H16INNaO4S+ ([M + Na]+),
491.9737, found 491.9750.

(E)-3-((2-iodo-1,2-diphenylvinyl)oxy)benzo[d]isothiazole 1,1-dioxide 3r

1-25 (0.2 mmol, 35.6 mg) and 2a (0.24 mmol, 74.1 mg) were employed. 3r (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (51.3 mg, 53%), crystallization in CDCl3, mp. 172–174 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.76 (d, J = 7.2 Hz, 3H), 7.66 (t, J = 7.2 Hz, 1H), 7.57 (t, J = 7.2 Hz,
1H), 7.52 (d, J = 7.2 Hz, 1H), 7.48 (d, J = 7.2 Hz, 2H), 7.44–7.40 (m, 3H), 7.28–7.26 (m,
2H), 7.17 (t, J = 7.2 Hz, 1H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.7, 147.5, 143.6, 139.6,
134.8, 134.1, 133.3, 130.2, 130.1, 128.8, 128.42, 128.39, 128.2, 125.9, 123.1, 121.9, 91.2. Mass
spectrometry: HRMS (ESI-TOF) (m/z): Calcd for C21H14INNaO3S+ ([M + Na]+), 509.9631,
found, 509.9638.

(E)-3-((4-iodohex-3-en-3-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3s

1-26 (0.24 mmol, 19.7 mg) and 2a (0.2 mmol, 61.8 mg) were employed. 3s (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), yellow
oil (51.0 mg, 65%). NMR spectroscopy: 1H NMR (600 MHz, CDCl3) δ 7.92 (d, J = 7.2 Hz,
1H), 7.82 (t, J = 7.2 Hz, 2H), 7.77 (t, J = 7.2 Hz, 1H), 2.79 (q, J = 7.2 Hz, 2H), 2.42 (q, J = 7.2 Hz,
2H), 1.12 (t, J = 7.2 Hz, 3H), 1.07 (t, J = 7.2 Hz, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.3,
149.7, 143.9, 134.4, 133.6, 126.1, 123.3, 122.1, 97.8, 31.2, 28.9, 13.9, 10.9. Spectrometry: HRMS
(ESI-TOF) (m/z): Calcd for C13H14INNaO3S+ ([M+ Na]+), 413.9631, found, 413.9638.
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(E)-3-((5-iodooct-4-en-4-yl)oxy)benzo[d]isothiazole 1,1-dioxide 3t

1-27 (0.24 mmol, 26.4 mg) and 2a (0.2 mmol, 61.8 mg) were employed. 3t (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (55.9 mg, 67%), crystallization in CDCl3, mp. 58–60 ◦C. NMR spectroscopy: 1H NMR
(600 MHz, CDCl3) δ 7.92 (d, J = 7.8 Hz, 1H), 7.83–7.80 (m, 2H), 7.76 (t, J = 7.2 Hz, 1H), 2.78
(t, J = 7.2 Hz, 2H), 2.39 (t, J = 7.2 Hz, 2H), 1.62–1.53 (m, 4H), 0.99 (t, J = 7.2 Hz, 3H), 0.88 (t,
J = 7.8 Hz, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.1, 149.6, 143.9, 134.4, 133.6, 126.2,
123.2, 122.2, 97.1, 39.2, 36.9, 22.2, 20.1, 13.4, 12.9. Spectrometry: HRMS (ESI-TOF) (m/z):
Calcd for C15H18INNaO3S+ ([M+ Na]+), 441.9944, found, 441.9930.

(E)-3-((1-(4-(tert-butyl)phenyl)-2-iodovinyl)oxy)benzo[d]isothiazole 1,1-dioxide 3u

1-29 (0.24 mmol, 37.9 mg) and 2a (0.2 mmol, 61.8 mg) were employed. 3u (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (56.9 mg, 61%), crystallization in CDCl3, mp. 151–153 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.88 (d, J = 7.8 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.78 (td, J = 7.2,
1.8 Hz, 1H), 7.74 (td, J = 7.8, 1.2 Hz, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 9.0 Hz, 2H),
6.77 (s, 1H), 1.32 (s, 9H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.9, 153.6, 151.7, 143.6, 134.4,
133.6, 129.4, 128.9, 126.5, 125.4, 123.4, 122.1, 68.7, 34.9, 31.1. Mass Spectrometry: HRMS
(ESI-TOF) (m/z): Calcd for C19H18INNaO3S+ ([M + Na]+), 489.9944, found, 489.9953.

