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Abstract: We discuss the concept and realization of a heat bath in solid state quantum systems. We
demonstrate that, unlike a true resistor, a finite one-dimensional Josephson junction array or analogously
a transmission line with non-vanishing frequency spacing, commonly considered as a reservoir of a
quantum circuit, does not strictly qualify as a Caldeira–Leggett type dissipative environment. We then
consider a set of quantum two-level systems as a bath, which can be realized as a collection of qubits.
We show that only a dense and wide distribution of energies of the two-level systems can secure long
Poincare recurrence times characteristic of a proper heat bath. An alternative for this bath is a collection
of harmonic oscillators, for instance, in the form of superconducting resonators.
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1. Introduction

The question of thermalization in closed quantum systems and the nature of thermal
reservoirs are topics of considerable interest [1–7]. However, experimental realizations, in
particular, in the solid-state domain are largely missing [4,8]. In this paper, we compare
different types of reservoirs that can be realized in the context of superconducting quantum
circuits. An ideal heat bath is a resistor [9–15], which can be realized in a straightforward
way. However, mainly because of the compatibility of the fabrication processes, the circuit
QED community typically prefers to mimic resistors or simply to produce high-impedance
environments by arrays of Josephson junctions or superconducting cavities [16–24]. The
advantages of a physical resistor in the form of a metal film are that it has a truly gapless
and smooth absorption spectrum, and on the practical side its temperature can be probed
by a standard thermometer [25]. A one-dimensional Josephson junction array, on the
contrary, although acting as a high impedance environment [26,27], presents well-defined
resonances in its absorption spectrum up to the plasma frequency and purely capacitive
behavior above it and cannot thus be considered rigorously as a resistor. Experiments on
multimode cavities support our conclusion, as they exhibit periodic recoveries of the qubit
coupled to them [28]. In order to realize a Caldeira–Leggett type true reservoir [29,30] out
of superconducting elements, we propose an ensemble of qubits or LC-resonators with a
distribution of energies among them.

2. Basic Properties of LC Resonators and Josephson Arrays

We start with an elementary classical analysis of a one-dimensional Josephson junction
array (see Figure 1a), which can be presented in a linearized form by a chain of parallel
LC elements for the junctions, with a ground capacitance Cg between two of them, as in
Figure 1b. Assuming a long array, we can write for voltage V(k) on island k and current
I(k), through the corresponding junction,

∂V(k)/∂k + ZLC I(k) = 0

iωCgV(k) + ∂I(k)/∂k = 0. (1)
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Here, ZLC = −iZ∞/(ω/ωp − ωp/ω) with Z∞ =
√

L/C, ω is the angular frequency of
driving, ωp = 1/

√
LC is the plasma frequency of the junction, and I(k) is the current

through the k:th junction. One can solve these equations with different terminations of
the array. One finds the dispersion relation of the angular frequencies ωn for infinite
impedance at

ωn = ωn,0/
√

1 + (ωn,0/ωp)2, (2)

where, for an array of N junctions, ωn,0 = (n − 1/2)π/(N
√

LCg) for a shorted termination,
and ωn,0 = nπ/(N

√
LCg) for an open line [20] (These frequencies practically coincide

with those obtained by exact diagonalization of an array of arbitrary length and those
from numerical results for n ≪ N, which is the usual regime). This is the functional
dependence of the dispersion relation used in fitting the data, e.g., in Refs. [22,24], and it is
depicted in Figure 1c for two different values of C/Cg, one for the pure LC transmission line
C/Cg = 0 and the other for C/Cg = 100. Figure 1d–f shows the modulus of the frequency
dependent impedance of an array calculated numerically for C/Cg = 100. We conclude
that such an array can hardly be considered to be a resistor. The resonant absorption at
frequencies corresponding to Equation (2) is presented in experiments as well [22,24]. At
frequencies above ωp, there are no more modes, and the impedance is purely capacitive,
with impedance Z(ω) = (iω

√
CCg)−1 asymptotically at high frequencies (see Figure 1f).
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Figure 1. Basic properties of a one-dimensional Josephson junction array. (a) An array with N junc-
tions, terminated by impedance ZL. The current is I, and the voltage is V. Junctions can be replaced
by superconducting interference devices (SQUIDs) acting as tunable junctions. (b) An equivalent
circuit for a uniform array with junctions linearized as inductors L. The junction capacitance is C, and
the stray “ground” capacitance of each island is Cg. (c) The dispersion relation for modes in the array
for two cases, C = 0 (black line, LCg) and C = 100Cg (green line, CLCg), for an array with N = 3000.
Here, we assume an open ended array (ZL = ∞). The (angular) frequencies are scaled by the plasma
frequency ωp = 1/

√
LC of each junction. (d) The modulus of the impedance of the CLCg array as a

function of the frequency and (e) a zoom out of it for lower frequencies (red line), together with that
of the linear LCg array as well (blue line). (f) At frequencies ω ≫ ωp, the CLCg array behaves as a
capacitor with effective capacitance

√
CCg.

