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Abstract: In recent years, there have been frequent reports on the adverse effects of synthetic
cannabinoid (SC) abuse. SCs cause psychoactive effects, similar to those caused by marijuana,
by binding and activating cannabinoid receptor 1 (CB1R) in the central nervous system. The aim of this
study was to establish a reliable quantitative structure–activity relationship (QSAR) model to correlate
the structures and physicochemical properties of various SCs with their CB1R-binding affinities.
We prepared tetrahydrocannabinol (THC) and 14 SCs and their derivatives (naphthoylindoles,
naphthoylnaphthalenes, benzoylindoles, and cyclohexylphenols) and determined their binding
affinity to CB1R, which is known as a dependence-related target. We calculated the molecular
descriptors for dataset compounds using an R/CDK (R package integrated with CDK, version 3.5.0)
toolkit to build QSAR regression models. These models were established, and statistical evaluations
were performed using the mlr and plsr packages in R software. The most reliable QSAR model was
obtained from the partial least squares regression method via Y-randomization test and external
validation. This model can be applied in vivo to predict the addictive properties of illicit new SCs.
Using a limited number of dataset compounds and our own experimental activity data, we built
a QSAR model for SCs with good predictability. This QSAR modeling approach provides a novel
strategy for establishing an efficient tool to predict the abuse potential of various SCs and to control
their illicit use.

Keywords: cannabinoid receptor 1; synthetic cannabinoids; quantitative structure-activity relationship;
multiple linear regression; partial least squares regression; dependence and abuse potential

1. Introduction

The quick and worldwide distribution of drugs to the general public, including young adults,
via the online market has led to the emergence of drug abuse and drug addiction as crucial social issues.
According to the United Nations Office on Drugs and Crime World Drug Report 2020, the worldwide
estimated annual incidence of illicit drug use is the highest for cannabis, since the number of cannabis
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users was about 192 million in 2018 which is 3.9% of the global adult population aged 15–64 [1].
In terms of global substance dependence, cannabis and opioids are associated with the most common
illicit drug dependence, accounting for 19.8 and 16.8 million cases, respectively, in 2015 [2]. Recently,
a study on the correlation between prenatal exposure to cannabis and child neurodevelopment was
conducted by the Ottawa Hospital Research Institute in Canada. The results showed that women
who used cannabis during pregnancy were 1.5 times more likely to give birth to a child with autism
than women who did not use cannabis [3]. The abuse of cannabis and synthetic cannabinoids (SCs) is
associated with various harmful health effects and even death.

For example, SCs are constituents of widely sold, recreational, designer drug products,
usually marketed as herbal incense mixtures named “K2” or “Spice,” which are smoked for their
psychoactive effects, including euphoria and hallucination [4]. Serious side effects of SCs, including memory
impairments, hypothermic effects, anxiety, and panic, have also been reported [5–8]. Many studies have
demonstrated that cannabinoid receptor 1 (CB1R) mediates the behavioral and psychoactive effects of
∆9-tetrahydrocannabinol (THC) and SCs in animals and humans [9,10]. Among SCs, CP47,497 and its
homologs (Figure 1) have structural similarities with THC. In vitro studies have shown that CP47,497 binds,
with higher affinity than THC, to both the CB1R in the central nervous system and the peripheral CB2R,
suggesting that it has the same effects as THC in vivo. Most SCs with psychoactive effects are agonists
of CB1R and selectively bind to CB1R with high affinity [11]. Therefore, in vitro CB1R binding assays
have been used to predict the abuse potential of SCs at the preliminary screening level [12]. Currently 43
cannabimimetic agents (CB1R agonists) including a variety of SCs are designated as “Schedule 1 substances”
controlled by the United States Drug Enforcement Administration [13].

Figure 1. Cont.
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Figure 1. Structure of phytocannabinoid tetrahydrocannabinol (THC) and the synthetic cannabinoids
used in this study.