(E)-3-((1-([1,1′-biphenyl]-4-yl)-2-iodovinyl)oxy)benzo[d]isothiazole 1,1-dioxide 3v

1-30 (0.24 mmol, 42.7 mg) and 2a (0.2 mmol, 61.8 mg) were employed. 3v (PE/EtOAc = 5:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), white
solid (66.1 mg, 68%), crystallization in CDCl3, mp. 161–162 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.88 (d, J = 7.5 Hz, 1H), 7.86 (d, J = 7.5 Hz, 1H), 7.78–7.74 (m, 4H),
7.64 (d, J = 8.1 Hz, 2H), 7.60 (d, J = 7.9 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.2 Hz, 1H),
6.85 (s, 1H). 13C NMR {1H} (150 MHz, CDCl3) δ 167.9, 151.5, 143.6, 143.1, 140.1, 134.4, 133.6,
131.2, 129.6, 128.9, 127.9, 127.2, 127.1, 126.4, 123.4, 122.2, 69.5. Mass Spectrometry: HRMS
(ESI-TOF) (m/z): Calcd for C21H14INNaO3S+ ([M + Na]+), 509.9631, found, 509.9640.

3-((1-iodo-4-phenylbut-3-yn-2-yl)oxy)benzo[d]isothiazole 1,1-dioxide 4a

1-31 (0.24 mmol, 30.7 mg) and 2a (0.2 mmol, 61.8 mg) were employed. 4a (PE/EtOAc = 5:1,
Rf = 0.32) was purified by column chromatography on silica gel (PE/EtOAc = 10:1), colorless
oil (36.4 mg, 42%). NMR spectroscopy: 1H NMR (500 MHz, CDCl3) δ 7.91 (d, J = 7.6 Hz,
1H), 7.85 (d, J = 7.5 Hz, 1H), 7.80 (t, J = 7.5 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.51 (d, J = 6.6 Hz,
2H), 7.41–7.31 (m, 3H), 6.04 (t, J = 5.8 Hz, 1H), 3.73 (d, J = 5.9 Hz, 2H). 13C NMR {1H} (150
MHz, CDCl3) δ 167.91, 143.66, 134.42, 133.61, 132.17, 129.55, 128.44, 126.51, 123.72, 122.10,
120.98, 89.09, 82.67, 71.25, 3.99. HRMS (ESI-TOF) (m/z): C17H12INNaO3S+ Calcd for, ([M +
Na]+), 459.9480 found 459.9474.

The reaction tube equipped with a magnetic stir bar was charged with 1-32 (0.2 mmol,
20.8 mg), 1-17 (0.2 mmol, 23.2 mg), 2a (0.2 mmol, 61.8 mg), and DCM (2 mL). The test
tube was then sealed off with a screw cap, and the reaction mixture was stirred at room
temperature for 6.0 or 24 h. After the reaction was completed, as indicated by TLC analysis,
the mixture was extracted with DCM (2× 10 mL). The combined organic phases were dried
over anhydrous Na2SO4, and the solvent was evaporated under a vacuum. The residue
was purified by column chromatography (petroleum ether/ethyl acetate 15:1 (v/v)) to give
the corresponding product 4b (36.4 mg, 54%) and 4b′ (16.2 mg, 20%).

