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Abstract: The physical roots, interpretation, controversies, and precise meaning of the Landauer
principle are surveyed. The Landauer principle is a physical principle defining the lower theoretical
limit of energy consumption necessary for computation. It states that an irreversible change in
information stored in a computer, such as merging two computational paths, dissipates a minimum
amount of heat kBTln2 per a bit of information to its surroundings. The Landauer principle is
discussed in the context of fundamental physical limiting principles, such as the Abbe diffraction
limit, the Margolus–Levitin limit, and the Bekenstein limit. Synthesis of the Landauer bound with the
Abbe, Margolus–Levitin, and Bekenstein limits yields the minimal time of computation, which scales
as τmin ∼ h

kBT . Decreasing the temperature of a thermal bath will decrease the energy consumption
of a single computation, but in parallel, it will slow the computation. The Landauer principle
bridges John Archibald Wheeler’s “it from bit” paradigm and thermodynamics. Experimental
verifications of the Landauer principle are surveyed. The interrelation between thermodynamic
and logical irreversibility is addressed. Generalization of the Landauer principle to quantum and
non-equilibrium systems is addressed. The Landauer principle represents the powerful heuristic
principle bridging physics, information theory, and computer engineering.

Keywords: Landauer principle; entropy; Abbe limit; Margolus–Levitin limit; Bekenstein limit;
Planck–Boltzmann time; Szilárd engine

1. Introduction

The Landauer principle is one of the limiting physical principles that constrains
the behavior of physical systems. There exist fundamental laws and principles setting
the limits of physical systems. These laws do not predict or describe the behavior of
physical/engineering systems but limit or restrict their functioning. A realistic natu-
ral/engineering system can only provide limited functionalities because its performance is
physically constrained by some basic principles [1]. Some of these limits are engineering
ones. For example, a key engineering bottleneck for the development of new generations
of computers today is integrated circuit manufacturing, which confines billions of semi-
conducting units in several cm2 of silicon with extremely low defect rates [2]. Another
engineering constraint is imposed by limits on individual interconnects [2]. Despite the
doubling of the transistor density according to the Moore law, semiconductor integrated
circuits would not operate without fast/dense interconnects. Metallic wires can be either
fast or dense but not both at the same time—a smaller cross-section increases electrical
resistance, while a greater height or width increases parasitic capacitance with neighboring
wires (wire delay grows with RC) [2]. Other constraints limiting the operation of physical
(natural or engineering) systems are fundamental ones, and they emerge from the deepest
foundations of physics. Limiting physical principles appeared in physics relatively late. It
seems that the first limiting principle historically was the Abbe diffraction limit, discovered
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in 1873, which states that in light with wavelength λ λ, traveling in a medium with refrac-
tive index n and converging to a spot with half-angle θ θ, θ will have a minimum resolvable
distance of d, as supplied by Equation (1):

d =
λ

2nsinθ
, (1)

where the minimum resolvable distance d is defined as the minimum separation between
two objects that results in a certain level of contrast between them [3,4]. The Abbe diffrac-
tion limit is the maximum resolution possible for a theoretically perfect, or ideal, optical
system [3,4]. Thus, it is not the engineering but the fundamental physical principle. The
Abbe diffraction limit arises from the idea that the image arises from a double diffraction
process [3,4]. Other diffraction limit formulae, known as the Rayleigh and Sparrow limits,
were suggested [3,4]. These formulae coincide with the Abbe limit within a numerical
coefficient; thus, the value of the numerical multiplier appearing in Equation (14) is not
exact [3–5].

In spite of the fact that the Abbe diffraction limit is rooted in classical physics, the
role of the limiting principles in the realm of classical physics is more than modest. The
situation has changed dramatically within modern physics. In relativity, the speed of light
in a vacuum, labeled c, is a universal physical constant of ca. 300,000 km per second, and
according to the special theory of relativity, c is the upper limit for the speed at which
conventional matter or energy (and, consequently, any signal carrying information) can
travel through space [6,7]. It is impossible for signals or energy to travel faster than c. The
speed at which light waves propagate in a vacuum is independent of both the motion
of the wave source and the inertial frame of reference of the observer, thus enabling the
Einstein synchronization procedure for clocks [6,7]. The limiting status of the speed of light
in a vacuum was intensively disputed in the last few decades, and theories assuming a
varying speed of light have been proposed as an alternative way of solving several standard
cosmological problems [8,9]. Recent observational hints that the fine structure constant may
have varied over cosmological scales have given impetus to these theories [8,9]. Theories
in which the speed of light traveling in a vacuum appeared as an emerging physical value
were suggested [9]. We adopt unequivocally the limiting status of the speed of light in a
vacuum c and demonstrate that this status generates other limiting physical principles, and
just this status gives rise to consequences emerging from the Landauer principle.

The main limiting principle of quantum mechanics is the Heisenberg uncertainty prin-
ciple. It states that there is a limit to the precision with which certain pairs of physical prop-
erties, such as position x and momentum p (or time t and energy E), can be simultaneously
measured. In other words, and more accurately speaking, when one property is measured,
the less accurately the other property can be established (see Equations (2) and (3)):

σxσp ≥ ℏ
2

, (2)

σtσE ≥ ℏ
2

, (3)

where σx, σp, σt, and σE are standard deviations of the position, momentum, time, and
energy, respectively, and ℏ = h

2π is the reduced Planck constant [10,11]. The time–energy
uncertainty principle, supplied by Equation (3), needs more detailed discussion to be sup-
plied in the context of the Mandelstam–Tamm and Margolus–Levitin bounding principles.

The limiting value of the light propagating in a vacuum c combined with the Heisen-
berg uncertainty principle together yield the Bremermann limit, which supplies a limit on
the maximum rate of computation that can be achieved in a self-contained system [12]. The
Bremermann limit is derived from Einstein’s mass–energy equivalency and the Heisenberg
uncertainty principle, and is c2

h
∼= 1.35 × 1050 bits per second per kilogram of the computa-
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tional system [12]. Consider that the Bremermann limit is built of the fundamental physical
constants only.