A quantitative structure–activity relationship (QSAR), determined as a regression or classification
model, is the relationship between the biological activities of a series of molecules and their structural
and physicochemical descriptors. This is one of the major research methods used to predict the
biological activities of new drug molecules in the field of rational drug design. Recently, the QSAR
method was employed for the assessment of potential hazardous chemicals by government agencies
worldwide as a tool to replace expensive and time-consuming animal testing [14]. For example, the U.S.
Environmental Protection Agency has established and utilized various QSAR resources to predict and
regulate the hazards of new industrial chemicals in the ecological environment as well as in foods
and cosmetics.

The binding affinity to CB1R is a validated endpoint associated with the abuse or addiction
potential of SCs. Several studies have reported on QSAR modeling of SCs to predict the risks of SC
derivatives. However, CB1R binding affinity data for training set compounds has been collected from
selected literature reviews or public data sources, which usually contain noisy data [15].

In the present study, we designed a QSAR model of SC derivatives to predict their CB1R-binding
affinities using our own experimental results (Figure 2). Regression-based approaches such as multiple
linear regression (MLR) and partial least squares regression (PLSR), were used to build numerous QSAR
models, and the most reliable PLSR model was selected. Previously, we evaluated the rewarding effects
of several SCs using the conditioned place preference (CPP) test [12], which is one of methods used to
measure the dependence property of SCs in experimental animals. To evaluate a useful application
of our QSAR model for predicting the abuse potential of new SCs, we analyzed the correlation of
drug-induced CPP activity with the predicted CB1R-binding affinity values.
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Figure 2. Quantitative structure–activity relationship modeling strategy.

2. Results and Discussion

2.1. QSAR Modeling for Predicting CB1R Binding Affinity of THC and SCs

2.1.1. Dataset Compounds

As shown in Figure 1, the database consists of a natural cannabinoid THC, five naphthoylindoles
(JWH-series), two benzoylindoles (AM-694 and RCS-4), three naphthoylnaphthalenes (CRA-series),
and four cyclohexylphenols (CP-series). Although the availability of compounds was quite limited,
we tried to use diverse SCs as the dataset compounds for QSAR modeling. JWH-series, AM-694, RCS-4,
and CP-series are frequently adulterated in commercial herbal incense products, and controlled or
outlawed in many countries due to their intoxication and abuse potentials [16].

Cannabis has been known to have therapeutic effects against neurodegenerative disease, cancer,
multiple sclerosis, epilepsy, and neuropathic pain. THC is one of the most important ligands responsible
for the therapeutic effects of cannabis and a main component of several cannabis-derived medicines.
Dronabinol, a commercial name for synthetic THC, was approved for the treatment of anorexia
related with AIDS wasting syndrome, and chemotherapy-induced nausea and vomiting in cancer
patients [17,18]. Nabiximols (SativexTM), containing a 1:1 ratio of THC:cannabidiol, is also in the
market for use as a therapeutic agent to alleviate the spasticity of multiple sclerosis patients [19].
In spite of the clinical beneficial effects of THC, it is associated with psychotropic adverse effect due to
the CB1R agonist activity in CNS.
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CRA13 is one of naphthoylnaphthalenes, and it is a dual agonist of CB1R and cannabinoid receptor
2 (CB2R). CRA13 was a clinical candidate developed as a peripheral analgesic by the Novartis Pharma
company, since it had low blood-brain barrier (BBB) permeability in animal studies [20]. However,
when a high dose was administered in human clinical evaluation, it showed the CNS penetration
giving adverse effect similar to THC [21]. We synthesized CRA-F and CRA-OH, the analogues of
CRA13, to optimize the CB2R selectivity and BBB permeability [22,23]. These CRA-series have not
been introduced as illicit drugs yet, but, considering their THC-like property and structural similarity
to JWH-series, CRA13 and its derivatives could be distributed illegally in the future. Therefore,
we consider these compounds as SC candidates and they were included in the dataset for QSAR
modeling tactically. The experimental activity values for dataset compounds are CB1R-binding
affinities (Ki values) determined using a radio-isotope receptor binding assay.