3-(2-iodo-1-phenylethoxy)benzo[d]isothiazole 1,1-dioxide 4b

4b (PE/EtOAc = 5:1, Rf = 0.28), colorless oil. NMR spectroscopy: 1H NMR (500 MHz,
CDCl3) δ 7.91–7.82 (m, 2H), 7.79–7.72 (m, 2H), 7.51–7.38 (m, 5H), 6.28–6.16 (m, 1H), 3.77
(dd, J = 10.8, 7.6 Hz, 1H), 3.66 (dd, J = 10.8, 5.7 Hz, 1H). 13C NMR {1H} (150 MHz, CDCl3)
δ 168.1, 143.5, 136.1, 134.3, 133.5, 129.7, 128.9, 126.8, 126.7, 123.4, 122.0, 82.7, 5.5. HRMS
(ESI-TOF) (m/z): C15H12INNaO3S+ Calcd for, ([M + Na]+), 435.9475 found 435.9485.

2-(2-iodo-1-phenylethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4b′
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4b′ (PE/EtOAc = 5:1, Rf = 0.32), colorless oil. NMR spectroscopy: 1H NMR (500 MHz,
CDCl3) δ 8.04 (d, J = 6.8 Hz, 1H), 7.90–7.80 (m, 3H), 7.60 (d, J = 6.6 Hz, 2H), 7.47–7.31 (m,
3H), 5.42 (t, J = 8.2 Hz, 1H), 4.32 (dd, J = 10.5, 8.5 Hz, 1H), 4.03 (dd, J = 10.5, 7.8 Hz, 1H).
13C NMR {1H} (150 MHz, CDCl3) δ 158.6, 137.3, 135.6, 134.9, 134.4, 129.2, 128.8, 128.5, 127.0,
125.3, 120.9, 59.1, 2.3. HRMS (ESI-TOF) (m/z): C15H12INNaO3S+ Calcd for, ([M + Na]+),
435.9475 found 435.9468.

4.3. The General Procedure for the Synthesis of 5

In a nitrogen-filled glove box, a flame-dried screw cap reaction tube equipped with
a magnetic stir bar was charged with NCBSI (0.4 mmol, 132.4 mg), CHCl3 (3 mL), and
1 (0.2 mmol). The test tube was then sealed off with a screw cap and removed from the
glove box, and the reaction mixture was stirred at room temperature for 24 h. After the
reaction was completed, as indicated by TLC analysis, the mixture was extracted using
DCM (3 × 5.0 mL). The combined organic phases were dried over anhydrous Na2SO4,
and the solvent was evaporated under a vacuum. The residue was purified via column
chromatography (petroleum ether/ethyl acetate 30:1 (v/v)) to provide the corresponding
product 5.

(E)-2-chloro-1-phenylprop-1-en-1-yl N-phenylsulfonylbenzenesulfonimidate 5a

1-17 (0.2 mmol, 23.2 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5a (PE/EtOAc = 10:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), white
solid (76.7 mg, 86%), crystallization in CDCl3, mp. 87–88 ◦C. NMR spectroscopy: 1H NMR
(600 MHz, CDCl3) δ 7.96 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 7.8 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H),
7.48–7.44 (m, 3H), 7.25 (d, J = 7.8 Hz, 2H), 7.17–7.14 (m, 2H), 7.13 (t, J = 7.8 Hz, 1H), 7.06 (t,
J = 7.8 Hz, 2H), 2.41 (s, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ 142.8, 142.3, 135.9, 134.3,
132.5, 131.1, 129.5, 129.5, 129.0, 128.8, 128.7, 127.9, 127.7, 126.7, 21.8. HRMS (ESI-TOF) (m/z):
Calcd for C21H18ClNNaO4S2

+, ([M + Na]+), 470.0258, found 470.0265.

