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Abstract: Finite mixture of linear regression (FMLR) models are among the most exemplary statistical
tools to deal with various heterogeneous data. In this paper, we introduce a new procedure to
simultaneously determine the number of components and perform variable selection for the different
regressions for FMLR models via an exponential power error distribution, which includes normal
distributions and Laplace distributions as special cases. Under some regularity conditions, the
consistency of order selection and the consistency of variable selection are established, and the
asymptotic normality for the estimators of non-zero parameters is investigated. In addition, an
efficient modified expectation-maximization (EM) algorithm and a majorization-maximization (MM)
algorithm are proposed to implement the proposed optimization problem. Furthermore, we use the
numerical simulations to demonstrate the finite sample performance of the proposed methodology.
Finally, we apply the proposed approach to analyze a baseball salary data set. Results indicate that
our proposed method obtains a smaller BIC value than the existing method.

Keywords: finite mixture of linear regression models; variable selection; exponential power distribution;
modified EM algorithm

1. Introduction

FMLR models are among the most exemplary statistical tools to deal with various
heterogeneous data. Since FMLR models were first introduced by [1,2], they are widely ap-
plied in many research fields, e.g., machine learning [3], social sciences [4], and business [5].
For more references to FMLR models, see [6–8].

There are two important statistical problems in FMLR models: order selection and
variable selection for the different regressions. However, order selection should be the
first discussed issue in FMLR models. There exists a lot of literature to deal with this
problem. For example, Ref. [9] introduced a penalized likelihood method for mixtures
of univariate location distributions. Ref. [10] proposed a penalized likelihood method
to select the number of mixing components for the finite multivariate Gaussian mixture
models. For variable selection problems for each regression component, Ref. [11] applied
subsect selection, REDapproaches such as Akaike information criterion (AIC) and Bayesian
information criterion (BIC) to perform a variable selection for each component in a finite
mixture of Poisson regression models. To avoid the drawbacks of subsect selection, Ref. [12]
introduced a penalized likelihood method for variable selection in FMLR models. Ref. [13]
proposed a robust variable selection procedure to estimate and select relevant covariates
for FMLR models.

The above-proposed methods do not jointly select the order selection and significant
variables in FMLR models. In fact, it is a challenging issue, although some literature exists
to solve this problem. Ref. [14] introduced MR-Lasso for FMLR models to simultaneously
identify the order selection and significant variables. However, they do not study the large
sample properties of the proposed method. Ref. [15] proposed a robust mixture regression
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estimator via an asymmetric exponential power distribution and [16] studied component
selection for exponential power mixture models, while they did not consider the variable
selection procedure. Ref. [17] applied the penalized method on the number of components
and regression coefficients to conduct model selection for FMLR models, but the error
followed a normal distribution. Therefore, the proposed method is very sensitive to the
heavy-tailed distribution.

In this paper, motivated by [10,18], we propose a new model selection procedure for the
FMLR models via an exponential power distribution, which includes normal distributions
and Laplace distributions as special cases. Under some regularity conditions, we investigate
the asymptotic properties of the proposed method. In addition, we introduce an expectation-
maximization (EM) algorithm [19] and a majorization-maximization (MM) algorithm [20] to
solve the proposed optimization problem. The finite sample performance of the proposed
method is illustrated via some numerical simulations. Results indicate that the proposed
method is more robust to the heavy-tailed distributions than the existing method.

The rest of this paper is organized as follows. In Section 2, we present the finite mixture
of regression models with an exponential power distribution and a penalized likelihood-
based model selection approach. The asymptotic properties of the resulting estimates are
investigated. In Section 3, a modified EM algorithm and an MM algorithm are developed
to maximize the penalized likelihood. In Section 4, we propose a data-driven procedure to
select the tuning parameters. In Section 5, simulation studies are conducted to evaluate the
finite sample performance of the proposed method. In Section 6, a real data set is analyzed
to compare the proposed test with some existing methods. We conclude with some remarks
in Section 7. Technical conditions and proofs are given in the Appendix A.

2. Methodology

The density function of an exponential power (EP) distribution is defined as follows:

fp(x; 0, σ) =
p

Γ( 1
p )2

1+ 1
p σ

exp
(
−1

2
| x
σ
|p
)

,

where p > 0, σ > 0 is the scale parameter, and Γ(·) is the Gamma function. When 0 < p < 2,
the EP distribution is heavy-tailed, which indicates that it can provide protection against
outliers. The EP density function is a flexible and general density function class, and in-
cludes some important statistical density functions as its special cases, e.g., Gaussian density
function (p = 2), and Laplace density function (p = 1). Meanwhile, the EP distribution
has a wide range of applications, particularly in the area of business applications [21].

Based on the EP density function, we study the FMLR models. Let Z be a latent class
variable with P(Z = j|x) = πj for j = 1, 2, · · · , m, where X is a p-dimensional vector. Given
Z = j, suppose that the response Y depends on X in a linear way

Y = XT βj + ϵj,

where βj is a p-dimensional vector, and ϵj is a random error with an EP density function
fpj(x; 0, σj). Then the conditional density of Y given X can be written as

f (y|x) =
m

∑
j=1

πj fpj(Y − XT βj; 0, σj). (1)

Let {(X1, Y1), · · · , (Xn, Yn)} be a random sample from (1). Then, the log-likelihood function
for observations {(X1, Y1), · · · , (Xn, Yn)} is given by

Qn(θ) =
n

∑
i=1

log

[
m

∑
j=1

πj fpj(Yi − XT
i βj; 0, σj)