2.1.2. Feature Selection

It is known that CB1R-binding affinity is a reasonable biomarker for the prediction of the abuse or
dependence of SCs; herein, we used our experimental CB1R pKi values (Figure 3 and Table S1) as the
endpoints of QSAR modeling. To determine dataset compounds, we analyzed pKi values using the
outliers in the R package [24] and identified the pKi value of JWH-015 as an outlier. After removing
JWH-015 from the dataset compounds, compounds with the highest and lowest binding affinities
to CB1R were JWH-210 and CP47,497-C6, respectively. The difference in pKi between JWH-210 and
CP47,497-C6 was 2.737, which was close to the range of the dependent variable (three in the log scale)
that is suitable for building a QSAR model. The compounds were then split into a training set of 11
compounds and a test set of 3 compounds, and used for both MLR and PLSR analyses. Since only 11
SCs were included in the training set to build the model, we employed a sophisticated feature selection
procedure (as detailed below) to obtain a reliable QSAR model.

Figure 3. Cont.
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Figure 3. Cannabinoid receptor 1-binding affinities of THC and synthetic cannabinoids.

When the descriptors of molecules were calculated by rcdk, the number of features was 286.
After removing features with an almost zero variance, 194 features were obtained. Then, additional
features that were highly correlated with each other were removed. The cutoff value for correlation was
set at 0.9. After excluding highly correlated features, 39 features remained. For these features, we finally
selected 16 descriptors (Table S2) that had good correlation with the value of dependent variable CB1R
pKi (correlation coefficient > 0.3), using the correlation matrix heat map shown in Figure 4. For MLR,
the independent variables were selected by a forward-selection method. The selected independent
variables were standardized and applied for QSAR model construction.

Figure 4. A correlation plot demonstrating the correlation between the dependent variable pKi and
descriptor values using different dot sizes and colors. The larger the dot, the stronger the correlation.
Blue indicates a positive correlation, and red indicates a negative correlation.
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2.1.3. MLR Analysis

Considering the limited size of the training set and the multicollinearity of variables, the MLR
model was constructed with a small number of descriptors. As summarized in Table S3 (see the
Supplementary Information), we initially built sixteen models using a single descriptor and calculated
their adjusted coefficient of determination (adjusted R2) values to select the first descriptor to build the
MLR model. Model 1 using XLogP (adjusted R2 = 0.567) had the highest adjusted R2 value. Next,
starting from the first descriptor XLogP, further descriptors were included using the forward selection
method. Among the models with two descriptor combinations, model 31 with XLogP and ATSc4
had the highest adjusted R2 value (0.765). Finally, using up to three descriptors, we established a
total of forty-five models. While comparing the adjusted R2 and the cross-validated coefficient (Q2)
values using the plot in Figure 5, we discovered that the adjusted R2 reached a statistical plateau after
model 31. Therefore, model 31, which was constructed using XLogP and ATSc4, was selected as the
most reliable MLR model. To detect the multicollinearity of model 31, we calculated the variance
inflation factor (VIF) of each descriptor. The descriptors XLogP and ATSc4 had a low VIF value of 1.029
(much less than 10), thereby indicating the absence of multicollinearity in model 31. Normality of the
residuals was confirmed using a Q-Q plot in Figure S1. In Figure 6, the correlation between the actual
and predicted CB1R pKi values of the compounds in the training and test sets was plotted. MLR model
31 predicted the CB1R pKi values of the test set compounds with R2 = 0.133. The regression equation
of MLR model 31 is as follows:

pKi = 0.8038(XLogP) − 0.4269(ATSc4) + 6.3243 (1)

R2 = 0.812, F =17.31, p-value = 0.001242 (2)

Figure 5. Adjusted R2 (R2
adj) and Q2 values of the multiple linear regression (MLR) models created

using the forward selection method. The performance of 45 models during the forward selection
process is expressed as a line graph.
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Figure 6. Plot of predicted versus experimental pKi values of multiple linear regression model 31.