(E)-2-chloro-1-phenylbut-1-en-1-yl N-phenylsulfonylbenzenesulfonimidate 5b

1-18 (0.2 mmol, 26.0 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5b (PE/EtOAc = 10:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), white
solid (74.0 mg, 80%), crystallization in CDCl3, mp. 98–99 ◦C. NMR spectroscopy: 1H NMR
(600 MHz, CDCl3) δ 7.96 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H),
7.48–7.44 (m, 3H), 7.27–7.23 (m, 2H), 7.17–7.14 (m, 2H), 7.13 (t, J = 7.2 Hz, 1H), 7.06 (t, J = 7.2
Hz, 2H), 2.89–2.83 (m, 1H), 2.72–2.66 (m, 1H), 1.21 (t, J = 7.2 Hz, 3H). 13C NMR {1H} (125
MHz, CDCl3) δ 142.8, 141.4, 136.0, 135.4, 134.3, 132.5, 131.2, 129.7, 129.0, 128.8, 128.7, 127.9,
127.7, 126.7, 27.3, 11.9. HRMS (ESI-TOF) (m/z): Calcd for C22H20ClNNaO4S2

+, ([M + Na]+),
484.0414, found 484.0426.

(E)-2-chloro-1-phenylpent-1-en-1-yl N-phenylsulfonylbenzenesulfonimidate 5c

1-1 (0.2 mmol, 28.8 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5c (PE/EtOAc = 10:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), white
solid (76.6 mg, 81%), crystallization in CDCl3, mp. 101–102 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.98–7.94 (m, 2H), 7.59 (dd, J = 8.4, 0.6 Hz, 2H), 7.55–7.51 (m, 1H),
7.48–7.44 (m, 3H), 7.26–7.23 (m, 2H), 7.17–7.14 (m, 2H), 7.14–7.11 (m, 1H), 7.05 (t, J = 7.2 Hz,
2H), 2.78–2.67 (m, 2H), 1.73–1.61 (m, 2H), 0.99 (t, J = 7.2 Hz, 3H). 13C NMR {1H} (150 MHz,
CDCl3) δ 142.9, 142.1, 136.2, 134.3, 134.0, 132.4, 131.2, 129.7, 129.0, 128.8, 128.7, 127.9, 127.7,
126.7, 35.3, 20.5, 13.3. HRMS (ESI-TOF) (m/z): Calcd for C23H22ClNNaO4S2

+, ([M + Na]+),
498.0571, found 498.0571.

(E)-2-chloro-3,3-dimethyl-1-phenylbut-1-en-1-yl N-phenylsulfonylbenzenesulfonimidate
5d

1-19 (0.2 mmol, 31.6 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5d (PE/EtOAc = 10:1,
Rf = 0.33) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), white
solid (81.5 mg, 83%), crystallization in CDCl3, mp. 101–102 ◦C. NMR spectroscopy: 1H
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NMR (600 MHz, CDCl3) δ 7.91–7.88 (m, 2H), 7.73–7.69 (m, 2H), 7.53–7.50 (m, 2H), 7.43 (t,
J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.26 (d, J = 7.2 Hz, 1H), 7.21 (d, J = 7.2 Hz, 2H), 7.14
(t, J = 7.2 Hz, 2H), 1.02 (s, 9H). 13C NMR {1H} (150 MHz, CDCl3) δ 142.9, 141.9, 140.6, 137.9,
134.0, 132.7, 132.2, 131.2, 129.8, 128.8, 128.5, 127.8, 127.7, 126.8, 38.2, 30.5. HRMS (ESI-TOF)
(m/z): Calcd for C24H24ClNNaO4S2

+, ([M + Na]+), 512.0727, found 512.0723.

(E)-2-chloro-2-cyclopropyl-1-phenylvinyl N-phenylsulfonylbenzenesulfonimidate 5e

1-22 (0.2 mmol, 28.4 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5e (PE/EtOAc = 10:1,
Rf = 0.26) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), yellow
solid (61.1 mg, 65%), crystallization in CDCl3, mp. 99–100 ◦C. NMR spectroscopy: 1H NMR
(600 MHz, CDCl3) δ 7.96 (dd, J = 7.8, 1.2 Hz, 2H), 7.65–7.62 (m, 2H), 7.55–7.53 (m, 1H), 7.49–
7.45 (m, 3H), 7.26 (t, J = 7.8 Hz, 2H), 7.18–7.15 (m, 2H), 7.13–7.11 (m, 1H), 7.07 (t, J = 7.2 Hz,
2H), 2.64–2.60 (m, 1H), 0.97–0.93 (m, 1H), 0.92–0.86 (m, 2H), 0.82–0.78 (m, 1H). 13C NMR
{1H} (150 MHz, CDCl3) δ 142.9, 142.1, 136.1, 135.2, 134.3, 132.4, 131.8, 129.6, 128.8, 128.7,
128.0, 127.7, 126.7, 13.2, 6.5, 6.2. HRMS (ESI-TOF) (m/z): Calcd for C23H20ClNNaO4S2

+,
([M + Na]+), 496.0414, found 496.0413.