Quantum mechanics also gives rise to the Mandelstam–Tamm and Margolus–Levitin
limiting principles [13,14]. The Mandelstam–Tamm quantum speed limit states the time it
takes for an isolated quantum system to evolve between two fully distinguishable states, as
given by Equation (4):

τ > τMT =
h

4∆E
, (4)

where ∆E is the energy uncertainty. The Margolus–Levitin limiting principle supplies a
surprising result, predicting the maximum speed of dynamic evolution of the system [15].
The Margolus–Levitin limiting principle supplies the minimum time it takes for the physical
system to evolve into an orthogonal state (labeled τ⊥). It should be emphasized that this
minimum time τ⊥ depends only on the system average energy minus its ground state
(denoted E − E0, and not on the energy uncertainty ∆E, as follows from Equation (4) [15].
To simplify the formulae, we chose the zero-level energy in such a way that E0 = 0 so that
the Margolus–Levitin limiting principle yields for the minimal time bound, denoted as τML
in Equation (5):

τ⊥ > τML =
h

4E
(5)

Another important fundamental limiting principle is supplied by the Bekenstein
bound [16]. Bekenstein demonstrated that there exists a universal upper bound of the
entropy-to-energy ratio S

E for an arbitrary system confined by radius R, and this limit is
expressed by S

E = 2πR
ℏc [16]. In other words, the Bekenstein bound defines an upper limit

on the entropy S, which can be confined within a given finite region of space that has a
finite amount of energy E, or conversely, the maximum amount of information required
to perfectly describe a given physical system with a given, fixed energy E down to the
quantum level [16]. The bound value of entropy S is given by Equation (6):

S ≤ 2πkBRE
ℏc

, (6)

where R is the radius of a sphere that can enclose the given system, and E is the total
mass–energy including any rest masses [16]. We will discuss below the Margolus–Levitin
and the Bekenstein bounds in their relation to the Landauer principle.

2. Results
2.1. What Is Information? The Meaning of the Landauer Principle

What is information? The ambiguity of the notion of information hinders the physical
interpretation of this notion. Numerous definitions of information were suggested [17,18].
I am quoting from Ref. [17]: “Information can be data, in the sense of a bank statement, a
computer file, or a telephone number. Data in the narrowest sense can be just a string of
binary symbols. Information can also be meaning” [17]. Informational theory is usually
supplied in a pure abstract form that is independent of any physical embodiment. Intel-
lectual breakthrough in the mathematization of information is related to the pioneering
works by Claude Shannon, who introduced the information entropy of a random variable
understood as the average level of “information” or “uncertainty” inherent to the variable’s
possible outcomes [19,20]. Given a discrete random variable X Ψ, which takes values in
the alphabet Ψ, X and is distributed according to p : Ψ → [0, 1] p: X → [0, 1], the Shannon
measure of information/Shannon entropy, denoted as H(Ψ), is given by Equation (7):

H(Ψ) = −∑x∈Ψ p(x)logp(x) (7)

The Shannon measure of information is a very general mathematical concept, and regret-
tably, it is often mixed in the literature with thermodynamic entropy [21–25]. A distinction
for the Shannon measure of information is made in Refs. [21–25]. Again, the Shannon
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measure of information is a very useful mathematical concept completely disconnected
from the process of recording information, information carrier material, reading, and
erasing information.

In contrast, Rolf Landauer, in his pioneering and fundamental papers published in
1961–1996, argued that information is physical and has an energy equivalent [25–29]. It
may be stored in physical systems such as books and memory chips and is transmitted by
physical devices exploiting electrical or optical signals [26–29]. Indeed (I am quoting from
Ref. [29]), “computation, whether it is performed by electronic machinery, on an abacus
or in a biological system such as the brain, is a physical process. It is subject to the same
questions that apply to other physical processes: How much energy must be expended to
perform a particular computation? How long must it take? How large must the computing
device be? In other words, what are the physical limits of the process of computation?” If
we adopt the idea that computation is a physical process, it must obey the laws of physics,
and first and foremost the laws of thermodynamics [26–29]. This thinking leads to the new
limiting physical principle, which establishes the minimum energy cost for the erasure
of a single memory bit for the system operating at the equilibrium temperature T. This is
exactly the Landauer principle. The Landauer principle may be derived in different ways;
we start from the one-bit system depicted schematically in Figure 1. The picture depicts
the Brownian particle M confined within a double-well potential, shown in Figure 1 and
addressed in detail in Refs. [27–30]. When the barrier is much higher than the thermal
energy, the Brownian particle will remain in either well (left or right) for a long time. Thus,
the particle located in the left or right well can serve as the stable informational states “0”
and “1” of a single information bit (the informational states are denoted m = 0 and m = 1 in
Figure 1, where m is the parameter, characterizing the statistical state of the double-well
system). The average work W necessary to switch the statistical state of a memory under
the isothermal process from the state Ψ with distribution pm to Ψ′ with distribution p′m is
given by Equation (8):

W ≥ F
(
Ψ′)− F(Ψ), (8)

where F(Ψ) is the Helmholtz free energy of the system supplied by Equation (9):

F(Ψ) = ∑m pmFm − kBTH(Ψ) = ∑m pmFm + kBT ∑m pmlnPm, (9)

where Fm = Em − TSm is the Helmholtz free energy of the conditional states, and
H(Ψ) = −∑m pmlnpm is the Shannon entropy of the informational states, in the Shan-
non entropy of the informational states, which equals to their entropies Sm [21–25,30]. For
a symmetrical well and a random bit p0 = p1 = 1

2 , we immediately obtain the Landauer
bound, supplied by Equation (10):

W = kBTln2 (10)

The exact meaning of Equation (10) supplies the energy necessary for resetting/erasing
one random bit stored in a symmetric memory unit [30]. For asymmetric memory units,
∆Freset is not necessarily equal to −kBTH(Ψ) and the limiting Landauer principle is given
by the following inequality:

Wreset ≥ ∆Freset (11)

The exact equality is attained if the reset is thermodynamically reversible [30]. This does
not contradict the logical irreversibility of the reset, which implies that the entropy H(Ψ) of
the informational states decreases [30,31]. It is noteworthy, that the Landauer bound, given
by Equation (10), is related only to a single information-bearing degree of freedom of the
entire computing system.