3. LC Resonators and Josephson Arrays as Environment: Model

We next analyze the energy exchange between the system (here, a qubit) and a reservoir
to assess whether the latter qualifies as a thermal bath. In general, an ideal array presents
a reactive element that cannot dissipate the energy. Such a conclusion can be drawn for
instance by analyzing the population of a qubit coupled to the array. To be concrete, we
follow the model in Refs. [28,31] and consider a qubit with energy h̄Ω coupled to a bath of



Entropy 2024, 26, 429 3 of 8

N states, with the energy of the j:th one equal to h̄ωj. The Hamiltonian of the whole system
and bath is given by

Ĥ = h̄Ωâ† â +
N

∑
i=1

h̄ωi b̂†
i b̂i +

N

∑
i=1

γi(â† b̂i + âb̂†
i ), (3)

where â = |g⟩⟨e| for the qubit with eigenstates |g⟩ (ground) and |e⟩ (excited), and b̂†
i (b̂i)

is the creation (annihilation) operator of the environment modes. The non-interacting
Hamiltonian is Ĥ0 = h̄Ωâ† â + ∑N

i=1 h̄ωi b̂†
i b̂i. The parameters γi represent the coupling

of the qubit with each state in the environment for the perturbation, which reads in the
interaction picture with respect to Ĥ0 as

V̂I(t) =
N

∑
i=1

γi(â† b̂iei(Ω−ωi)t + âb̂†
i e−i(Ω−ωi)t). (4)

The basis that we use is formed of the states of the system and environment as {|0⟩ =
|1000...0⟩, |1⟩ = |0100...0⟩, ..., |i⟩ = |0 0...1(i:th)...0⟩}, where the first entrance refers to the
qubit and from the second on to each of the N states in the bath. In what follows, we apply
this model to both a multimode cavity and spins as environment. We choose the initial
state of the whole system (qubit and environment) as |ψI(0)⟩ ≡ |0⟩. This corresponds to
the ground state of the environment (zero temperature, T = 0) but with the qubit excited.
The assumption of such a vacuum initial state is justified because, in typical experiments
on superconducting qubits, the energy of the qubit is of the order of 1 K, whereas the
temperature of the experiment is about 0.01 K. Since, especially in the weak coupling case,
the qubit interacts mainly with degenerate states, the assumption of no excitations initially is
a good one. We solve the Schrödinger equation ih̄∂t|ψI(t)⟩ = V̂I(t)|ψI(t)⟩ in the interaction
picture to find the time evolution of the state of the whole system, |ψI(t)⟩ = ∑N

i=0 Ci(t)|i⟩.
In the given basis, the amplitudes Ci(t) are then governed by

ih̄Ċ0 =
N

∑
j=1

γje
i(Ω−ωj)tCj

ih̄Ċj = γje
−i(Ω−ωj)tC0. (5)

With the initial conditions C0(0) = 1 and Cj(0) = 0 for j = 1, ... , N, i.e., with state
|ψ(0)⟩ = |0⟩, we find

C0(t) = 1 − i
h̄

N

∑
j=1

γj

∫ t

0
dt′ei(Ω−ωj)t′Cj(t′)

Cj(t) = − i
h̄

γj

∫ t

0
dt′ e−i(Ω−ωj)t′C0(t′). (6)

In the rest of the paper, we integrate these equations numerically for the given set of
couplings and frequencies.