(E)-2-chloro-2-cyclopropyl-1-(p-tolyl)vinyl N-(phenylsulfonyl)benzenesulfonimidate 5f

1-23 (0.2 mmol, 31.2 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5f (PE/EtOAc = 10:1,
Rf = 0.28) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), yellow
oil (56.7 mg, 58%). NMR spectroscopy: 1H NMR (500 MHz, CDCl3) δ 7.96 (d, J = 7.5 Hz, 2H),
7.64 (d, J = 7.5 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.51–7.42 (m, 3H), 7.28 (t, J = 7.5 Hz, 2H), 7.05
(d, J = 8.0 Hz, 2H), 6.87 (d, J = 8.0 Hz, 2H), 2.60–2.55 (m, 1H), 2.24 (s, 3H), 0.97–0.81 (m, 3H),
0.80–0.74 (m, 1H). 13C NMR {1H} (150 MHz, CDCl3) δ 143.0, 142.3, 138.9, 136.3, 134.6, 134.1,
132.4, 129.6, 129.0, 128.8, 128.7, 128.4, 128.1, 126.8, 21.3, 13.2, 6.5, 6.1. C24H22ClNNaO4S2

+

Calcd for, ([M + Na]+), 510.0571, found 510.0588.

(E)-2-chloro-1-phenylvinyl N-phenylsulfonylbenzenesulfonimidate 5g

1-28 (0.2 mmol, 20.4 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5g (PE/EtOAc = 10:1,
Rf = 0.25) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), white
solid (69.8 mg, 81%), crystallization in CDCl3, mp. 66–67 ◦C. NMR spectroscopy: 1H NMR
(600 MHz, CDCl3) δ 8.01 (d, J = 7.8 Hz, 2H), 7.72 (d, J = 7.2 Hz, 2H), 7.58–7.53 (m, 2H), 7.50 (t,
J = 7.8 Hz, 2H), 7.36–7.30 (m, 4H), 7.23 (t, J = 7.2 Hz, 1H), 7.16 (t, J = 7.8 Hz, 2H), 6.68 (s, 1H).
13C NMR {1H} (150 MHz, CDCl3) δ 147.2, 142.7, 135.2, 134.7, 132.6, 129.8, 129.8, 129.0, 128.8,
128.6, 128.0, 128.0, 126.8, 116.0. HRMS (ESI-TOF) (m/z): Calcd for C20H16ClNNaO4S2

+, ([M
+ Na]+), 456.0101, found 456.0102.

(E)-2-chloro-1-(p-tolyl)pent-1-en-1-yl N-phenylsulfonylbenzenesulfonimidate 5h

1-2 (0.2 mmol, 31.6 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5h (PE/EtOAc = 10:1,
Rf = 0.3) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), colorless
liquid (86.2 mg, 88%). NMR spectroscopy: 1H NMR (600 MHz, CDCl3) δ 7.95 (d, J = 7.2 Hz,
2H), 7.60 (dd, J = 8.4, 1.2 Hz, 2H), 7.53 (t, J = 7.2 Hz, 1H), 7.49–7.44 (m, 3H), 7.26 (d,
J = 8.4 Hz, 2H), 7.04 (d, J = 7.8 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 2.72–2.63 (m, 2H), 2.23 (s,
3H), 1.70–1.59 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ 142.9,
142.3, 139.1, 136.4, 134.0, 133.3, 132.4, 129.7, 128.8, 128.7, 128.3, 127.9, 126.7, 35.3, 21.3, 20.5,
13.3. HRMS (ESI-TOF) (m/z): Calcd for C24H24ClNNaO4S2

+, ([M + Na]+), 512.0727, found
512.0727.