The relation between logic and thermodynamic reversibility will be discussed below.
Again, the energetic cost on one random bit is supplied by the limiting physical principle,
expressed by Equation (11). A detailed discussion of Equations (10) and (11) is supplied
in Ref. [30]. An accurate and rigorous derivation of Equations (10) and (11) emerging
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from microscopic reasoning is supplied in Ref. [32]. We again consider the particle in the
twin-well potential U(x), shown in Figure 1. We assume that before the erasure we want
half of the bits to be in the “one” state and the other half to be in the “zero” state. We
also adopt the idea that the ensemble of bits is in contact with a thermal reservoir where
the temperature of the reservoir T is low enough not to change the state of the bits; in
other words, kBT < ∆U takes place [32]. The system will instead reach a “local” thermal
equilibrium in one of the half-wells. We therefore assume that the initial statistical state is
described by the following for the bits before erasure (see Figure 1):

ρin(x, p) =
1
Z

exp
{
−β

[
U(x) +

p2

2M

]}
(12)

whereas after the erasure, the distribution function is given by Equation (13):

ρ f in(x, p) =

{
2
Z exp

{
−β

[
U(x) + p2

2M

]}
, f or x > 0

0, for x < 0

}
, (13)

where x is the position, p is the momentum of the particle M, β = 1
kBT , and Z =

∫
exp −{[

U(x) + p2

2m

]
β
}

dpdx is the partition function [33,34]. After the routine transformations,
it is demonstrated that to erase one bit of information, on average, the work performed
on the system has to be equal to or greater than ln2kBT, or, equivalently, that the heat
dissipation by the system into the heat reservoir has to be greater than or equal to the
Landauer bound ln2kBT [32]. Generalization of the Landauer principle for computing
devices based on many-valued logic (N-based logic), exploiting N identical potential wells,
was reported [30,35]. The energy necessary for the erasure of one bit of information
(the Landauer limiting bound) W = kBTln2 remains untouched for computing devices
exploiting many-valued logic [30,35].

Entropy 2024, 26, x FOR PEER REVIEW 5 of 19 
 

 

given by Equation (10), is related only to a single information-bearing degree of freedom 
of the entire computing system. 

The relation between logic and thermodynamic reversibility will be discussed below. 
Again, the energetic cost on one random bit is supplied by the limiting physical principle, 
expressed by Equation (11). A detailed discussion of Equations (10) and (11) is supplied 
in Ref. [30]. An accurate and rigorous derivation of Equations (10) and (11) emerging from 
microscopic reasoning is supplied in Ref. [32]. We again consider the particle in the twin-
well potential U(x), shown in Figure 1. We assume that before the erasure we want half of 
the bits to be in the ‘‘one’’ state and the other half to be in the ‘‘zero’’ state. We also adopt 
the idea that the ensemble of bits is in contact with a thermal reservoir where the 
temperature of the reservoir T is low enough not to change the state of the bits; in other 
words, 𝑘 𝑇 < Δ𝑈  takes place [32]. The system will instead reach a ‘‘local’’ thermal 
equilibrium in one of the half-wells. We therefore assume that the initial statistical state is 
described by the following for the bits before erasure (see Figure 1): 𝜌 (𝑥, 𝑝) = 1𝑍 𝑒𝑥𝑝 −𝛽 𝑈(𝑥) + 𝑝2𝑀  (12)

whereas after the erasure, the distribution function is given by Equation (13): 𝜌 (𝑥, 𝑝) = 𝑒𝑥𝑝 −𝛽 𝑈(𝑥) + , 𝑓𝑜𝑟 𝑥 > 00, for 𝑥 < 0 , (13)

where x is the position, p is the momentum of the particle M, 𝛽 =  , and 𝑍 =𝑒𝑥𝑝 − 𝑈(𝑥) + 𝛽 𝑑𝑝𝑑𝑥  is the partition function [33,34]. After the routine 
transformations, it is demonstrated that to erase one bit of information, on average, the 
work performed on the system has to be equal to or greater than 𝑙𝑛2𝑘 𝑇, or, equivalently, 
that the heat dissipation by the system into the heat reservoir has to be greater than or 
equal to the Landauer bound 𝑙𝑛2𝑘 𝑇 [32]. Generalization of the Landauer principle for 
computing devices based on many-valued logic (N-based logic), exploiting N identical 
potential wells, was reported [30,35]. The energy necessary for the erasure of one bit of 
information (the Landauer limiting bound) 𝑊 = 𝑘 𝑇𝑙𝑛2  remains untouched for 
computing devices exploiting many-valued logic [30,35]. 

 
Figure 1. Particle M placed in the twin-well potential is depicted. The position of the particle in the 
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Figure 1. Particle M placed in the twin-well potential is depicted. The position of the particle in
the double-well potential will determine the state of the single bit. If the particle is found on the
left-hand side of the potential, then we say that the bit is in the “zero” state. If it is found on the
right-hand side of the well, then we define that the bit is in the “one” state. The picture is taken from
the Bormashenko Ed. “Generalization of the Landauer Principle for Computing Devices Based on
Many-Valued Logic” [35].