2.1.4. PLSR Analysis

PLSR is known to be more effective when the number of features is much greater than the number
of training set samples, because PLSR avoids the problem of collinear features by extracting latent
variables. To build PLSR models, 16 descriptors obtained from the feature selection by correlation
plotting were used. In order to find the optimal number of principle components, R2 and Q2 were
calculated and plotted against the number of components (Figure 7).

Figure 7. Plot of R2 and Q2 versus the number of components.

When the first component was used, R2 and Q2 were 0.780 and 0.585, respectively. By adding a
second component, R2 was improved to 0.864, Q2 was 0.573. When a third component was added,
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R2 was improved to 0.907 but Q2 was decreased to 0.475. Therefore, we selected two as the optimal
number of components (Figure 7). The correlation between the actual and predicted CB1R pKi values
obtained from PLSR is shown in Figure 8, and the normality of the residuals was confirmed using a
Q-Q plot shown in Figure S2.

Figure 8. Correlation plot of predicted versus experimental pKi values of the quantitative structure–
activity relationship model. PLSR, partial least square regression.

The regression equation of PLSR was as follows:

pKi = 0.1863XLogP + 0.0425Wlambda3.unity − 0.1608WTPT.4+0.0856MW −
0.1178TopoPSA + 0.0224geomShape + 0.0199MLogP + 0.0449Kier1 − 0.1566nHBAcc −

0.0561FPSA.3 + 0.0784WPSA.1 + 0.2057VP.7 + 0.0765SPC.5 + 0.0864BCUTc.1l − 0.0978ATSc4
+ 0.0975apol + 6.3243

(3)

R2 = 0.864, F =25.41, p-value = 0.000342 (4)

2.1.5. Comparison of the Quality of MLR and PLSR Models

As summarized in Table 1, both the MLR and PLSR models were quite stable; however, in the
former case, we used only two descriptors for modeling. Thus, the predictability of the MLR model for
the test set was relatively low. The variables used in the best MLR model were highly correlated with the
pKi values (XLogP = 0.781, and ATSc4 = −0.312,), which is good enough for establishing an MLR model.
Therefore, other descriptors, even though they are highly correlated with the pKi values, were left
out in the final MLR model mainly due to the multicollinearity problem. However, highly correlated
descriptors can be handled in PLSR owing to the orthogonal properties of the eigenvalue; we established
PLSR models by using all 16 independent variables using a pls algorithm. As expected, the PLSR
model had substantially better predictive capabilities than the MLR model. This was especially true
for the former regarding the predictability of external test sets, which was significantly higher than
that of the latter. Therefore, the PLSR model was chosen as the final QSAR model.
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Table 1. Statistical parameters of multiple linear regression (MLR) and partial least squares regression
(PLSR).

Model R2 Adjusted R2

(R2
adj)

Predicted
R2(Rpred

2)
Training Set

1 RMSE
Test Se
tRMSE Q2

MLR model 31 0.812 0.765 0.133 0.387 0.732 0.698

PLSR 0.864 - 0.777 0.330 0.371 0.573
1 RMSE, root mean square error.

To confirm the robustness of the PLSR model, a Y-randomization test was performed [25].
Twenty-five models were built with randomly scrambled dependent variables and original independent
variables and then their R2 and Q2 values were compared with that of the original PLSR model. The R2

and Q2 values of all random models were smaller than 0.5, and the calculated Y-randomization
coefficient (cRp

2) was 0.689 (>0.5), revealing that the PLSR model is reliable and not generated by
accidental correlation (Figure S3). The applicability domain (APD) was also defined based on the
Euclidean distance method and used to assess the acceptability of external test set compounds. The APD
threshold of the PLSR model was determined to be 4.753. The Euclidean distances of the test set
compounds (CP47,497-C9, JWH-018, and THC) were within the APD threshold, supporting that their
predictive values are reliable (Table 2).