4. Results on the Qubit + Resonator Environment Dynamics

Returning first to a Josephson junction array or a finite transmission line, we may
write the (angular) frequencies of the multimode resonator as ωk = k∆ω (exactly for an
LC transmission line and approximately for the array well below ωp, see Equation (2)),
where the spacing ∆ω is given by the length of the line or array as discussed above
for the latter. Furthermore, we assume the standard coupling as γk = g

√
k, where g

is the coupling constant arising, e.g., from the capacitance between the qubit and the
resonator [28]. This model, with the system depicted in Figure 2a, demonstrates in the
absence of true dissipative elements almost periodic exchange of energy between the qubit
and the cavity shown in Figure 2b, where the excited state population of the qubit pe ≡ |C0|2
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is depicted against the normalized time Ωt. This is in contrast to the exponential decay in
the case of a resistor as environment. In this numerical example, we chose ∆ω = 0.01 Ω
and included N = 300 states in the calculation. This energy spacing approximately mimics
the experiment of Ref. [28]. We can see that the revivals are not full, and the energy of the
qubit is distributed over many states with energies in the neighborhood of h̄Ω. Zooming in
to the short time regime as in Figure 2c, we observe the exponential decay of the population
over eight orders of magnitude. A closer analysis of the dynamics yields that the decay in

short times is indeed exponential, with a decay rate Γ = 2π
g2

h̄2
Ω

∆ω2 , following the numerical
result of Figure 2c. The other important feature in the dynamics, naturally, is the periodic
recoveries of pe(t). The first repopulation demonstrates a sharp peak that sets abruptly
on at time t = 2π/∆ω. We may associate this with the time of flight of a photon with
frequency Ω through the transmission line and reflected back; thus, t is proportional to
the length of the line or N in the array. In practical circuits, this recovery time falls into a
very short nanosecond regime, meaning that the transmission line acts as a bath only for
times shorter than this. In Ref. [28], similar results as in Figure 2b were obtained using the
input–output theory [32,33]. The results are robust against different terminations of the
line. We also tested the dynamics using different initial states of the system, which did not
lead to noticeable changes in the recovery time.
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Figure 2. A qubit coupled to a linear Josephson junction array or a transmission line. (a) A schematic
presentation of the circuit. (b) Time-dependent population pe(t) of the qubit after initialization to
the excited state. The transmission line is assumed to be initially in the ground state. The coupling
parameter between the qubit and the line is g = 0.001. We have chosen ∆ω = 0.01 Ω, typically
corresponding to either N = 104–105 junctions or a 1 m long transmission line, close to that in
Ref. [28]. The value of the impedance ZL has almost no effect on pe(t). (c) Initially the qubit
decays exponentially, until at t = 2π/∆ω the first revival sets abruptly in. The solid line is an
exponential fit in this range. The dashed line, also following closely the numerical result, is given by

the analytic expression with a decay rate Γ = 2π
g2

h̄2
Ω

∆ω2 , corresponding to a continuum approximation
of frequencies. (d1–d3) Populations of the states in the multimode resonator at three time instants
indicated by arrows in (b).

5. Heat Bath Formed of Two-Level Systems (Qubits)

As is well known, a set of reactive elements can, however, effectively approximate
a dissipative element in the spirit of Caldeira and Leggett [29]. We will next discuss
the conditions of forming a heat bath in a solid-state quantum context without actual
dissipative building blocks. In particular, we focus on a collection of coupled quantum
two-level systems (TLSs), which can, in practice, be formed of Josephson junction based
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qubits [34] or of unknown structural defects in superconducting circuits [35,36]. A set of
harmonic oscillators in the form of superconducting cavities would provide an alternative
realization of a Caldeira–Leggett environment. Here, we focus on TLSs. Returning to
the archetypal setup, where a central qubit couples to an ensemble of these TLSs, we
observe the dynamics of this qubit when initially set to its excited state. We use the same
model as above but now with different distributions of energies and couplings of the
TLSs. For the sake of clarity of the argument, all the TLSs are again set initially to their
ground state, mimicking a zero temperature environment. As we have shown in another
context [31], a broad distribution of energies of the TLSs secures the exponential decay of
the qubit population in time. This can be seen also analytically, for instance, by standard
means re-summing in all orders of perturbation, assuming a large number of uniformly
distributed TLS energies. The distribution of energies and couplings of the TLSs is an
essential condition for absorbing the energy of the qubit to this bath without recoveries
over any practical timescales. In this case, the qubit decays exponentially as

|C0(t)|2 ≃ e−Γ0t. (7)

Here, Γ0 = 2πν0Λ2
0/N, with ν0, the density of TLSs around Ω, and Λ2

0 = ∑N
i=1 γ2

i /h̄2.
In general, for any distribution of energies and couplings, we find that the qubit

amplitude C0(t) in the excited state is governed by the integro-differential equation

C̈0(t) + Λ2
0 C0(t) = (8)

− i
h̄2

N

∑
k=1

γ2
k(Ω − ωk)

∫ t

0
dt′ei(Ω−ωk)(t−t′)C0(t′).