2.2. The Landauer Limit and the Margolus–Levitin Limiting Principle

Now we are ready to combine the Landauer bound with the Margolus–Levitin limiting
principle, given by Equation (5). Consider the computing unit, based on the physical device
for which the Landauer limiting principle is true (the device exploiting identical potential
wells confining the particle may be taken as an example) [30,32,35]. This device operates
in a thermal equilibrium with its surroundings (thermal bath), which is kept at a constant
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temperature T. Let us pose the following question: What is the minimal time it will take
for this device to make a single computing operation? Assuming in Equation (5) that
E ∼= kBT ln 2, we obtain the following very rough estimation for the minimum “Margolus–
Levitin–Landauer” time necessary for a single computation, denoted as τMLL:

τMLL ≥ h
4 ln 2kBT

=
τPB
4ln2

(14)

where τPB = h
kBT is the Planck–Boltzmann thermalization time, which is conjectured to be

the fastest relaxation timescale for thermalization of the given system [36]. We assume in
Equation (14) that that the energy cost of a single computation equals the energy necessary
for the transfer of the system into the orthogonal quantum state. Again, we choose the
zero-level energy in such a way that E0 = 0 [15]. The numerical multiplier appearing in
Equation (14) should not be taken too seriously. The values of these multipliers are not
exact when the limiting physical principles are considered, as already mentioned when the
Abbe diffraction limit (see Equation (1)) was discussed. It is noteworthy that the Margolus–
Levitin–Landauer time given by Equation (14) is independent of the geometrical dimensions
of the computing unit. Formula (14) may be called the Margolus–Levitin–Landauer bound.
The Planck–Boltzmann thermalization time should not be mixed up with the Planck time,
which is the time span at which no smaller meaningful length can be validly measured due
to the indeterminacy expressed in Werner Heisenberg’s uncertainty principle.

Let us estimate now the Landauer time for the ambient conditions. Assuming
h ∼= 6.626 × 10−34 Js, kB ∼= 1.38 × 10−23 J

K , T ∼= 300 K, we calculate τMLL ∼= 0.9 × 10−11 ∼
10−11 s. Thus, a single computing unit may perform not more than 1011 erasures per second
in ambient conditions.

Other approaches for the bounds of the finite time computation were suggested [37–41].
For a slowly driven (quantum) two-level system weakly coupled to a thermal bath, the
finite-time Landauer bound takes the simple form supplied by Equation (15):

W ≥ kBT
(

ln2 +
π2

4Γτ

)
+ O

(
1

Γ2τ

)
, (15)

where τ is the total time of the computation process and Γ is the thermalization rate. It
should be emphasized that all of the approaches suggest the emergence of the Planckian
thermalization time scale τPB = h

kBT (we denote it as the Planck–Boltzmann time) as the
shortest timescale for information erasure, as also immediately follows from the Margolus–
Levitin–Landauer bound supplied by Equation (14) (see Ref. [41]). Finite-size corrections to
the Landauer bound are reported in Ref. [42]. Equations (14) and (15) supply the trade-off
important for development of the computing devices. Engineers want computing devices to
be as energy efficient as possible; thus, they try to diminish the energy necessary for a single
computation [43]. It should be emphasized that the Landauer limit establishing the minimal
energy cost W = kBTln2 for a single erasure operation emerges from the equilibrium
thermodynamic considerations, and it is independent of the engineering realization of the
computing unit [43]. However, this decrease in the energy cost of computation due to a
decrease in the temperature T inevitably results in an increase in a single computation time,
as follows from the Margolus–Levitin–Landauer bound supplied by Equation (14).

2.3. The Landauer Limit and the Bekenstein Bound

Now we find ourselves in the realm of relativity. We will demonstrate that the Beken-
stein bound [16] also restricts the computation time. Consider a computational unit with
a characteristic dimension of R. Cum grano salis we assume that the minimal time of the
single computation (we call it the Bekenstein time and denote it as τB) is given by τB ∼= R

c ,
which is the minimal time possible for the transfer of the particle from one half of the
double-well potential to another one. Now we address Equation (6). The entropy change
necessary for erasing 1 bit of information is estimated as S = kBln2. According to the
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Landauer principle E ∼= kBTln2, substituting τB ∼= R
c , S = kBln2, and E ∼= kBTln2 yields

Equation (16):

τB ≥ h

(2π)2kBT
=

τPB

(2π)2 , (16)

It is immediately recognized that the Planck–Boltzmann thermalization time appears as
a single time scale in the eventual bound, supplied by Equation (16). This time scale
is independent of the dimensions of the computing unit. Comparing Equation (16) to
Equation (14) yields τB < τMLL; however, the values of these time scales are close one
to another. It is seen that the Landauer limiting principle allows for fundamental ideas
emerging from relativity and quantum mechanics to be unified. The minimal times of
computation arising from the Margolus–Levitin and Bekenstein bounds are close to one to
another. Thus, the Landauer principle in a certain sense bridges relativity and quantum
mechanics. This idea will be discussed below. It should be emphasized the Landauer
principle holds for a variety of quantum systems [39,44–49].

2.4. The Abbe Diffraction Limit and the Landauer Principle

Now we address the Abbe diffraction limit (see Equation (1)) discussed in Section 1
and addressed in detail in the classic textbooks devoted to optics [3,4]. Consider the
twin-well computational system depicted in Figure 2 and representing particle M confined
within the twin-well potential. We use the monochromatic light ν, λ (ν is a frequency,
λ is a wavelength) for identification of the particle location. According to Equation (1),
the identification of the particle location is still possible when λ ∼= 2dnsinθ ∼= 4Rnsinθ
takes place, where n is the refractive index and angle θ is shown in Figure 2. If the same
monochromatic light beam ν, λ is used for the erasure of information, i.e., for the transfer
of the particle from one half-well to another, and the Landauer principle is adopted, we
estimate hυ = h c

λ
∼= kBTln2, where c is the light speed. Thus, we obtain λ ∼= hc

ln2kBT . The

minimum time necessary for a single computation is roughly estimated as τmin
∼= 2R

c .
Combining these estimations yields the minimum time of a computation:

τmin
∼=

1
2nsinθln2

h
kBT

(17)

The minimum computation time corresponding to n ∼= 1, θ = π
2 is estimated as follows:

τmin
∼=

1
2ln2

h
kBT

∼= τPB (18)

Again, the minimum time span of computation scales as the Planck–Boltzmann thermaliza-
tion time, independent of the geometrical parameters of the system, given by τPB = h

kBT .
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information into the work 𝑊 = 𝑘 𝑇𝑙𝑛2 . This is exactly the Landauer bound [26–29]. 
Instead of displacement of the piston, we may imagine the Maxwell demon, which 
introduces or pulls out the impermeable partition that fixes/erases the location of the 
particle. Thus, it turns out that the Landauer principle is closely related to the famous 
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Figure 2. A twin-well system containing particle M illuminated with monochromatic light ν is
depicted. The system is in thermal equilibrium with the surrounding T.
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2.5. Breaking the Landauer Limit

It should be emphasized that derivation of the Landauer bound emerging from
the analysis of the behavior of the particle placed in the twin-well potential, shown in
Figures 1 and 2, implies the symmetrical configuration of the potential [30,32]. In the asym-
metrical twin-well potential the Landauer bound may be broken [31,50,51]. The Landauer
principle for information erasure is valid for a symmetric double-well potential but not for
an asymmetric one. Physically, the reduced work arises when the starting state is not in
equilibrium, and other degrees of freedom do work that compensates for the work required
to erase. More simply, erasing from a small well to a large well transfers a particle from a
small box to a larger one but never the reverse [51].

2.6. The Landauer Principle and Thermodynamics of Small Systems

The Landauer principle may be understood in the context of the minimal thermal
engine suggested by Leo Szilárd in 1929 [52]. Leo Szilárd is famous for his letter with Albert
Einstein’s signature that resulted in the Manhattan Project. In Leo Szilárd’s original formu-
lation, the engine exploits single-molecule gas confined in a box of volume V1 contacting a
thermal bath at temperature T, as depicted in Figure 3. As in any other thermal engine, the
molecule/particle pushes the piston and the engine performs work (say, lifting a load, as
shown in Figure 3b,c). Thus, the Szilárd energy transforms heat collected from the bath in
the task, being the minimum thermal engine [52]. We are interested in the informational
interpretation of the Szilárd engine, which is closely related to the Landauer principle.
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Consider the location of the particle within a box. Divide the box into two equal parts.
Actually, the information concerning which side the molecule is in after dividing the box
can be utilized to extract work, e.g., via an isothermal expansion, under T = const. Let
us explain this idea: Isothermal expansion of the single-molecule gas from volume V1 to
volume V2 followed by the motion of the piston yields the work, given by = kBTln V2

V1
. In

this particular case, the box is divided into two equal halves: V2 = 2V1 and W = kBTln2.
However, this result may be interpreted in terms of the information theory. Indeed, after
the expansion we lost the information about the precise location of the particle. Thus,
we performed erasure of one bit of information. In other words, we converted one bit of
information into the work W = kBTln2. This is exactly the Landauer bound [26–29]. Instead
of displacement of the piston, we may imagine the Maxwell demon, which introduces or
pulls out the impermeable partition that fixes/erases the location of the particle. Thus,
it turns out that the Landauer principle is closely related to the famous Maxwell demon
paradox [53].

It seems that the action of the Szilárd engine contradicts the second law of thermo-
dynamics. Indeed, let us make the Szilárd engine cyclic. To return the initial state, the
partition/piston can be removed without any work consumption, and the whole process
can be repeated in a cyclic manner. All thermodynamic processes are defined as isothermal
and reversible [53]. This engine apparently violates the Kelvin–Planck statement of the
second law (and it is well known that it is actually equivalent to the Clausius and Carnot
formulations) by converting heat directly into an equivalent amount of work through a
cyclic process [53]. Now it is generally accepted that the measurement process including
erasure or reset of the Maxwell demon memory requires a minimum energy cost of at
least W = kBTln2, associated with the entropy decrease of the engine, and that it saves
the second law. A quantum Szilárd engine was addressed [53,54]. A demonless quantum
Szilárd engine was studied [53]. It was demonstrated that the localization holds the key
along with the Landauer principle to save the second law and presents a complementary
resolution of the quantum version of Szilárd’s paradox [53]. Quantum mechanics-rooted
arguments are necessary for the justification of the third law of thermodynamics. Quantum
mechanics also saves the second law, suggesting that quantum mechanics has strong ties in
the foundations of thermodynamics and information theory [53].

Numerous questions related to the information interpretation of the Szilárd engine
remain open. However, it is clear that the Szilárd engine links the Landauer principle to the
thermodynamics of small systems, which was rapidly developed in the past decade [54–57].
For example, it will be instructive to address the minimal (single-particle) Carnot engine,
exploited for the erasure of information in heat baths [58]. It is noteworthy that the efficiency
of the minimum Carnot is given by the traditional Carnot expression when the motion of
gas particles is temporally averaged (instead of the usual spatial averaging) [58]. Only a
few experimental realizations of the Szilárd engine have been reported [59–62]. A single-
electron box operated as a Szilárd engine enabled the extraction of kBTln2 heat from the
reservoir at temperature T per one bit of created information [59]. The information was
encoded in the position of an extra electron in the box [59].