]
,
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where θ = (β11, · · · , β1p, · · · , βm1, · · · , βmp, σ1, · · · , σm, p1, · · · , pm, π1, · · · , πm−1).
To deal with the model selection problem, according to [10], we consider the following

objective function,
Q̃n(θ) = Qn(θ)− P1

n(θ)− P2
n(θ) (2)

with the penalty function

P1
n(θ) = n

m

∑
j=1

{
p

∑
t=1

pλ1(|βjt|)
}

,

P2
n(θ) = nλ2

m

∑
j=1

[
log(ϵ + pλ2(πj))− log(ϵ)

]
,

where pλ(·) is a non-negative and non-decreasing function, and λ1 > 0 and λ2 > 0 are two
penalized parameters. Thus, we can obtain the estimators θ̂n of θ as follows

θ̂n = arg max
θ

Q̃n(θ). (3)

To derive some theoretical properties of the estimators θ̂n, we first define

an = max
j,t

{p′λ1
(β0

jt)/
√

n, p′λ2
(π0

j )/
√

n : β0
jt ̸= 0, π0

j ̸= 0},

bn = max
j,t

{p′′λ1
(β0

jt)/n, p′′λ2
(π0

j )/n : β0
jt ̸= 0, π0

j ̸= 0},

where p′λ(h) and p′′λ(h) are the first and second derivatives of the function pλ(h) with
respect to h. To establish the asymptotic properties of the proposed estimators, we assume
the following regularity conditions:

(C1) For any λ, pλ(0) = 0, and pλ(·) is non-negative and symmetric. Furthermore, it is
non-decreasing and twice differentiable in (0, ∞) with at most a few exceptions.

(C2) As n → ∞, bn = o(1).
(C3)

lim
n→∞

inf
0<h≤n−1/2 log n

√
np′λ(h) = ∞.

(C4) The joint density f (z, θ) of Z = (X, Y) have the third partial derivatives with respect
to θ for almost all z.

(C5) For each θ0, there exists R1(z) and R2(z) such that for θ in a neighborhood N(θ0)
of θ0,

∣∣∣∣∂ f (z; θ)

∂θi

∣∣∣∣ ≤ R1(z),

∣∣∣∣∣∂2 f (z; θ)

∂θi∂θj

∣∣∣∣∣ ≤ R1(z),

∣∣∣∣∣ ∂3 f (z; θ)

∂θi∂θj∂θk

∣∣∣∣∣ ≤ R2(z),

where θ0 is the true parameter, R1(z) and R2(z) satisfy
∫

R1(z)dz < ∞, and∫
R2(z) f (z; θ)dz < ∞.

(C6) The Fisher information matrix Q(θ) is finite and positive definite at θ = θ0, where
Q(θ) is defined as follows,

Q(θ) = E

{[
∂

∂θ
log( f (Z; θ))

][
∂

∂θ
log( f (Z; θ))

]T
}

.

(C7) pj > 1, j = 1, · · · , m.
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(C8) c1 ≤ σ2
j ≤ c2,

∥∥∥βj

∥∥∥ ≤ c3, j = 1, · · · , m, where c1 is some positive constant, c2 and c3

are some large constants.

Remark 1. Conditions C1–C3 are the assumption about the penalty function, and assure that
the variable selection of the proposed estimators is consistent. The similar conditions are also used
in [22]. Condition (C5) ensures that the main term dominates the remainder in the Taylor expansion.
Conditions (C4)–(C6) are used in [17]. Condition (C7) ensures the concavity of the likelihood
function since the log likelihood function of random sample from EP distribution is concave if p > 1.
Condition (C8) ensures the compactness of parameter space. Conditions (C7) and (C8) are similarly
applied in Wang and Feng [16].

In the following, we have two theorems with proofs given in the Appendix A.

Theorem 1. Under the conditions (C1), (C2), (C4)–(C8), and if
√

n min{λ1, λ2} → ∞, and
min{λ1, λ2} → 0, then there exists a local maximizer θ̂n of the penalized log-likelihood function
(2) such that ∣∣∣∣θ̂n − θ0

∣∣∣∣ = Op(n−1/2).

Theorem 2. Under the conditions (C1)–(C8), and if
√

n min{λ1, λ2} → ∞, and min{λ1, λ2} → 0.
Then, for any

√
n-consistent estimator θ̂n of θ, we have

(a) Sparsity: P{π̂k = 0} → 1 as n → ∞, where k = m0 + 1, · · · , m.
(b) Sparsity: P{β̂kj = 0} → 1 as n → ∞, where k = 1, · · · , m0 and j = 1, · · · , tk.
(c) Asymptotic normality:

√
n

{[
Q1(θ01)−

P1′′
n (θ01)

n
− P2′′

n (θ01)

n

]
(θ̂n1 − θ01) +

P1′
n (θ01)

n
+

P2′
n (θ01)

n

}
D−→ N(0, Q1(θ01)),

where m0 is the number of true non-zero mixing weights, θ01 and Q1(θ01) are the true param-
eter and the corresponding Fisher information when all zero effects are removed, respectively.

3. Algorithm

In this section, we apply a modified EM algorithm and an MM algorithm to solve
the proposed optimization problem (3). Let zij be the indicator variables that show if the
i-th observation arises from the j-th component as missing data, and pij is the posterior
probability that the i-th observation belongs to the j-th component. Therefore, the expected
complete-data log-likelihood function is given as follows:

n

∑
i=1

m

∑
j=1

zij log
[
πj fpj(Yi − XT

i βj; 0, σj)
]
.

Then, the objective function (2) is rewritten as

n

∑
i=1

m

∑
j=1

pij log
[
πj fpj(Yi − XT

i βj; 0, σj)
]
− P1

n(θ)− P2
n(θ). (4)

Next, we apply a modified EM algorithm to maximize the objective function (4).
The detailed procedure is given as follows:

Step 1 Given the l-th approximation

θ̂
(l)

= (β̂
(l)
11 , · · · , β̂

(l)
1p , · · · , β̂

(l)
m1, · · · , β̂

(l)
mp, σ̂

(l)
1 , · · · , σ̂

(l)
m , p̂(l)1 , · · · , p̂(l)m , π̂

(l)
1 , · · · , π̂

(l)
m−1),
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we can calculate the classification probabilities:

p̂(l+1)
ij =

π̂
(l)
j f

p̂(l)j
(Yi − XT

i β̂
(l)
j ; 0, σ̂

(l)
j )

∑m
j=1 π̂

(l)
j f

p̂(l)j
(Yi − XT

i β̂
(l)
j ; 0, σ̂

(l)
j )

.

