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Abstract: The latest effort in delivering computing resources as a service to managers and consumers
represents a shift away from computing as a product that is purchased, to computing as a service
that is delivered to users over the internet from large-scale data centers. However, with the advent
of the cloud-based IoT and artificial intelligence (AI), which are advancing customer experience
automations in many application areas, such as recommender systems (RS), a need has arisen for
various modifications to support the IoT devices that are at the center of the automation world,
including recent language models like ChatGPT and Bard and technologies like nanotechnology.
This paper introduces the marketing community to a recent computing development: IoT-driven
fog computing (FC). Although numerous research studies have been published on FC “smart”
applications, none hitherto have been conducted on fog-based smart marketing domains such as
recommender systems. FC is considered a novel computational system, which can mitigate latency
and improve bandwidth utilization for autonomous consumer behavior applications requiring real-
time data-driven decision making. This paper provides a conceptual framework for studying the
effects of fog computing on consumer behavior, with the goal of stimulating future research by
using, as an example, the intersection of FC and RS. Indeed, our conceptualization of the “fog-based
recommender systems” opens many novel and challenging avenues for academic research, some of
which are highlighted in the later part of this paper.

Keywords: fog computing; recommender system; internet of things (IoT); edge computing;
artificial intelligence (AI); software defined networks (SDNs)

1. Fog Computing-Based Smart Consumer Recommender Systems

“Fog computing is considered a formidable next-generation complement to cloud computing” [1].

The ongoing transformation of information and communication through the integra-
tion of digital technologies, automation, data exchange, and advanced analytics, represents
a significant shift in how organizations and individuals operate and interact with tech-
nology. This development follows Industry 4.0, with its focus on intelligent or smart
devices. Smart devices involve data analytics capabilities empowered with technological
advancements such as the internet of things (IoT), deep learning (DL), machine learning
(ML), artificial intelligence (AI) (including language models; [2]virtual reality (VR), big data
analytics (BDA), and ultimately, intelligent device-free sensing (IDFS) nanotechnology [3,4]
and genetic data (DNA) [5]—all of which will become an eminent part of Industry 4.0.
These technologies, where human input is not required, promise to revolutionize marketing
and consumer behavior and research as we know it.

Computing is regarded as a critical driving force in the development of human systems.
Technological advances in measurement devices over the past few years have provided
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firms, researchers, policy makers, and consumers access to individual-level data of an
unprecedented amount. Digital footprints of electronic behavior provide enormous mea-
surements of attitudes toward social influences, information search, language use, and
content. Due to the large volume of consumer data and information, humans are unable
to fully uncover and compute useful information for personal decisions. Recent develop-
ments in intelligent computing are expected to precipitate a major breakthrough not only
in intelligence-oriented computing but also in intelligence-empowered computing [6,7].
Intelligent computing provides autonomous, scalable, efficient, reliable, universal, secure,
and transparent computing services to support large-scale and complex computational
tasks in today’s “smart world” [8,9]. It has significantly broadened the scope of comput-
ing by extending it from traditional data computing to increasingly multiple computing
paradigms, such as perceptual intelligence, cognitive intelligence, autonomous intelligence,
affective computing, and human–computer fusion intelligence [10]. With the expansion
of the IoT and wide proliferation of wireless networks, the number of edge devices (e.g.,
sensors, monitors, scanners, and wearables) and the massive data generated from them
has been growing fast. Also, many services, such as online gaming and image processing,
rely on AI to achieve the required smartness and autonomy. Above all, the digital world
is advancing rapidly [11–13], and developments in networking technologies, including
low-power wide area networks (LPWAN), 4G long-term evolution (LTE), wireless broad-
band (WiBro), 5G, and nano datacenters (NaDa or nDCs), are leading to the emergence
of sophisticated data services. Billions of devices, ranging from user gadgets to more
complex devices, are generating massive amounts of data for research and applications.
The pervasive usage of smart, interconnected devices is estimated to reach 58.2 billion units
by 2025 [14]. This exponential growth is nourished by the proliferation of mobile devices
(e.g., mobile phones and tablets) with smart sensors serving different vertical markets, such
as smart cities, smart healthcare, and smart marketing. The latest trend of the computing
paradigm is to push elastic resources such as computation, storage, and applications to the
edge of networks, and thus to provide a new breed of services and applications to end users
with high bandwidth, low latency, and location awareness. For this reason, the IoT-driven
fog computing (FC) platform supported by software-defined networking (SDN) [15–17]
was introduced to bridge the distance and address some of the aforementioned challenges.