(E)-1-([1,1′-biphenyl]-4-yl)-2-chloropent-1-en-1-yl N-phenylsulfonylbenzenesulfonimidate
5i

1-9 (0.2 mmol, 44.0 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5i (PE/EtOAc = 10:1,
Rf = 0.32) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), white
solid (96.7 mg, 88%), crystallization in CDCl3, mp. 99–100 ◦C. NMR spectroscopy: 1H NMR
(600 MHz, CDCl3) δ 7.97 (d, J = 7.2 Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.53 (t, J = 7.2 Hz, 1H),
7.47–7.42 (m, 7H), 7.38–7.35 (m, 1H), 7.26–7.21 (m, 6H), 2.82–2.71 (m, 2H), 1.76–1.65 (m, 2H),
1.01 (t, J = 7.2 Hz, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ 142.8, 142.0 141.7, 140.1, 136.3,
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134.1, 134.0, 132.5, 130.2, 130.1, 128.9, 128.8, 128.7, 128.0, 127.8, 126.9, 126.7, 126.3, 35.4, 20.5,
13.3. HRMS (ESI-TOF) (m/z): Calcd for C29H26ClNNaO4S2

+, ([M + Na]+), 574.0884, found
574.0893.

(E)-2-chloro-1-(4-chlorophenyl)pent-1-en-1-yl N-phenylsulfonylbenzenesulfonimidate 5j

1-10 (0.2 mmol, 35.6 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5j (PE/EtOAc = 10:1,
Rf = 0.32) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), white
solid (72.7 mg, 71%), crystallization in CDCl3, mp. 104–105 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.94 (d, J = 7.2 Hz, 2H), 7.63 (d, J = 7.2 Hz, 2H), 7.57–7.53 (m, 2H),
7.47 (t, J = 7.8 Hz, 2H), 7.32 (t, J = 7.2 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.4 Hz,
2H), 2.75–2.63 (m, 2H), 1.69–1.59 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H). 13C NMR {1H} (150 MHz,
CDCl3) δ 142.7, 141.0, 136.2, 135.0, 134.5, 134.4, 132.5, 131.1, 129.8, 129.0, 128.7, 127.9, 127.9,
126.7, 35.3, 20.5, 13.2. HRMS (ESI-TOF) (m/z): Calcd for C23H21Cl2NNaO4S2

+, ([M + Na]+),
532.0181, found 532.0185.

(E)-2-chloro-1-(4-bromophenyl)pent-1-en-1-yl N-phenylsulfonylbenzenesulfonimidate 5k

1-11 (0.2 mmol, 44.4 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5k (PE/EtOAc = 10:1,
Rf = 0.32) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), yel-
low solid (79.4 mg, 72%), crystallization in CDCl3, mp. 101–102 ◦C. NMR spectroscopy:
1H NMR (600 MHz, CDCl3) δ 7.94 (d, J = 7.8 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.55 (t,
emphJ = 7.8 Hz, 2H), 7.47 (t, J = 7.8 Hz, 2H), 7.33 (t, J = 7.8 Hz, 2H), 7.21–7.17 (m, 2H), 7.04
(d, J = 8.4 Hz, 2H), 2.76–2.63 (m, 2H), 1.71–1.59 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H). 13C NMR {1H}
(150 MHz, CDCl3) δ 142.7, 141.1, 136.1, 134.5, 134.4, 132.5, 131.3, 130.9, 130.3, 129.0, 128.7,
127.9, 126.7, 123.4, 35.3, 20.5, 13.2. HRMS (ESI-TOF) (m/z): Calcd for C23H21BrClNNaO4S2

+,
([M + Na]+), 575.9676, found 575.9680.