Step 2 We first update {π1, · · · , πm}. We use a Lagrange multiplier δ to take into account
for the constraint ∑m

j=1 πj = 1, then we have

∂

∂πj

{
n

∑
i=1

m

∑
j=1

p̂(l+1)
ij log(πj)− nλ2

m

∑
j=1

[
log
(
ϵ + pλ2(πj)

)]
− δ(

m

∑
j=1

πj − 1)

}
= 0. (5)

In (5), we apply the local linear approximation [23] to log
(
ϵ + pλ2(πj)

)
,

log
(
ϵ + pλ2(πj)

)
≈ log

(
ϵ + pλ2(π̂

(l)
j )
)
+

p
′
λ2
(π̂

(l)
j )

ϵ + pλ2(π̂
(l)
j )

(πj − π̂
(l)
j ).

Then, πj can be updated by straightforward calculations,

π̂
(l+1)
j =

1
Dj

n

∑
i=1

p̂(l+1)
ij ,

where

Dj = n

1 − λ2

m

∑
j=1

π̂
(l)
j p

′
λ2
(π̂

(l)
j )

ϵ + pλ2(π̂
(l)
j )

+ λ2
p
′
λ2
(π̂

(l)
j )

ϵ + pλ2(π̂
(l)
j )

.

Next, we update {β11, · · · , β1p, · · · , βm1, · · · , βmp, σ1, · · · , σm, p1, · · · , pm} by maxi-
mizing the following objective function,

n

∑
i=1

m

∑
j=1

p̂(l+1)
ij log

[
π̂
(l+1)
j fpj(Yi − XT

i βj; 0, σj)
]
− n

m

∑
j=1

{
p

∑
t=1

pλ1(|βjt|)
}

.

We first update {σ1, · · · , σm}. For each σj, j = 1, 2, · · · , m, we only need to maximize

n

∑
i=1

p̂(l+1)
ij

− log(σj)−
1
2
|
Yi − XT

i β̂
(l)
j

σj
| p̂

(l)
j

.

Then, the resulting estimator is given as follows:

σ̂
(l+1)
j =

∑n
i=1 p̂(l+1)

ij |Yi − Xi β̂
(l)
j | p̂

(l)
j

2 ∑n
i=1 p̂(l+1)

ij

.

Next, we update {p1, · · · , pm}. For each pj, j = 1, 2 · · · , m, according to the condition
(C7), we have

p̂(l+1)
j = arg max

pj>1

n

∑
i=1

p̂(l+1)
ij

log(pj)− log(Γ(
1
pj
)− (1 +

1
pj
) log(2)− 1

2

∣∣∣∣∣∣
Yi − XT

i β
(l)
j

σ̂
(l+1)
j

∣∣∣∣∣∣
pj
.

Finally, we update {β1, · · · , βm}. By ignoring some terms which do not involve in βj,
we have
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L(βj) = −
n

∑
i=1

p̂(l+1)
ij

1

2σ̂
(l+1)
j

|Yi − XT
i βj|

p̂(l+1)
j − n

p

∑
t=1

pλ1(|β jt|).

By using a MM algorithm for L(βj)’s the first term, we have

{
(Yi − XT

i βj)
T(Yi − XT

i βj)
} p̂(l+1)

j
2 ≤

{
(Yi − XT

i β̂
(l)
j )T(Yi − XT

i β̂
(l)
j )
} p̂(l+1)

j
2

+
p̂(l+1)

j

2

{
(Yi − XT

i β̂
(l)
j )T(Yi − XT

i β̂
(l)
j )
} p̂(l+1)

j
2 −1{

(Yi − XT
i βj)

T(Yi − XT
i βj)− (Yi − XT

i β̂
(l)
j )T(Yi − XT

i β̂
(l)
j )
}

.

For pλ1(|β jt|), we apply a local quadratic approximation [22], then we have

pλ1(|β jt|) ≈ pλ1(|β̂
(l)
jt |) +

p′λ1
(|β̂(l)

jt |)

2|β̂(l)
jt |

(β2
jt − β̂

(l)2
jt ).

Thus, for each βj, j = 1, 2, · · · , m, we only need to solve the following minimiza-
tion problem

β̂
(l+1)
j = arg min

βj

 n

∑
i=1

p̂(l+1)
ij

1

2σ̂
(l+1)
j

ŵ(l)
ij (Yi − XT

i βj)
T(Yi − XT

i βj) + n
p

∑
t=1

β2
jt

p′λ1
(|β̂(l)

jt |)

2|β̂(l)
jt |

,

where ŵ(l)
ij =

p̂(l+1)
j
2

{
(Yi − XT

i β̂
(l)
j )T(Yi − XT

i β̂
(l)
j )
} p̂(l+1)

j
2 −1

.
Thus, we can update βj as follows

β̂
(l+1)
j = (XBXT + A)−1XBY,

where

A = n ∗ diag

 p′λ1
(|β̂(l)

j1 |)

2|β̂(l)
j1 |

, · · · ,
p′λ1

(|β̂(l)
jp |)

2|β̂(l)
jp |

,

B = diag

 p̂(l+1)
1j

1

2σ̂
(l+1)
j

ŵ(l)
1j , p̂(l+1)

2j
1

2σ̂
(l+1)
j

ŵ(l)
2j , · · · , p̂(l+1)

nj
1

2σ̂
(l+1)
j

ŵ(l)
nj

.