The term “fog computing”—derived from the phrase “fog is a cloud that is closer to
the ground”—was coined by Cisco Systems to describe the need for computing capabilities
at the network edge to address the challenges posed by the increasing volume and velocity
of data generated by IoT devices. Thus, FC aims to reduce latency, conserve network
bandwidth, improve efficiency, and enable real-time processing and analysis of data—all
with the potential to support consumer decision processes. In November 2015, an alliance
of industries and academia, including Intel, ARM, Microsoft, Dell, Cisco, and Princeton
University, launched the OpenFog Consortium to introduce and promote the use of FC.
By 2018, FC had become a leading platform for developing IoT frameworks [18] among
governments and academic institutions. The OpenFog Consortium Architecture Working
Group defined FC as “[a] system-level horizontal architecture that distributes resources
and services of computing, storage, control and networking anywhere along the continuum
from Cloud to Things.” [19].

Study Objectives

“The latest technologies like Fog computing can be utilized to make a recommendation
system faster and independent of internetwork connection” [20] (p. 13).

Despite the scholarly consensus that FC is significant to organizations and individ-
uals, its applications to marketing and consumer behavior is nascent. Inspired by recent
successful applications of FC to various smart ecosystems, in the present study we present
a new conceptual framework for conducting research into FC’s effects on marketing and
consumer behavior, following the general conceptual frameworks, qualitative review, and
propositional inventories that delineate a conceptual entity [21,22]. By way of illustration,
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we highlight part of the conceptual framework by using a consumer recommender system
(RS) as a significant future application of FC serving smart consumers. To advance these
objectives, precisely during an era in which marketing scholars are calling for more concep-
tual work (e.g., [22–24]), first, we provide an overview of FC and related concepts relevant
to marketing and consumer behavior.

Second, we present some illustrations of FC marketing applications. Third, given the
importance of RSs to marketing and consumer research and researchers’ attempts to find
ways to overcome the various RS limitations, we propose a conceptual framework based
on what we term “fog-based recommender systems.” Fourth and finally, we identify a
number of fundamental research challenges for consumer research to fully exploit FC for
recommender systems.

Employing a multi-perspective approach, this paper also aims to deliver valuable
insights into FC, offering a perspective on impacted consumer areas. FC has been applied
to various industries and organizations. Recent innovations in FC, like mobile FC [25], have
placed applications in the hands of individual users. Thus, a major novelty of this paper is
the application of FC to individual consumers. Positioned as an important contribution
within the emerging FC-focused literature, we discuss future research issues emanating
from our framework and outline interdisciplinary research avenues. This paper, we hope,
will serve as a valuable reference for marketing scholars and practitioners and foster future
conceptual and practical research innovations in FC-driven consumer research.

Within the developing “smart world” [8], our discussion addresses what has been
recently termed “smart consumers” (closely related to “digital consumers”), i.e., consumers
who use smart technologies—e.g., [26,27], which provide them with data used to make
“intelligent decisions” [28]. The combination of these smart technologies determines the
extent of consumers’ “smartness” [29].

2. Fog Computing

“Nowadays, the pointer of the trending paradigm is pointing at fog computing. As
efficiency and quality of service stand as important objectives in the world of computing,
it is viewed as a promising application” [30].