Table 2. Cannabinoid receptor 1-binding affinity (pKi) of synthetic cannabinoids predicted by the
partial least squares (PLSR) quantitative structure–activity relationship model.

Compound
Name

Observed
pKi

PLSR In Vivo
Rewarding
Responses

Predicted
pKi

1 Residual 2 APD

Training set

AM-694 6.553 6.474 0.079

CRA-13 6.319 6.816 −0.497

CP47,497-C6 4.921 5.174 −0.253

CP47,497 6.066 6.075 −0.009

CP47,497-C8 6.921 6.308 0.613

CRA13-F 7.097 6.687 0.41

CRA13-OH 5.268 5.160 0.108

RCS-4 4.921 5.26 −0.339

JWH-073 6.638 6.688 −0.05 3 CPP [12]

JWH-081 7.208 6.92 0.288 CPP [12]

JWH-210 7.658 8.007 −0.349 CPP [12]

Test set

CP47,497-C9 6.319 6.773 −0.454 1.903

JWH-018 7.638 7.253 0.385 2.887 4 SA [17]

THC 6.678 6.917 −0.239 3.917 CPP [12]
1 Residual: difference between the observed and predicted pKi values. 2 APD: applicability domain (threshold = 4.753).
3 CPP: conditioned place preference. 4 SA, self-administration.

The observed CB1R-binding affinities (pKi) of dataset compounds were compared with those
predicted by the PLSR QSAR model in Table 2. For all the dataset compounds, our CB1R-binding assay
resulted in pKi values ranging from 5.0 to 7.7, which differed by approximately 1 to 2 points from those
reported in the literature. The pKi value of the outlier JWH-015 was 2.252, which was considerably far
from those of other SCs; thus, it was excluded from the training set.
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For CP-47,497 and its homologs in the dataset, the CB1R-binding affinities predicted by the PLSR
model increased as the size of the carbon chain attached to the C5 of phenol moiety. This result is similar
to the reported structure–activity relationship studies on the various cyclohexylphenol derivatives [26].
CP-47,497 and its homologs (C6, C8, and C9) are under control in many European countries. In addition,
CP47,497 and CP47,497-C8 are currently listed as Schedule 1 controlled substances in the United
States [27]. Considering the global control status of CP-homologs, we can suggest that a new CP47497
derivative, with a pKi value higher than 6.0 predicted by our PLSR model, should be considered as a
candidate for the assessment of abuse potential.

Our experimental pKi values for naphthoylindole derivatives (JWH-type) were in the
6.638–7.658 range, representing the chemical group with the highest CB1R-binding activity (Table 2).
Most of the naphthoylindoles identified in commercial incense products are outlawed in many countries
including the USA, Germany, and Japan, and the reinforcing effects of several naphthoylindoles
(JWH-073, 081, and 210) and THC were investigated by using CPP tests in mice [12]. They all exhibited
drug-induced CPP activities, and the order of this activity of naphthoylindoles was JWH-210 > JWH-081
> JWH-073, which is in good agreement with the CB1R-binding affinity order predicted by QSAR.
Their predicted pKi values were higher than 6.638. In addition, JWH-018 with predicted pKi = 7.253
induced self-administration (SA) behavior in mice, thereby confirming the rewarding and reinforcing
property of the drug [28]. Thereby, we suggest the naphthoylindole-type SCs with the pKi value higher
than approximately 6.50 predicted by our QSAR induce CPP or SA behavior in animals demonstrating
addictive potentials.