(E)-tert-butyl 4-(2-chloro-1-((N-(phenylsulfonyl)phenylsulfonimidoyl)oxy)pent-1-en-1-yl)
benzoate 5l

1-8 (0.2 mmol, 48.8 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5l (PE/EtOAc = 10:1,
Rf = 0.30) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), white
solid (53.2 mg, 46%), crystallization in CDCl3, mp. 103–104 ◦C. NMR spectroscopy: 1H
NMR (600 MHz, CDCl3) δ 7.93 (d, J = 7.2 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 7.8 Hz,
2H), 7.56–7.50 (m, 2H), 7.46 (t, J = 7.8 Hz, 2H), 7.32–7.29 (m, 2H), 7.25 (d, J = 8.4 Hz, 2H),
2.73–2.62 (m, 2H), 1.70–1.61 (m, 2H), 1.59 (s, 9H), 0.97 (t, J = 7.2 Hz, 3H). 13C NMR {1H}
(150 MHz, CDCl3) δ 164.9, 142.7, 141.2, 136.1, 135.3, 135.0, 134.5, 132.5, 132.2, 129.5, 129.0,
128.7, 128.7, 127.9, 126.7, 81.3, 35.5, 28.1, 20.5, 13.3. HRMS (ESI-TOF) (m/z): Calcd for
C28H30ClNNaO6S2

+, ([M + Na]+), 598.1095, found 598.1094.

(E)-2-chloro-1-(4-(trifluoromethyl)phenyl)pent-1-en-1-yl N-phenylsulfonylbenzene sulfon-
imidate 5m

1-5 (0.2 mmol, 42.4 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5m (PE/EtOAc = 10:1,
Rf = 0.35) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), white
solid (44.9 mg, 41%), crystallization in CDCl3, mp. 89–90 ◦C. NMR spectroscopy: 1H NMR
(600 MHz, CDCl3) δ 7.95 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 7.8 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H),
7.50–7.46 (m, 3H), 7.31–7.25 (m, 6H), 2.80–2.69 (m, 2H), 1.74–1.62 (m, 2H), 1.00 (t, J = 7.2 Hz,
3H). 13C NMR {1H} (125 MHz, CDCl3) δ 142.6, 140.6, 136.0, 135.5, 134.9, 134.6, 132.6, 130.7
(q, J = 32.5 Hz), 130.2, 129.0, 128.8, 127.8, 126.7, 124.6 (q, J = 3.5 Hz), 123.5 (q, J = 270.8 Hz),
35.4, 20.5, 13.3. 19F NMR (565 MHz, CDCl3) δ −63.10. HRMS (ESI-TOF) (m/z): Calcd for
C24H21ClF3NNaO4S2

+, ([M + Na]+), 566.0445, found 566.0453.

(E)-2-chloro-1-(4-(trifluoromethoxy)phenyl)pent-1-en-1-yl N-phenylsulfonylbenzenesul
-fonimidate 5n

1-6 (0.2 mmol, 45.6 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5n (PE/EtOAc = 10:1,
Rf = 0.35) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), white
solid (50.2 mg, 45%), crystallization in CDCl3, mp. 86–87 ◦C. NMR spectroscopy: 1H NMR
(600 MHz, CDCl3) δ 7.97 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 7.8 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H),
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7.49–7.46 (m, 3H), 7.28–7.25 (m, 2H), 7.22–7.17 (m, 2H), 6.88 (d, J = 7.8 Hz, 2H), 2.82–2.71
(m, 2H), 1.73–1.62 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H). 13C NMR {1H} (125 MHz, CDCl3) δ 149.1,
142.7, 140.7, 136.0, 135.0, 134.5, 132.6, 131.5, 130.0, 128.9, 128.7, 127.9, 126.7, 120.2 (q, J =
256.6 Hz), 120.1, 35.4, 20.5, 13.2. 19F NMR (565 MHz, CDCl3) δ −57.65. HRMS (ESI-TOF)
(m/z): Calcd for C24H21ClF3NNaO5S2

+, ([M + Na]+), 582.0394, found 582.0403.