Fog computing, also known as fogging, is expanding frontiers of computing data,
applications, and services away from a centralized cloud to the logical stream of the
network edge. While cloud computing has been widely used in practice, it cannot cope with
the issues arising in many IoT scenarios, such as resource-constrained devices, stringent
latency requirements, network bandwidth constraints, and uninterrupted services with
intermittent connectivity to the cloud [30,31]. FC has proven to be an effective solution to
these issues [32,33]; for a comprehensive review, see [34].

The large amount of data produced by the IoT is growing exponentially through
ongoing electronic devices. Indeed, IoT devices are producing an avalanche of information,
which is disruptive for analytics processing, usually managed properly by the cloud. FC
solves this tendency with a strong complementary cloud system based on the deployment
of micro clouds (fog nodes) at the edge of data sources. However, big IoT data analytics by
FC structures is in its inception and requires much research to provide added proficiency
and smart decisions [35]. For individual consumers, it is important to emphasize that FC
is able to serve mobile consumers and IoT devices by actively searching and processing
the vital data. Thus, in contrast to traditional internet consumers, mobile consumers
and IoT devices have different requirements; for example, they are more interested in
predictable location-based information [36]. By leveraging FC, users can harness the
benefits of both local edge processing and centralized cloud computing, producing a more
efficient and responsive computing infrastructure (see Figure 1, with more elaboration in
Web Supplementary S1). In an FC system, multiple servers can cooperate with each other
securely (e.g., by utilizing a blockchain platform) to serve terminal devices and thereby
improve fog server utilization [37]. Notably, what is undoubtedly happening with FC is
that the single-cloud, static model is turning into an ultimately novel framework, which
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is much more diverse, dynamic, and located on different, heterogeneous, and commonly
mobile fog premises, providing varied services that can be linked jointly as well as capacities
that can be offered together (for a comparative analysis of cloud computing and FC, see Web
Supplementary S2).
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Figure 1. FC major benefits.

FC-enabled AI offers the opportunity to combine resources and modalities into a
hybrid digital data system, which supplies comprehensive information for various “smart”
applications. Nowadays, the system expedites the use of distributed, latency-aware services
and applications and consists of fog nodes (physical or virtual), which are located between
smart end-devices and unified (cloud) services. This architecture is able to process data
in a matter of milliseconds with connectivity options varying by use case. An IoT sensor
in a store, for example, can likely use a wired connection, whereas mobile resources, such
as autonomous vehicles or consumer-grade GPS devices, will require alternate forms
of connectivity.

To facilitate new network innovations while drastically simplifying FC network opera-
tions, software-defined networks (SDNs) have been developed [16,38]. SDNs, as a software
architecture, help to solve the IoT-FC heterogeneity problem, enabling the formation of
independent protocols and addressing issues related to restricted hardware and proprietary
software [15]. Unlike traditional IP systems, in which control and data planes are strongly
coupled and embedded in the same system elements, SDN-based FC separates the con-
trol plane from the data plane and system elements [30], thus allowing service providers
to be optimized and service needs supported from a centralized user interface (UI). All
of which affords greater agility and programmability as well as the capacity to add net-
work automation [17,28,38]. Due to advanced technologies, FC is using a rapidly growing
number of devices, while computerized models like SDNs are helping to provide higher
service quality [15]. For example, a smartwatch may collect data related to an individual