We see immediately that, for the case where all the TLSs have the same energy as the
qubit, ωk ≡ Ω for all k, and the qubit does not decay, even when the couplings γi are fully
random; however, it oscillates with the population |C0(t)|2 = cos2(Λ0t); i.e., the Poincare
recovery time is π/Λ0.

We can generalize the conclusion above for a bath where ωk = (1 − r)Ω for arbi-
trary positive r, meaning detuned equal-energy TLSs in the environment. In this case,
Equation (8) leads to D̈(t)− irΩḊ(t) + Λ2

0D(t) = 0, where D(t) = Ċ0(t). C0(t) satisfies
the initial conditions C0(0) = 1, Ċ0(0) = 0 and C̈0(0) = −Λ2

0. We then have the oscillatory
solution

|C0(t)|2 = 1 −
Λ2

0
Λ2

0 + (rΩ/2)2
sin2(

√
Λ2

0 + (rΩ/2)2 t). (9)

Figure 3a shows the numerically calculated results of pe(t) for N = 107 TLSs and
for different choices of parameters following closely the analytical results given above.
For a uniform distribution of TLS energies in the range [0, 2h̄Ω], the decay is exponential
as described above, whereas for TLSs with identical energies, there are periodic revivals
in quantitative agreement with the analytic result. These results serve as a warning sign
for models where bath spins are assumed to have equal energies. In Figure 3b,c, we
numerically monitor the long time behavior of pe(t) under the same conditions as in the
main frame but with N = 105 and N = 3000 TLSs with distributed energies and couplings.
We see that there are no revivals over this long period of time in both cases, and the long
time population follows closely the prediction pe(t → ∞) = 4Ω/(NπΓ0) indicated by the
horizontal lines [37]. This result emphasizes the importance of randomness (in couplings
and frequencies) to prolong the Poincare recurrence time.

Two possible realizations of such reactive baths can be immediately envisioned. The
one that corresponds to our analysis here is that of a qubit coupled to a TLS environment
with variable energies: with modern qubits as TLSs, the couplings and energies can be
varied almost arbitrarily [34]. One can envison to couple hundreds, perhaps even thousands,
of such artificial TLSs to a qubit. A simpler choice could be an ensemble of superconducting
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resonators with the same idea: here, the tunability is more limited, and instead of TLSs,
these resonators work as harmonic oscillators.

Figure 3. A qubit coupled to a reservoir of N = 107 two-level systems in (a). The central qubit
is coupled to each TLS via coupling constants γi that have a uniform distribution between 0 and
its maximum level, corresponding to the overall relaxation rate Γ0 = 0.03. The dark blue line
corresponds to the evolution of pe ≡ |C0|2 in the environment of TLSs with uniform distribution
of energies in the range 0 < ωi < 2Ω leading to nearly exponential decay. The oscillatory qubit
populations of the other curves correspond to uniform environments with ωi = (1 − r)Ω for all i,
with r = 0, 0.25 for grey and red lines, respectively. These dynamics follow that given by Equation (9)
quantitatively. (b,c) show the population in a similar distributed bath of N = 105 and N = 3000 TLSs,
respectively, over a time period of Ωt = 3 × 105. The horizontal lines are the analytical long time
predictions given in the text.

6. Summary

In summary, it is possible to form a thermal bath on a chip, avoiding recurrences [38]
over any practical time scale, in the spirit of Caldeira and Leggett [29] using just reactive
elements. However, a one-dimensional array of Josephson junctions or alternatively a trans-
mission line exhibits periodic recoveries on nanosecond time scales in practical physical
circuits for two reasons: first, the energy distribution is not dense, and, equally importantly
the coupling is not random but essentially equal (∝

√
i) to each state i. Such an environ-

ment is thus a heat bath only if it has significant intrinsic dissipation, valid typically for
N > 105 [18,20], or if it is terminated by a resistive element [39]; in this case the termination
itself is the bath. A way around to achieve a true bath is to form a network of harmonic
oscillators or TLSs with distributed parameters and couple it to the quantum system.
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