Step 3 Repeat Step 1, and Step 2 until convergence.

4. Choice of the Tuning Parameters

The selection of tuning parameters is a vital part in the order selection and variable
selection procedure. In order to guarantee that a true model can be chosen correctly, we
should select the proper tuning parameters λ1 and λ2 in the process of practice. There
are lots of methods to select λ1 and λ2, such as cross-validation (CV), generalized cross-
validation (GCV), AIC, and BIC.

As suggested in [24], we introduce a data-driven procedure to choose the tuning
parameters λ1 and λ2 by minimizing the following modified Bayesian information criterion,

MBIC(λ1, λ2) = −2
n

∑
i=1

log

{
m̂

∑
j=1

π̂j f p̂j(Yi − XT
i β̂j; 0, σ̂j)

}
+ log n ∗ d f , (6)

where m̂ denotes the estimate of the number of components, d f = 3m̂ − 1 + M̂β, and
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M̂β = #
{
|β̂ jt| > 10−3, j = 1, · · · , m̂, t = 1, . . . , p

}
.

5. Simulation

In this section, we use some numerical simulations to illustrate the finite sample per-
formance of the proposed method. For the penalty function, we use the SCAD penalty [22],
which is given as follows:

pλ(t; a) =


λ|t|, if |t| ≤ λ,
−(t2 − 2aλ|t|+ λ2)/[2(a − 1)], if λ < |t| ≤ aλ,
(a + 1)λ2/2, otherwise,

where λ is a tuning parameter and a > 2. According to the suggestion in Fan and Li [22],
a is equal to 3.7 by minimizing the Bayes risks. The datasets are generated via a three-
component FMLR model

f (y|x) =
3

∑
j=1

πj fpj(y − xT βj; 0, σj), (7)

where the components of x are generated independently from the 7-dimensional standard
normal distribution. In detail, we generate random samples of each component from the
following linear model

Y = XT β + ϵ.

We simulate 100 datasets from the FMLR model (7) with sample size of n=200, 600, 800,
1000. The datasets are generated by the following four scenarios:

Scenario 1. β1 = (1, 1, 1, 1, 0, 0, 0)T , β2 = (1, 2, 3, 4, 0, 0, 0)T , β3 = (5, 6, 7, 8, 0, 0, 0)T and
π1 = 0.4, π2 = 0.3, π3 = 0.3, and the random error ϵ ∼ N(0, 1);

Scenario 2. We use the same setting as in Scenario 1, except that the error term follows
a t-distribution with freedom degree 2;

Scenario 3. We use the same setting as in Scenario 1, except that the error term follows
a mixture t distribution: ϵ ∼ 0.5t(1) + 0.5t(3);

Scenario 4. We use the same setting as in Scenario 1, except that the error term follows
a mixture normal distribution: ϵ ∼ 0.95N(0, 1) + 0.05N(0.52).

We compare our proposed method with the method proposed by [17]. To assess the
finite-sample performance, we consider four different measures:

(1) RMSEπj : the root mean square error of π̂j when the order is corrected estimated,
which is defined by

RMSEπj =

√√√√ 1
M∗

M∗

∑
m=1

(π̂m
j − πj)T(π̂m

j − πj)

where M∗ is the number of simulations with correct estimation of the order.
(2) RMSEβc

: the root mean square error of β̂j, which can be similarly calculated as RMSEπj .

(3) NCZ (the number of correct zeros): It denotes that the number of the true value of the
parameter is zero and is correctly estimated as zero. NCZ can be calculated by

NCZ = #
{

t : βt = 0 ∧ β̂t = 0
}

,

where #{A} denotes the number of elements within A.
(4) NIZ (the number of incorrect zeros): It indicates that the number of the true value of

the parameter is non-zero and is incorrectly estimated as zero. NIZ is given as follows:

NIZ = #
{

t : βt ̸= 0 ∧ β̂t = 0
}

.



Entropy 2024, 26, 422 8 of 16

In simulation studies, suppose we know that the data come from a mixture regression
model with at most five components, but the true number of components should be
estimated. For each scenario, the simulation is repeated 100 times. The corresponding
results are shown in Tables 1–8. In these Tables, M1 and M2 denote the results by [17] and
our proposed method, respectively.

Table 1. Order selection results in Scenario 1.

n
M1 M2

Underfitted Correctly
Fitted Overfitted Underfitted Correctly

Fitted Overfitted

200 0.00 0.99 0.01 0.40 0.60 0.00
600 0.00 0.99 0.01 0.00 0.99 0.01
800 0.00 0.99 0.01 0.00 0.99 0.01

1000 0.00 1.00 0.00 0.00 0.99 0.01

Table 2. Variable selection and parameter estimation results in Scenario 1.

n
M1 M2

RMSEπc RMSEβc
NCZ N IZ RMSEπc RMSEβc

NCZ N IZ

200 0.092 0.535 2.900 0.200 0.143 0.352 2.667 0.000
0.048 0.596 2.700 0.000 0.141 0.207 2.333 0.000
0.073 0.703 2.670 0.000 0.048 0.427 2.833 0.000

600 0.024 0.154 2.990 0.000 0.023 0.156 2.990 0.000
0.025 0.153 2.980 0.000 0.025 0.151 2.990 0.000
0.021 0.154 2.990 0.000 0.022 0.156 2.980 0.000

800 0.022 0.142 2.990 0.000 0.020 0.145 3.000 0.000
0.020 0.138 2.980 0.000 0.021 0.153 3.000 0.000
0.019 0.141 2.990 0.000 0.020 0.138 3.000 0.000

1000 0.014 0.123 2.990 0.000 0.015 0.130 3.000 0.000
0.016 0.122 3.000 0.000 0.014 0.121 3.000 0.000
0.014 0.121 3.000 0.000 0.014 0.122 3.000 0.000