2.7. The Landauer Principle and the “It from Bit” Archibald Wheeler Paradigm

In 1989, John Archibald Wheeler suggested the global concept aphoristically called “it
from bit.” “It from bit” symbolizes the idea that every item in the physical world has at the
bottom—at a very deep bottom, in most instances—an immaterial source and explanation,
that what we call reality arises in the last analysis from the posing of yes–no questions
and the registering of equipment-evoked responses—in short, that all things physical are
information-theoretic in origin and that this is a participatory universe. Three examples
may illustrate the theme of “it from bit.” First is the photon. With a polarizer over the distant
source and an analyzer of polarization over the photodetector under watch, we ask the yes
or no question, “Did the counter register a click during the specified second?” If yes, we
often say, “A photon did it.” We know perfectly well that the photon existed neither before
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the emission nor after the detection. However, we also have to recognize that any talk of
the photon “existing” during the intermediate period is only a blown-up version of the raw
fact, a count. The yes or no that is recorded constitutes an unsplittable bit of information. A
photon, Wootters and Zurek demonstrate, cannot be cloned [63]. Actually, the Landauer
principle fills the “it from bit” idea with physical content when supplying the link between
“information” and physically measurable properties of real systems. This bridge was built
in a series of recent papers [64–77]. The principle of mass–energy–information equivalence,
which proposes that a bit of information is not just physical, as already demonstrated, but
also has a finite and quantifiable mass while it stores information, was suggested [64–71,77].
According to Herrera, a change to one bit of information (provided the temperature is fixed)
leads to a decrease in the mass of the system by an amount whose minimal value is [64]:

∆M =
kBT
c2 ln2 (19)

It is noteworthy that the Landauer principle in Ref. [64] is called “Brillouin’s principle”.
Indeed, the idea that the dissipation of energy associated with a change to one bit of
information is a fundamental process independent of the technicalities associated with
information processing (regarded today as the Landauer principle) first appears in the
work by Leon Brillouin [65].

The idea that mass may be ascribed to information was developed in Refs. [66–75].
According to Vopson, an equivalent mass of excess energy is created in the process of
lowering the information entropy when a bit of information is erased, and vice versa. Once
a bit of information is created, it acquires a finite mass, denoted as mbit [66]. Using the mass–
energy equivalence principle, the mass of a bit of information is given by Equation (20)
(compare it to Equation (19)) [66]:

mbit =
ln2kBT

c2 (20)

The idea that a mass may be ascribed to a bit of information was criticized recently, as
will be mentioned below. The mass of a bit of information at room temperature calculated
with Equation (20) (T = 300 K) is 3.19 × 10−38 kg, as estimated in Ref. [66]. Now consider
the particle with energy E in contact (not necessarily in thermal equilibrium) with a thermal
bath T. The energy of the particle may be used for erasing information within the thermal
bath. The maximum information (as measured in bits), denoted as Imax, which may
be erased by the particle in contact with the bath, according to the Landauer principle,
equals: [75]:

Imax =
E

kBTln2
=

mc2

kBTln2
, (21)

where m is the relativistic mass of the particle. The value Imax may be seen within the
Landauer context as the maximum informational content of a relativistic particle. If the
potential energy of the particle is negligible and v

c ≪ 1 is adopted (v is the velocity of the
particle), Equation (21) is re-written as follows [75]:

Imax =
m0c2

kBTln2
(22)

The value Imax supplied by Equation (22) may be understood as the maximum informational
content of a particle at rest [75]. The particle may exchange information with the medium, if
at least one bit of information is erased in medium by the particle; thus, inequality Imax ≥ 1
should hold. This inequality yields:

m0 ≥ kBTln2
c2 (23)
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A particle with a rest mass smaller than m̃0 = kBTln2
c2 will not erase information in the

medium at the temperature T. Assuming T = 2.73 K (which is the temperature of the cosmic
microwave background [78]), we obtain the estimation m̃0 ∼= 1.6 × 10−4 eV

c2
∼= 2.0 × 10−40 kg.

It should be emphasized that all of the elementary particles known today (including
neutrino mneutrino < 0.120 eV

c2 ) are heavier than m̃0 = 2.0 × 10−40kg. Particles lighter than
m̃0 = 2.0 × 10−40kg will not transform the information to the universe and are expected to
be undetectable.

The Landauer principle enables the estimation of the computational capacity of the
entire universe, which is large but finite [66,76,79,80]. We denote the total informational
capacity of the universe as Itot, which may be estimated as follows:

Itot =
mtotc2

kBT
, (24)

where mtot = 1.5 × 1053 kg is the mass of the observable universe [81]. Substituting and
T = 2.73 K , we obtain Itot ∼= 3.0 × 1092 bits, which is in a satisfactory vicinity to the
estimation reported in Ref. [80], which was based on quite different considerations.

The Landauer minimum principle enables a fresh glance at the famous “dark matter”
problem [82–84]. Dark matter is the mysterious substance that dominates the mass budget
of the universe from sub-galactic to cosmological scales, which is arguably one of the
greatest challenges of modern physics and cosmology [82–84]. We still do not know how
to explain how stars orbit in galaxies or how galaxies orbit in clusters. A wide array
of candidates for particle dark matter was suggested, including thermal relics (WIMPs),
neutralinos, and sterile neutrinos [83–86]. However, numerous experiments have failed to
find evidence for the suggested dark matter particles, and it was hypothesized that gravity
theory should be modified [87]. Equation (23), emerging from the Landauer minimum
principle, enables revisiting the “dark matter” problem [66,75]. Indeed, if dark matter is
built from the particles for which m < m̃0 ∼= kBTln2

c2
∼= 2.0× 10−40 kg takes place, they could

not be registered due the fact that they do not transform information to the surrounding
media and experimental devices [66,75].

Let us continue thinking within the Wheeler “it from bit” paradigm. The Landauer
minimum principle supplies a new glance at the problem of the great unification of physics.
Equation (21) may be easily extended to fields. Consider a field (for example, an electro-
magnetic field) in a thermal contact (not necessarily in thermal equilibrium, as it takes
place in a black body radiation problem) with a surrounding/thermal bath T. The energy
of the field may be used for isothermal erasing of information in the surroundings. The
maximum information to be erased by the field (seen as the informational content of the
field) according to the Landauer principle is given by:

Imax =
E f

kBTln2
(25)

where Ef is the energy of the field. It is noteworthy that the physical nature of the field does
not matter. If the information and the temperature are taken as basic physical quantities,
Equation (25) will be universal for all kinds of physical fields. The field is capable of
isothermally erasing the information if the bounding inequality E f > kBTln2 is true. The
Landauer principle changes the status of the temperature, usually seen as the derivative
of basic physical quantities such as energy and entropy [33,34]. Contrastingly, the Lan-
dauer principle tells us that it is just the temperature that determines the possibility of
erasing/recording the information, seen as a basic physical value [88].