Next, we performed the validation of the PLSR model using an external evaluation set. A set of
62 naphthoylindole cannabinoids (JWH-compounds) was collected from two pieces of the literature to
build the database [11,29]. Their experimental Ki values of the CB1R were obtained from a radioligand
competition assay similar to that used in our study. Among them, 50 compounds were within the
applicability domain, and their pKi values were predicted by the PLSR model (Table S4). The Pearson
correlation coefficient between the literature value and the predicted value was 0.721 and the predicted
R2 was 0.702, revealing that the CB1R binding affinity predicted by QSAR is in good correlation with
the experimental results of the structure–activity relationship study of JWH-compounds. Interestingly,
there are six drugs (JWH-007, −019, −098, −122, −149 and −166), currently listed in the US Schedule
I among the dataset compounds, and their predicted pKi values were in the range of 7.085–8.300,
higher than 6.50 (Table S4). These results also support that the generated PLSR QSAR model is a
reliable tool for the prediction of the CB1R-binding affinity and addiction property of new SCs.

3. Materials and Methods

3.1. Chemistry

THC and six SCs (AM-694, JWH-015, JWH-073, JWH-081, JWH-210, and RCS-4) were purchased
from Cayman Chemical (Ann Arbor, MI, USA). Eight additional SCs, including JWH-018, CRA13 and its
derivatives (CRA13-F and CRA13-OH), and CP47,497 and its homologs (CP47,497-C6, C8, and C9) were
synthesized. The synthetic methods are briefly described, and the proton nuclear magnetic resonance
spectroscopic data of the synthesized compounds are attached in the Supplementary Materials.

3.2. In Vitro CB1R-Binding Assay

This test was performed with minor modifications to the previously reported method [29].
ChemiScreen CB1 Cannabinoid Receptor Membrane Preparation (EMD Millipore Corp., Milford, MA,
USA) was used.

In saturation binding assays, various concentrations of radioactive [3H]-SR141716A (ranging from
0 nM to 20 nM) and a fixed concentration of non-radioactive CP55,940 (7 µM) were incubated with
membrane in binding buffer (50 mM Hepes ((4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)),
5 mM MgCl2, 1 mM CaCl2, and 0.2% BSA (bovine serum albumin)) for 2 h. The mixture was then
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transferred to a Whatman®Grade GF/C 96-well filter plate coated with 0.33% polyethyleneimine.
After washing the mixture three times using wash buffer (50 mM Hepes, 500 mM NaCl, and 0.1% BSA),
the radioactivity noted on the filters was measured using an Ultima Gold liquid scintillation cocktail
(PerkinElmer, Waltham, MA, USA). The Kd value (6.573 nM) was calculated using the GraphPad Prism
5 software (GraphPad Software, La Jolla, CA, USA).

In competition binding assays, a fixed concentration of [3H]-SR141716A (7 nM) and various
concentrations of non-radioactive competing ligands (ranging from 10 pM to 100 µM) were incubated
with membrane in a binding buffer for 2 h. The mixture was then transferred to a GF/C 96-well
filter plate coated with 0.33% polyethyleneimine. After washing the mixture three times using wash
buffer, the radioactivity on the filters was measured with an Ultima Gold liquid scintillation cocktail
(PerkinElmer, Waltham, MA, USA). The Ki values were calculated using the GraphPad Prism 5 software.

The binding displacement curves of competing ligands (ranging from 10 pM to 100 µM) against
[3H]-SR141716A (7 nM) binding to the CB1 receptor. The data were presented as means ± standard
error of means (n = 3) (raw data in Table S1).

3.3. QSAR Modeling

All QSAR studies were performed by an in-house R script, using the mlr (version 2.17.1),
pls (version 2.7-3) package in R program

3.3.1. Preparation of Datasets and Calculation of Molecular Descriptors

The chemical structures of dataset compounds were determined, and their biological activities were
assessed using CB1R-binding affinity assay. Additionally, we synthesized 14 compounds for assessing
their CB1R-binding Ki values. Eleven of these 14 compounds were included in a training set, and the
rest were included in a test set. Furthermore, the dataset was divided into the training (11 compounds)
and test (3 compounds) sets, which accounted for 80% and 20%, respectively, of the dataset.