Table 3. Order selection results in Scenario 2.

n
M1 M2

Underfitted Correctly
Fitted Overfitted Underfitted Correctly

Fitted Overfitted

200 0.50 0.20 0.30 0.16 0.64 0.20
600 0.07 0.81 0.12 0.00 0.99 0.01
800 0.03 0.75 0.22 0.01 0.98 0.01

1000 0.11 0.84 0.05 0.00 0.99 0.01

Table 1 shows the simulation results of order selection. Columns labeled “Underfitted”
are the proportion of the fitted model with less than three components in 100 simulations.
Meanwhile, “Correctly fitted” and “Overfitted” can be similarly interpreted. From Table 1,
we can find that the effects of the two models are very similar, and the accuracy rate of
order selection can reach more than 98% for M1 and M2 when n is larger than or equal to
600. Table 2 presents the results of variable selection and parameter estimation for each
component. From Table 2, we observe that the finite sample performances of the two models
are very similar for n ≥ 600. Therefore, when the error term follows a normal distribution,
the two models have similar performance when the sample size is sufficiently large.

Tables 3 and 4 present the results of Scenario 2, which is a heavy-tailed scenario. We
can observe from Table 3 that M1 can only estimate about 20% underfitted or overfitted
model, while our method keeps robustness and continues to maintain 98% accuracy when
n ≥ 600. In Table 4, M1 has a poor performance in variable selection. M1 has many
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non-zero NIZ, while our method’s NIZ is all zero for n ≥ 600. Meanwhile, the NCZ of our
proposed method increases as n increases. In addition, our proposed method has a smaller
RMSE than M1.

Table 4. Variable selection and parameter estimation results in Scenario 2.

n
M1 M2

RMSEπc RMSEβc
NCZ N IZ RMSEπc RMSEβc

NCZ N IZ

200 0.285 8.381 2.500 0.000 0.088 0.964 2.722 0.056
0.126 0.457 1.500 0.000 0.058 1.957 2.778 0.076
0.223 2.876 2.000 2.000 0.090 0.852 2.772 0.000

600 0.057 0.671 2.893 0.000 0.048 0.261 2.963 0.000
0.062 1.119 2.844 0.011 0.040 0.240 2.876 0.000
0.055 1.264 2.872 0.034 0.044 0.264 2.896 0.000

800 0.065 0.715 2.897 0.013 0.034 0.223 2.845 0.000
0.053 0.874 2.892 0.012 0.032 0.228 2.957 0.000
0.047 1.241 2.887 0.000 0.033 0.193 2.929 0.000

1000 0.063 0.905 2.912 0.012 0.029 0.198 2.906 0.000
0.056 0.926 2.923 0.011 0.031 0.191 2.946 0.000
0.047 0.837 2.921 0.012 0.033 0.188 2.979 0.000

For Table 5, the performance of order selection for M1 is worse than that for M2.
The ratio of the correctly fitted model remains above 98% with our method for n ≥ 600,
while M1 is easy to overfit the model’s components. In Table 6, it can be seen that the NCZ
value of M1 is a little better than that of M2. Compared with RMSEβc

, we can find that
our method is better than M1 consistently.

Table 5. Order selection results in Scenario 3.

n
M1 M2

Underfitted Correctly
Fitted Overfitted Underfitted Correctly

Fitted Overfitted

200 0.60 0.25 0.15 0.32 0.66 0.02
600 0.00 0.74 0.26 0.00 0.98 0.02
800 0.03 0.73 0.24 0.00 0.99 0.01

1000 0.05 0.79 0.16 0.00 0.99 0.01

Table 6. Variable selection and parameter estimation results in Scenario 3.

n
M1 M2

RMSEπc RMSEβc
NCZ N IZ RMSEπc RMSEβc

NCZ N IZ

200 0.236 2.312 2.000 0.000 0.039 0.766 3.000 0.500
0.165 3.903 2.400 0.200 0.054 0.969 3.000 0.167
0.060 1.732 2.600 1.400 0.049 0.929 3.000 0.667

600 0.025 0.164 2.887 0.000 0.023 0.122 2.874 0.000
0.025 0.156 2.889 0.000 0.024 0.127 2.869 0.000
0.027 0.162 2.896 0.000 0.025 0.124 2.877 0.000

800 0.024 0.154 2.893 0.000 0.018 0.114 2.878 0.000
0.023 0.137 2.886 0.000 0.017 0.123 2.931 0.000
0.019 0.134 2.897 0.000 0.017 0.123 2.931 0.000

1000 0.021 0.132 2.894 0.000 0.017 0.097 2.924 0.000
0.020 0.138 2.924 0.000 0.017 0.097 2.924 0.000
0.019 0.122 2.891 0.000 0.016 0.114 2.971 0.000

Tables 7 and 8 present the results of Scenario 4. M1 absolutely stays away from the
right number of components. On the contrary, our method can select the correct number
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of components with 98% accuracy for n ≥ 600. In Table 8, M1 is better than M2 in NCZ,
but M1 is unstable in NIZ. Comparing RMSEβc

, we can find that M1 is larger than M2.
In general, our model is better than M1 in both order selection and variable selection and
parameter estimation.