2.8. Experimental Verification of the Landauer Principle

Landauer bound was tested in a series of experimental investigations [46,59,87–89].
Koski et al. tested the Landauer principle with the minimum Szilárd engine (see Section 2.6
and Figure 3) [52,59]. The main element the Szilárd engine was the single-electron box
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(abbreviated SEB) [59], which consisted of two small metallic islands connected by a tunnel
junction [59]. The SEB was maintained at a dilution-refrigerator temperature in the 0.1 K
range. The authors provided an experimental demonstration of extracting nearly kBTln2 of
work for one bit of information, in accordance with the Landauer principle [59]. Use of the
trapped ultra-cold ion enabled the demonstration of a quantum version of the Landauer
principle in the experimental study by Yan et al. [46]. Ref. [89] reported experimental
testing of the Landauer bound at low values of kBT. The authors demonstrated that for the
logically reversible operations, energy dissipations much less than kBTln2 were registered,
while irreversible operations dissipated much more than kBTln2. Measurements of a
logically reversible operation on a bit with energy 30 kBT yielded an energy dissipation
of 0.01 kBT [89]. Experiments performed with a single colloidal particle trapped in a
modulated double-well potential demonstrated that the mean dissipated heat saturated at
the Landauer bound in the limit of long erasure cycles [90]. An experiment performed with
a colloidal particle in a time-dependent, virtual potential created by a feedback trap also
confirmed the Landauer limit [91].

2.9. Landauer Limit in the Context of Logical and Thermodynamic Irreversibility

Discussion around the Landauer principle leads to the extremely important distinction
between the logic and thermodynamic irreversibility. In order to understand this distinction,
we have to start from the separation of the degrees of freedom of the computing device.
Some of a computer’s degrees of freedom are used to encode the logical state of the
computation process, and these information-bearing degrees of freedom (abbreviated IBDF)
are by design sufficiently robust that, within limits, the computer’s logical state evolves
deterministically as a function of its initial value, regardless of fluctuations occurring in the
environment (i.e., temperature fluctuations) or in the computer’s other non-information-
bearing degrees of freedom (NIBDF) [92]. While a computer as an entire physical device
(including its power supply and other parts of its environment) may be considered a
closed system obeying reversible laws of motion, Landauer noticed that the logical state
may evolve irreversibly, with two or more distinct logical states following a single logical
successor. Therefore, because Hamiltonian dynamics conserve the fine-grained entropy, the
entropy decrease in the IBDF during a logically irreversible operation should necessarily
be compensated by an equal or greater entropy increase in the NIBDF and environment.
This is the Landauer principle seen in the context of the informational/non-informational
degrees of freedom of the computing device [90].

Thus, a clear distinction between thermodynamic and logic reversibility becomes
necessary. Following Sagawa, we adopt the following definitions of thermodynamic and
logical reversibility: A physical process is thermodynamically reversible if and only if the
time evolution of the probability distribution in the process can be time-reversed, where the
change in the external parameters is also time-reversed and the signs of the amounts of work
and heat are changed [31]. In turn, a computational process Ĉ is logically reversible if and
only if it is an injection. In other words, Ĉ is logically reversible if and only if, for any output
logical state, there is a unique input logical state. Otherwise, Ĉ is logically irreversible [31].
The logically irreversible erasure can be performed in a thermodynamically reversible
manner in the quasi-static limit. This does not contradict the conventional Landauer
principle. The logical reversibility is defined only by the reversibility of the logical states,
which is related only to the logical entropy. In contrast, the thermodynamic reversibility is
related to the reversibility of the relevant total system (i.e., the whole universe), including
the heat bath, and to the total entropy production, as discussed in Section 2. Therefore,
these logical and thermodynamic reversibilities are not equivalent in general [31,93]. If the
erasure is not quasi-static but is performed with a finite velocity (the Margolus–Levitin
limit determines only the minimal time of computation; however, in principle it may be
infinite; see Section 2.2), the erasure becomes thermodynamically irreversible. In this
specific case, we recover the Landauer bound, as a work, which is necessary for the
erasure of one bit of information. For the limit of ln2kBT heat generation per bit to be
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reached, the thermodynamic process must be reversible. In practice, logical operations
are implemented by sub-optimal physical processes and thus are thermodynamically
irreversible [93]. However, this irreversibility is not caused by the nature of the logical
operation; it is by way of the operation being implemented by a thermodynamically sub-
optimal physical process [93]. This is as true for logically irreversible operations as it is for
logically reversible operations [93].

2.10. Generalization of the Landauer Principle

Generalization of the Landauer principle for logically non-deterministic operations
was reported by Maroney [94]. The non-equilibrium quantum Landauer principle was
reported [45,95]. The Landauer principle at absolute-zero temperatures was introduced
recently; a bound tighter than Landauer that remains nontrivial even in the T → 0 was
reported [96]. Herrera discussed the Landauer principle in its relation to general relativ-
ity [97]. The Landauer principle was applied to the problem of gravitational radiation [97].
The fact that gravitational radiation is an irreversible process entailing dissipation is a
straightforward consequence of the Landauer principle and the fact that gravitational
radiation conveys information were demonstrated [97]. It should be emphasized that un-
derstanding the relativistic extension of the Landauer bound remains an open problem due
to the fact that the construction of a relativistic thermodynamics theory is still controversial
after more than 110 years of its development. In particular, the problem of the relativistic
transformation for temperature remains unsolved [98–102].