(E)-1-(3-bromophenyl)-2-chloropent-1-en-1-yl N-phenylsulfonylbenzenesulfonimidate 5o

1-12 (0.2 mmol, 44.4 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5o (PE/EtOAc = 10:1,
Rf = 0.30) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), colorless
liquid (60.1 mg, 54%). NMR spectroscopy: 1H NMR (600 MHz, CDCl3) δ 7.97 (d, J = 7.2 Hz,
2H), 7.62 (dd, J = 8.4, 1.2 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.52–7.47 (m, 3H), 7.33–7.30 (m,
2H), 7.25–7.22 (m, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.17–7.16 (m, 1H), 6.97 (t, J = 7.8 Hz, 1H),
2.79–2.70 (m, 2H), 1.73–1.62 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H). 13C NMR {1H} (150 MHz,
CDCl3) δ 142.7, 140.6, 135.8, 135.2, 134.7, 133.2, 132.6, 132.4, 132.0, 129.2, 128.9, 128.8, 128.5,
127.8, 126.7, 121.7, 35.4, 20.5, 13.3. HRMS (ESI-TOF) (m/z): Calcd for C23H21BrClNNaO4S2

+,
([M + Na]+), 575.9676, found 575.9684.

(E)-2-chloro-1-(2-fluorophenyl)pent-1-en-1-yl N-phenylsulfonylbenzenesulfonimidate 5p

1-13 (0.2 mmol, 32.4 mg) and 2b (0.4 mmol, 132.4 mg) were employed. 5p (PE/EtOAc = 10:1,
Rf = 0.35) was purified by column chromatography on silica gel (PE/EtOAc = 30:1), white
solid (45.1 mg, 46%), crystallization in CDCl3, mp. 83–84 ◦C. NMR spectroscopy: 1H NMR
(600 MHz, CDCl3) δ 7.97 (d, J = 7.2 Hz, 2H), 7.64 (d, J = 7.8 Hz, 2H), 7.54 (t, J = 7.2 Hz,
1H), 7.47 (t, J = 7.2 Hz, 3H), 7.29–7.26 (m, 2H), 7.20 (t, J = 7.2 Hz, 1H), 7.17–7.13 (m,
1H), 6.93 (t, J = 7.2 Hz, 1H), 6.70 (t, J = 8.4 Hz, 1H), 2.78–2.69 (m, 2H), 1.72–1.61 (m, 2H),
0.99 (t, J = 7.2 Hz, 3H). 13C NMR {1H} (150 MHz, CDCl3) δ 159.4 (J = 251.1 Hz), 142.8,
136.9 (J = 24.5 Hz), 135.7, 134.3, 132.5, 132.1, 131.6 (J = 8.3 Hz), 130.9 (J = 5.1 Hz), 128.7
(J = 20.4 Hz), 127.8, 126.7, 123.5 (J = 3.5 Hz), 119.4 (J = 14.6 Hz), 115.4 (J = 21.2 Hz), 34.9,
20.5, 13.1. 19F NMR (565 MHz, CDCl3) δ −109.46 (bs). HRMS (ESI-TOF) (m/z): Calcd for
C23H21ClFNNaO4S2

+, ([M + Na]+), 516.0477, found 516.0494.

5. Conclusions

We achieved the robust trans-selective oxyiodination and oxychlorination of alkynes,
employing N-iodosaccharin or N-chlorobenzenesulfonimide as the halogenation and oxy-
genation sources. This versatile approach tolerates many alkynes, including electron-rich
and electron-deficient aryl-, bi-aryl, bi-alkyl, and terminal alkynes. The features of this
transformation are as follows: easy operation, excellent functional group tolerance, broad
substrate scope, and excellent trans-selectivity. Therefore, this method is an attractive
alternative for synthesizing versatile halogenated enol esters and ethers. Employing highly
electrophilic bifunctional reagents was key to achieving the general and practical halo-
genation of alkynes. To the best of our knowledge, this methodology represents the first
oxyhalogenation of alkynes employing bifunctional N–X (halogen) reagents. Also, further
applications in organic synthesis are ongoing in our lab.
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