Table 7. Order selection results in Scenario 4.

n
M1 M2

Underfitted Correctly
Fitted Overfitted Underfitted Correctly

Fitted Overfitted

200 0.49 0.41 0.10 0.07 0.72 0.21
600 0.13 0.28 0.59 0.02 0.98 0.00
800 0.19 0.31 0.50 0.00 1.00 0.00

1000 0.10 0.39 0.51 0.01 0.99 0.00

Table 8. Variable selection and parameter estimation results in Scenario 4.

n
M1 M2

RMSEπc RMSEβc
NCZ N IZ RMSEπc RMSEβc

NCZ N IZ

200 0.014 5.455 2.889 0.444 0.218 0.971 2.500 0.000
0.180 1.337 2.889 0.222 0.228 1.669 2.000 0.000
0.079 2.956 2.889 0.000 0.320 2.284 2.250 0.000

600 0.050 2.672 2.832 0.000 0.054 0.372 2.776 0.000
0.053 1.256 2.717 0.000 0.055 0.273 2.724 0.000
0.054 2.136 2.846 0.038 0.061 0.271 2.878 0.000

800 0.051 1.134 2.811 0.000 0.035 0.398 2.600 0.000
0.045 1.535 2.623 0.000 0.039 0.163 2.600 0.000
0.047 2.724 2.747 0.000 0.022 0.183 3.000 0.000

1000 0.074 1.217 2.942 0.000 0.035 0.347 2.973 0.000
0.073 1.736 2.974 0.103 0.031 0.220 2.697 0.000
0.047 3.734 2.772 0.000 0.025 0.129 2.949 0.000

6. Real Data Analysis

In this section, we apply the proposed methodology to analyze baseball salary data,
which consists of information about major league baseball players. The response variable is
their 1992 salaries (measured in thousands of dollars). In addition, there are 16 performance
measures for 337 MLB players who participated in at least one game in both the 1991 and
1992 seasons. This data set has been analyzed by others, such as [12,17]. We want to study
how the performance measures affect salaries using our method.

The performance measures are batting average (x1), on-base percentage (x2), runs
(x3), hits (x4), doubles (x5), triples (x6), home runs (x7), runs batted in (x8), walks (x9),
strikeouts (x10), stolen bases (x11), and errors (x12); and indicators of free agency
eligibility (x13), free agent in 1991/2 (x14), arbitration eligibility (x15), and arbitration
in 1991/2 (x16). The four (dummy) variables x13 − x16 indicate how free each player was
to move to another team. As suggested in [25], the interaction effects between (dummy)
variables x13 − x16 and the quantitative variables x1, x3, x7, and x8 should be added to the
consideration. Therefore, we obtain a set of 32 potential covariates affecting each player’s
salary. Ref. [12] fitted a mixture of linear regression models with two or three compo-
nents to depict the overlaid shape of the histogram of log(salary), and concluded that a
two-component mixture regression model labeled MIXSCAD fitted the data well. [17] uses
an FMLR model based on normal distribution, and the number of components is two.
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As advocated by [12], we use log(salary) as the response variable. We first fit a linear
model via stepwise regression, the results are shown in Table 9, denoted as β̂ols. Based
on [17], we consider the following four-component mixture model,

Y|X ∼
4

∑
j=1

πj fpj(Y − XT βj; 0, σj),

where Y = log(salary) and X is a 33 × 1 vector containing 32 covariates plus an intercept
term. In order to implement the proposed modified EM algorithm, we set the initial values
as follows

π0 = (0.4, 0.2, 0.2, 0.2)T , σ0 = (10, 10, 10, 10)T , p0 = (1, 1, 1, 1)T , β0
j = β̂ols + ϵj

where ϵj ∼ N(0, I), j = 1, 2, 3, 4. The results are reported in Tables 9 and 10. From Table 9,
we find that both M1 and M2 choose two components. Furthermore, we can observe from
Table 10 that M2 has a smaller BIC value than M1, which indicates that our proposed
method can better fit this dataset than M1.

Table 9. Parameter estimates for baseball salary data.

Covariates Linear Model
M1 M2

Comp1 Comp2 Comp1 Comp2

x0 5.48 4.81 5.66 4.70 4.67
x1 - - - - -
x2 −1.54 - - - -
x3 - - - - -
x4 - - 0.01 0.03 0.02
x5 - - - - 0.01
x6 - - - - -
x7 - - - - -
x8 0.01 0.01 0.02 0.01 -
x9 0.01 - - 0.03 0.01
x10 −0.01 - - - -
x11 - 0.03 - - 0.01
x12 - - - - -
x13 1.52 2.04 - 3.13 2.16
x14 -0.48 - - - -
x15 1.35 1.60 - 2.73 1.28
x16 - - - 0.01 1.40

x1 ∗ x13 - - - - -
x1 ∗ x14 - - - - 10.05
x1 ∗ x15 - - - 0.01 -
x1 ∗ x16 −4.38 - - - -
x3 ∗ x13 - - - - -
x3 ∗ x14 - - - −0.01 −0.02
x3 ∗ x15 - - - - -
x3 ∗ x16 - - - 0.01 -
x7 ∗ x13 0.01 - - 0.03 -
x7 ∗ x14 0.03 - - - 0.02
x7 ∗ x15 - - - - -
x7 ∗ x16 - - - - -
x8 ∗ x13 - - 0.01 - 0.01
x8 ∗ x14 - 0.01 - 0.01 -
x8 ∗ x15 - - 0.02 - -
x8 ∗ x16 0.02 - - - 0.02
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Table 10. Model parameter estimates for baseball salary data.

Parameter M1 M2

π̂ 0.69 0.31 0.84 0.16
p̂ 2 2 1.05 1.49
σ̂ - - 2.27 7.13
λ1 0.300 0.220
λ2 0.040 0.016

MBIC 569.64 547.25

Of interest is to explain how the performance measures affect salaries by interpreting
the outcome of the fit, although it can be a source of controversy. Do not think about it;
there should be many positive correlations between a baseball player and his salary. M1
and M2 have the same sign and approximate coefficients in x0, x13, x15, and interactions
of x8 and x14. Recall that x1 and x7 are individual performances, while x13, x15, and x16
are three dummy variables indicating how freely players change teams. For example,
the effect of x1 ∗ x16 implies that for most players having arbitration eligibility in 1991/2
enhances the individual ability (x1) toward a lower salary, but not the value of their team
contribution (x8).