All used compounds were prepared by a sketch module embedded in the Sybyl-X 2.1.1 (Certara Inc.,
Prinston, NJ, USA). [30] molecular modeling software package in the CentOS Linux 5.4 operating
system. Structures of all compounds were determined using sketch modules and saved in mol2 format.
All hydrogen atoms and Gasteiger–Hückel charge were added to atoms. To optimize the structures of
the compounds, energy minimization was performed until maximum derivatives of 0.001 kcal mol−1

Å−1 were reached using a standard tripos force field. The data were divided into two sets. One was a
training set for the establishment of prediction models, and the other was an external test set for the
evaluation of the built prediction models. All dataset compounds (Figure 1) were saved in sdf format.

All molecular descriptors (constitutional, electronic, topological, hybrid, and geometrical) were
assessed using the rcdk package [31].

3.3.2. MLR

The primary objective of the MLR was to construct an estimated regression equation (ŷi) by
estimating the parent regression equation (yi) from the sample. Using the ordinary least squares
method, we could estimate the coefficient of the estimated regression equation.

In the following equation, X is denoted by an n × p matrix, where n is the number of observations
and p is the number of features. Moreover, Y is denoted by an n × k matrix, where k is the number of
dependent variables.

yi = β0 + β1xi1 + β2xi2 + · · ·βpxip + εi (5)

N∑
i=1

ei
2 =

N∑
i=1

(yi − ŷi)
2

β̂ =
(
XTX

)−1
XTY

(6)

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + β̂pxip (7)
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Despite the wide use of MLR, it is inefficient when several variables are included. As there is
no variable selection method in MLR, at times, we could not build a model when the number of
observations was smaller than the number of variables. To resolve this, we selected descriptors using
the forward selection method, and 2 of 16 descriptors were shortlisted. The descriptors were added by
comparing the adjusted R2 until this value did not increase.

3.3.3. PLSR

MLR is vulnerable to features that are correlated to one another. This is because MLR cannot
identify correlated sets that may be more important to the model. To solve this problem, we adopted
PLSR method using pls packages in R [32].

PLSR is used to analyze or predict a set of dependent variables from a set of independent variables
or predictors. It is more useful for handling a large number of correlated and complex features than for
handling a limited number of data observations. In the following section, a brief explanation of how
PLSR works is outlined.

X is denoted by an n × m matrix, where n is the number of observations and m is the number of
features. Moreover, Y is denoted by an n × p matrix, where p is the number of response variables.

Partial least squares analysis (PLS) detects principal components from X that are also relevant for
Y. Particularly, PLS explores a set of components that perform a simultaneous decomposition of X and
Y with the constraint that these components explain the maximum possible covariance between X and
Y. As a result, these components are used to build the model.

X = TTP

Y = UTQ

U = BT

T and U are the n × l score vectors that are the projections of X and Y, respectively.
P and Q are the m × l and p × l orthogonal loading vectors, respectively. PLS maximizes the

covariance between T and U.
After using the filtering method, it is possible to apply PLSR to the data and find a set of

components. Considering the explanation ratio of X and Y, we can choose the number of components
to be used in the model. If the number of training sets is 11, two components are sufficient to build
QSAR models. Two components explain 77.97% and 8.43% of the training set variance, respectively.

3.3.4. Model Validation

The following statistical parameters were considered to validate QSAR models. To validate the
goodness of fit and robustness of the models, we evaluated the R2 and Q2. In particular, for the
MLR model that is affected by the number of descriptors, R2 increases as the number of descriptors
increases. Therefore, this model was verified using adjusted R2 (R2

adj). Q2 was estimated by the
leave-one-out approach. One compound was omitted from the training set, and a new model was
built from this slightly smaller training set. Then, using the new model, the activity of the omitted
compound was predicted.

R2, R2
adj, and Q2 were calculated using the following equations:

R2 = 1−
∑
(yi − ŷi)

2∑
(yi − y)2 (8)

R2
adj = 1−

(
1−R2

)
(N− 1)

N− p− 1
(9)
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Q2 = 1−
∑
(yi − ŷ)2∑
(yi − y)2 (10)

where yi and ŷi are the actual and predicted activities of the ith training set, y is the average activity of
the training set, N represents the number of training sets, and p represents the number of descriptors.