2.11. Criticism and Objections to the Landauer Principle

The Landauer principle was intensively criticized by J. D. Norton, who argued that
since it is not independent of the second law of thermodynamics, it is either unnecessary
or insufficient as an exorcism of Maxwell’s demon [103–108]. Lairez suggested a coun-
terexample of physical implementation (that uses a two-to-one relation between logic
and thermodynamic states) that allows one bit to be erased in a thermodynamic quasi-
static manner (i.e., one that may tend to be reversible if slowed down enough) [109]. The
Landauer principle was defended in a series of recent papers [110–114]. Witkowski et al.
demonstrated an original proof of the Landauer principle that is completely independent
of the second law of thermodynamics [112]. Buffoni et al. demonstrated that the Landauer
principle, in contrast to widespread opinion, is not the second law of thermodynamics
nor is it equivalent to it; in fact, it is a stricter bound [115]. However, the discussion is far
from exhausted.

The mass–energy–information equivalence principle, summarized by
Equations (19) and (20), was criticized recently [116]. In particular, Lairez argued that
(i) isothermal variation in the entropy-rooted part of the free energy of a body (namely,
T∆S) is not accompanied by any variation in its mass, (ii) the Landauer–Bennet idea is
not a general principle and is only true in a particular case, and (iii) the link between
information and energy is valid only for fresh information about a dynamic system. Old
information, or information detached from its subject matter, is no longer information and
has no value [116]. Thus, the physical groundings of the link between the mass, energy,
and information remain debatable and should be clarified.

2.12. The Landauer Principle: Open Questions, Perspectives, and Challenges

In spite of the enormous theoretical and experimental effort spent on the under-
standing and experimental validation of the Landauer principle, a number of challenging
problems remain open.

(i) The exact place of the Landauer principle in the structure of thermodynamics should
be clarified. Thermodynamics, in contrast to other fields of physics, enables a com-
pletely axiomatic approach, as suggested by Carathéodory [117–119]. The second
law of thermodynamics was formulated by Carathéodory as follows: “In the neigh-
borhood of any equilibrium state of a system (of any number of thermodynamic
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coordinates), there exist states that are inaccessible by reversible adiabatic processes.”
It seems to be instructive to re-shape the axiomatic thermodynamics with the use of
the Landauer principle.

(ii) A relativistic extension of the Landauer principle remains one of the unsolved prob-
lems (the problem of the accurate derivation of the relativistic transformation of the
temperature also remains open [97–102]). This problem is closely related to general
cosmology. Calculation of the cosmological constant Λ emerging from the Landauer
principle was reported [120].

(iii) It is important to implement the Landauer principle in the development of opti-
mal computational protocols, providing minimal dissipation [37,43,121]. Limitations
imposed by the Margolus–Levitin limiting principle should be considered (see Sec-
tion 2.2). The construction of optimal computers remains an open task and is deeply
discussed in Ref. [122], in which restrictions imposed on computation by fundamental
physical laws are deeply discussed. Ref. [122] is strongly recommended for readers
interested in the physics of computation. It was also mentioned that the transfer of
entropy and not entropy itself restricts optimal computational protocols [123].

(iv) The philosophical meaning of the Landauer principle should be clarified [124].

3. Conclusions

The physical roots, justification, interpretation, controversies, and precise meaning
of the Landauer principle remain obscure, in spite of the fact that they have been exposed
to turbulent and spirited discussion in the last few decades. The Landauer principle
(or the Landauer bound), suggested by Rolf Landauer in 1961, is a physical principle
predicting the lower theoretical limit of energy consumption of computation [26–29]. It
states that an irreversible change in information stored on a computer, such as merging two
computational paths, dissipates a minimum amount of heat kBTln2 per bit of information to
its surroundings. The Landauer principle is discussed in the context of other fundamental
physical limiting principles, such as the Abbe diffraction limit, the Margolus–Levitin limit,
and the Bekenstein limit [15,16,125]. We demonstrate that the synthesis of the Landauer
bound with the Abbe, Margolus–Levitin, and Bekenstein limits quite surprisingly yields
the minimum time of computation, which scales as τmin ∼ h

kBT = τPB (where h and
kB are the Planck and Boltzmann constants, respectively), which is exactly the Planck–
Boltzmann thermalization time [36,41]. This result leads to a very important conclusion:
Decreasing the temperature of a thermal bath will decrease the energy consumption of a
single computation, but in parallel, it will slow the computation. The relation between the
Landauer bound and the Szilárd minimal engine is discussed.

The Landauer principle bridges John Archibald Wheeler’s “it from bit” paradigm and
thermodynamics [63,75,76]. This bridge yields the mass–energy–information principle,
enables calculation of the informational capacity of the universe, and provides a fresh
glance at the dark matter problem [66–71]. The Landauer principle may serve as a basis for
the unification of physical theories, enabling a united, unified approach to the informational
content of fields and particles. Generalization of the Landauer principle to quantum and
non-equilibrium systems is addressed [44,45,125]. The relativistic aspects of the Landauer
principle are discussed. Engineering applications of the Landauer principle in the de-
velopment of optimal computational protocols are considered [37,43,120]. Experimental
verifications of the Landauer principle are surveyed [46,59]. The interrelation between
thermodynamic and logical irreversibility is addressed. The non-trivial relationship be-
tween the Landauer principle and the second law of thermodynamic is considered [115].
Objections and criticism of the Landauer principle are discussed [103,104,109]. The mass–
energy–information equivalence principle was criticized recently [116]. Therefore, a lot
of questions related to the Landauer principle and its extensions remain debatable. We
conclude that the Landauer principle represents a powerful heuristic principle bridging
fundamental physics, information theory, and computer engineering. It is suggested that
the Landauer principle may serve as a cornerstone of axiomatic thermodynamics.
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