The main differences between the two models are interaction effects x1 ∗ x14 and
x1 ∗ x15. This implies that M1 disregards x1 ∗ x14’s effect, but M2 indicates that it is in two
directions. And M2 attaches great importance to the interaction effect of x1 ∗ x14.

7. Discussion

In this paper, we introduced the FMLR models via an exponential power distribution.
Under some conditions, the asymptotic properties of the proposed estimators were estab-
lished. Meanwhile, a modified EM algorithm and an MM algorithm were applied to solve
the proposed optimization problem. Furthermore, the merits of our proposed methodology
were illustrated through some numerical simulations and real data analysis. Simulation
studies showed that the proposed method had better performance than the existing meth-
ods under difference errors. By analyzing a baseball salary dataset, our proposed method
had a smaller BIC value than the method proposed [17].
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Appendix A

Proof of Theorem 1. For any given ϵ > 0, let ∥u∥ = Mϵ. Denote

Γn(u) = Q̃n(θ0 + u/
√

n)− Q̃n(θ0).

According to (2), we have

Γn(u) = [Qn(θ0 + u/
√

n)− Qn(θ0)]− [P1
n(θ0 + u/

√
n)− P1

n(θ0)]− [P2
n(θ0 + u/

√
n)− P2

n(θ0)].

Under condition (C1), we have pλ(0) = 0 for any λ. Therefore, P1
n(θ0) = P1

n(θ01) and
P2

n(θ0) = P2
n(θ01). Since P1

n(θ0 + u/
√

n) and P2
n(θ0 + u/

√
n) are a sum of positive terms,

we then have
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Γn(u) ≤ [Qn(θ0 + u/
√

n)− Qn(θ0)]− [P1
n(θ01 + u1/

√
n)− P1

n(θ01)]− [P2
n(θ01 + u1/

√
n)− P2

n(θ01)],

where u1 is a subvector of u with the corresponding non-zero coefficients.
By conditions (C4), (C5), (C7) and (C8), and the Taylor’s expansion, we have

Qn(θ0 + u/
√

n)− Qn(θ0) = n−1/2Q
′
n(θ0)

Tu − 1
2

(
uTQ(θ0)u

)
(1 + op(1)).

By condition (C1), the Taylor’s expansion, triangular inequality, and Cauchy–Schwarz
inequality, we have

P1
n(θ01 + u1/

√
n)− P1

n(θ01)

= n
m0

∑
k=1

{
tk

∑
j=1

[
pλ1(|βkj + ukj/

√
n|)− pλ1(|ukj/

√
n|)
]}

=
√

m0tan∥u∥+ bn

2
∥u∥2(1 + o(1)),

where m0 is the number of true non-zero mixing weights, and t = maxk
√

tk, and tk is the
number of true non-zero regression coefficients in the k-th component.

Since
√

nλ2 → ∞, and λ2 → 0, we have

|P2
n(θ01 + u1/

√
n)− P2

n(θ01)| = 0.

Regularity condition (C6) implies that n−1/2Q
′
n(θ0) = Op(1). Since

√
n min{λ1, λ2} → ∞,

and min{λ1, λ2} → 0, we have an = 0. By conditions (C2) and (C6), for any given ϵ > 0,
there exists a sufficiently large Mϵ such that

lim
n→∞

P

{
sup

∥u∥=Mϵ

Γn(u) < 0

}
≥ 1 − ϵ.

Therefore, with large probability, there is a local maximum in {θ + u/
√

n : ∥u∥ ≤ Mϵ}.
That is to say, this local maximizer θ̂n satisfies ∥θ̂n − θ0∥ = Op(1/

√
n). This completes the

proof of Theorem 1.

Proof of Theorem 2. We first show that π̂k = 0 for k = m0 + 1, · · · , m. Since
∣∣∣∣θ̂n − θ

∣∣∣∣ =
Op(n−1/2), we have π̂k = Op(1/

√
n) for k = m0 + 1, · · · , m. To prove (a), it is sufficient to

show with probability tending to 1 as n → ∞ for any πk satisfying π̂k − πk = Op(1/
√

n)
and k = m0 + 1, · · · , m

∂Q∗(θ)

∂π̂k
< 0 for π̂k < C/

√
n, (A1)

where C is a positive constant number,

Q∗(θ) = Q̃n(θ)− δ

(
m

∑
k=1

πk − 1

)
,

and δ is a Lagrange multiplier. Therefore, π̂k, k = 1, · · · , m should satisfy

∂Q∗(θ)

∂π̂k
=

n

∑
i=1

fpj(Yi − XT
i βj; 0, σj)

∑m
j=1 π̂j fpj(Yi − XT

i βj; 0, σj)
− nλ2

p′λ2
(π̂k)

C0 + pλ2(π̂k)
− δ = 0. (A2)
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We first consider k ≤ m0. By the law of large numbers, we have

n

∑
i=1

fpj(Yi − XT
i βj; 0, σj)

∑m
j=1 π̂j fpj(Yi − XT

i βj; 0, σj)
= Op(n). (A3)

For k ≤ m0, we have π̂k = π0
k + Op(1/

√
n) > 1

2 min{π0
1, · · · , π0

m0
}. Since nλ2 = op(n),

p′λ2
(π̂k) = op(1) and pλ2(π̂k) = op(n), then we have

nλ2
p′λ2

(π̂k)

C0 + pλ2(π̂k)
= op(1). (A4)

By (A2)–(A4), we have δ = Op(n). For k ≥ m0 + 1 and π̂k < C/
√

n, we have π̂k =
Op(1/

√
n). By

√
nλ2 → ∞, C0 is sufficient small and pλ(·) is the SCAD penalty, we have{
nλ2

p′λ2
(π̂k)

C0 + pλ2(π̂k)

}/
n =

λ2
2

C0 + λ2π̂k
= Op(

√
nλ2) → ∞.