To evaluate the predictability of the model, we used the predicted R2 (R2
pred) value which is

calculated with test set data.

R2
pred = 1−

∑
(yi − ŷ)2∑
(yi − y)

(11)

where yi and ŷi are the actual and predicted activities of the ith test set, and y is the average of the
training set response variable. Furthermore, we validated the normal distribution of residuals by Q-Q
plotting. Q-Q is a plot of quintiles from each dataset. If the Q-Q points are on a straight line with a
45-degree slope, the data can be interpreted to follow normal distribution.

A Y-randomization test was performed to verify that the QSAR model was not constructed by an
accidental correlation between the dependent variable and the descriptor. The Y-randomization test
was repeated 25 times, and the Y-randomization coefficient cRp

2 was calculated as follow to validate
robustness of model:

cRp2 = R ×
√

R2
−R2

r

R is correlation coefficient for original model and Rr is average R of random models. If the cRp
2 is

greater than 0.5, the model passes the test.

3.3.5. Applicability Domain of the Model

Euclidean distances were used to define the applicability domain of the QSAR models based on
the descriptor space of training set. The Euclidean distance of the test set was calculated with the
compound which has the smallest distance in the training set and compared to the defined applicability
domain (APD) threshold [33]. Euclidean distance and APD were calculated as follows:

Euclideandistance = d(x, y) =
√∑

(xi − yi)
2

APD = <d> + Zσ

Among all the Euclidean distances of the training set, we selected a distance lower than the
average. We defined the average and standard deviation of this set as <d> and σ. Z is the cutoff

value and it was decided as 0.5. If the Euclidean distance of the test set is less than the defined APD
threshold, the predicted value is reliable.

3.3.6. Validation of PLSR Model Using an External Evaluation Set

We prepared the database containing 62 compounds obtained from the literature [11,29].
The Euclidean distance was calculated for each molecule to select the compounds which entered into
the APD (threshold = 4.753). As listed in Table S4, 50 compounds were within the APD and used as a
validation set. The correlation between the experimental value and the predicted value was calculated
by Pearson correlation coefficient.

Pearson correlation coefficient is the test statistic that measures the statistical relationship and is
calculated as follows:

rxy =

∑(
Xi − X

)(
Yi − Y

)
√∑(

Xi − X
)2

√∑(
Yi − Y

)2

where X, Y, is mean of variables X and Y, respectively.
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4. Conclusions

Considering the prevalence of SCs and their harmful effects, we need a reliable tool to predict
the abuse potential of new SC congeners. This study aimed to build QSAR models, which could
predict the CB1R-binding affinity of SCs. We conducted QSAR modeling of SCs using two regression
methods (PLSR and MLR) using our own CB1R-binding assay results as training data. We obtained
a PLSR model with good statistical performance with a limited number of data observations. As a
result, we suggest boundary pKi values for the CB1R binding of SCs that may result in dependence
or abuse. The resulting QSAR model can be used to predict the CB1R-binding affinity and suggest a
further validation of in vivo addictive potentials (CPP and SA behavior) of drugs, correlating with
the predicted CB1R-binding affinity. The current study provided not only a novel strategy for QSAR
modeling but also an efficient tool to predict the abuse or addiction potential of SCs for the purpose of
controlling their illicit use.

Supplementary Materials: The following are available online. Synthesis and characterization of synthetic
cannabinoids, Table S1: CB1R-binding affinity raw data for 15 synthetic cannabinoids, Table S2: List of descriptors
used for QSAR models, Table S3: Statistical analysis of MLR models, Figure S1: Q-Q plots of the residuals from
MLR model 31 showing a normal distribution, Figure S2: Q-Q plots of the residuals from PLSR model showing a
normal distribution, Figure S3: Y-Randomization analysis of the generated PLSR model, Table S4: CB1R-binding
affinity (pKi) of JWH-series compounds predicted by the PLSR model.
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