Therefore, the first term and the third term in the Equation (A2) are dominated by the
second term. Thus, we prove the Equation (A1). This completes the proof of (a).

To prove (b), for any θ with m0 components, we split θm0 = (θ1
m0

, θ2
m0
) for any θm0

in the neighborhood ||θm0 − θ0
m0
|| = Op(1/

√
n) such that θ2

m0
contains all zero effects,

e.g., βkj = 0, k = 1, · · · , m0 and j = 1, · · · , tk. By (2), we have

Q̃n{(θ1
m0

, θ2
m0
)} − Q̃n{(θ1

m0
, 0)}

= [Qn{(θ1
m0

, θ2
m0
)} − Qn{(θ1

m0
, 0)}]− [P1

n{(θ1
m0

, θ2
m0
)} − P1

n{(θ1
m0

, 0)}]

= [Qn{(θ1
m0

, θ2
m0
)} − Qn{(θ1

m0
, 0)}]− n

m0

∑
k=1

p

∑
j=tk+1

pλ1(|βkj|).

According to the mean value theorem, we have

Qn{(θ1
m0

, θ2
m0
)} − Qn{(θ1

m0
, 0)} =

[
∂Qn{(θ1

m0
, γ)}

∂θ2
m0

]T

θ2
m0

, (A5)

where ||γ|| ≤ ||θ2
m0
|| = O(n−1/2). Since∣∣∣∣∣

∣∣∣∣∣∂Qn{(θ1
m0

, γ)}
∂θ2

m0

−
∂Qn{(θ01

m0
, 0)}

∂θ2
m0

∣∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣∣
∣∣∣∣∣∂Qn{(θ1

m0
, γ)}

∂θ2
m0

−
∂Qn{(θ1

m0
, 0)}

∂θ2
m0

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣∂Qn{(θ1

m0
, 0)}

∂θ2
m0

−
∂Qn{(θ01

m0
, 0)}

∂θ2
m0

∣∣∣∣∣
∣∣∣∣∣

≤
[

n

∑
i=1

R1(zi)

]
||γ||+

[
n

∑
i=1

R1(zi)

]
||θ1

m0
− θ01

m0
||

= (||γ||+ ||θ1
m0

− θ01
m0
||)Op(n) = Op(n1/2),

and

∂Qn{(θ01
m0

, 0)}
∂θ2

m0

= Op(n1/2),
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we have

∂Qn{(θ1
m0

, γ)}
∂θ2

m0

= Op(n1/2). (A6)

By (A5) and (A6), we have

Qn{(θ1
m0

, θ2
m0
)} − Qn{(θ1

m0
, 0)} = Op(n1/2)

[
m0

∑
k=1

p

∑
j=tk+1

|βkj|
]

.

Thus, we have

Q̃n{(θ1
m0

, θ2
m0
)} − Q̃n{(θ1

m0
, 0)} =

m0

∑
k=1

p

∑
j=tk+1

[
Op(n1/2)|βkj| − npλ1(|βkj|)

]
.

By condition (C3), for |t| ≤ n−1/2 log n, we have Op(n1/2)|t| < npλ1(|t|). Therefore, we
can obtain

Q̃n{(θ1
m0

, θ2
m0
)} − Q̃n{(θ1

m0
, 0)} < 0. (A7)

By (A7), with probability tending to 1 as n → ∞, we have

Q̃n{(θ1
m0

, θ2
m0
)} − Q̃n{(θ̂

1
m0

, 0)}

= [Q̃n{(θ1
m0

, θ2
m0
)} − Q̃n{(θ1

m0
, 0)}] + [Q̃n{(θ1

m0
, 0)} − Q̃n{(θ̂

1
m0

, 0)}] < 0.

Thus, this completes the proof of part (b).
Using the result of Theorem 1, there exists a

√
n-consistent local maximizer θ̂n1 of

Q̃n{(θ1, 0)} such that θ̂n = (θ̂n1, 0) satisfies

∂Q̃n(θ̂n)

∂θ1
=

{
Qn(θ)

∂θ1
− ∂P1

n(θ)

∂θ1
− ∂P2

n(θ)

∂θ1

}
θ=θ̂n

= 0. (A8)

By the Taylor’s expansion, we have{
∂Qn(θ)

∂θ1

}
θ=θ̂n

=
∂Qn(θ01)

∂θ1
+

{
∂2Qn(θ01)

∂θ1∂θT
1

+ op(n)

}
(θ̂n1 − θ01), (A9)

{
∂P1

n(θ)

∂θ1

}
θ=θ̂n

= P1′
n (θ01) +

{
P1′′

n (θ01) + op(n)
}
(θ̂n1 − θ01), (A10)

{
∂P2

n(θ)

∂θ1

}
θ=θ̂n

= P2′
n (θ01) +

{
P2′′

n (θ01) + op(n)
}
(θ̂n1 − θ01). (A11)

By substituting Equations (A9)–(A11) into (A8), we have{
∂2Qn(θ01)

∂θ1∂θT
1

− P1′′
n (θ01)− P2′′

n (θ01) + op(n)

}
(θ̂n1 − θ01)

=
∂Qn(θ01)

∂θ1
− P1′

n (θ01)− P2′
n (θ01).

By the conditions (C4), (C5), and (C6), we have

1
n

∂2Qn(θ01)

∂θ1∂θT
1

= Q1(θ01) + op(1),
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1√
n

∂Qn(θ01)

∂θ1

D−→ N(0, Q1(θ01)).

By Slutsky’s theorem, we have

√
n

{[
Q1(θ01)−

P1′′
n (θ01)

n
− P2′′

n (θ01)

n

]
(θ̂n1 − θ01) +

P1′
n (θ01)

n
+

P2′
n (θ01)

n

}
D−→ N(0, Q1(θ01)).

This completes the proof of part (c).
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