J. Theor. Appl. Electron. Commer. Res. 2024, 19 601

consumer’s physical activities, including heartbeat and pulse, and transmit it to their smart-
phone, whereupon an SDN-based FC system can process the data and make suggestions
to the consumer regarding how to adjust their activities, diet, and lifestyle according to
their physical condition. Consumer data are collected by FC deploying data-producing
systems like scanners, monitors, mobile devices, smart cards, eye gaze trackers (EGTs), odor
measurements—e.g., [39], semantic analyses, computerized haptic measures, voice analog
scales (VAS), computerized visual analog scales (VAS), vocal monitors [40,41], emerging
biomedical innovations such as magnetic resonance imaging (MRI), genotyping, and hor-
monal assays, which quantify the building blocks of the biological processes that shape
preferences, cognition, and decision making, and in the near future, mobile robots and
nano-devices as well. Importantly, research into the use of physiologic sensors, equipped
with skin conductance, heart rate, respiration, blood pressure, ECG, EEG, EMG, and other
tools capable of measuring emotions as well, is expanding FC applications, see [42] and
Web Supplementary S3. An array of new and unobtrusive devices, which promise to
considerably enhance precision, are presently being tested [3]. The advanced technologies
embedded in these devices are able to provide computerized scalable digitalized data;
some employing remote physiological measurements [43,44], while others are able to track
behaviors over time, measuring “streak” behaviors performed consecutively [45]. Most
smartphones and some smartwatches can accommodate ambient light sensors, internal
motion sensors (accelerometers), gesture sensors, gyroscopic sensors, temperature and
humidity sensors, magnetometers, and barometers. Communication interfaces commonly
found on smartphones include WiFi, GPS, Bluetooth, near field communications (NFC),
and infrared (IR) LEDs [46]).

The widespread diffusion of numerous wireless technologies, especially high-speed
5G networks, can further optimize real-time sensing and collecting of massive repositories
of spatiotemporal data, which represent proxies for consumer sentiments, interactions,
communications, activities, and situational factors like time and location [11]. With the
assistance of decision software, data can be converted into information for consumer consid-
eration and decision making. For example, comprehensive solutions exist for automatically
evaluating sleep. One of these is the FC-enabled Beddit Sleep Monitor [42], which measures
breathing patterns, sleep time, heart rate, movement, and several other factors. These
functions in turn can be integrated into other physiological, behavioral, and mental mon-
itors. Indeed, it seems that virtually any human behavior and sensation can and will be
monitored and scaled by FC along four basic dimensions—intensity, quality, extension, and
duration [31]. Emotional data are distinct from cognitive data because they are individual-
specific, commonly multimodal (speech, gestures, and language), and contextual [47]. Such
data relate to the consumer in context, meaning that the RS will need, for instance, to
include contextual and individual-unique data and information into framing the emotional
state of consumers. FC is capable of successfully integrating a vast spectrum and amount
of mental and physiological techniques and measurements, which are expected to deliver
more precise information for identifying emotion and behavior—thus, creating value for
market stakeholders. This immense amount of digitalized data (‘big data’) obtained from
smart devices can be offloaded subsequently to the fog for storage, processing, aggregation,
and computation. Consumers then will be able to shift this data to the optimum place
for processing, and decisions can be based on how fast results are needed. For instance,
time-sensitive consumer decisions will be made closer to the things producing and acting
on the data. In contrast, big data analytics dealing with historical information might require
the computing and storage resources of the cloud. The ability to triage consumer data and
make critical judgments within the device’s own context will aid in extracting essential
insights from the massive volume of available consumer data.

All these advances and futuristic technologies are typically powered by FC, which can
be transformed into a consumer experience. For example, if millions of consumers around
the world wish to play a particular song simultaneously on a music streaming service and
that song is on a server in the United States, then processing that request would create a
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long queue, slowing service to consumers. By contrast, fog servers, which are located closer
to the devices requesting the song, are able to stream it immediately to the edge device with
minimal latency. The fog node maintains a copy of the song, enabling other consumers in
the same geographic area to stream the song instantaneously.

Additionally, FC-enabled virtual reality will allow consumers to visualize, for instance,
how different garments might look on them in various lighting conditions, contexts (e.g.,
office or street), and situations (e.g., party or business meeting). Meanwhile, advances in
molecular genetics have led to the exponential growth of private databases [48]. Sorting
DNA data is valuable since it exhibits stability over time, retains integrity (as it is extremely
difficult to break down a DNA molecule), and is less prone to technical failures. Thus, it
proves to be a good solution for data security. By using, for example, DNA data available
through the direct-to-consumer genetic testing (DTC-GT) market, FC-enabled generic data
will be able to provide consumers with unique information on their likelihood of balding,
becoming addicted to nicotine, developing different health problems, etc. Because genetic
variation correlates with many personal characteristics, it provides a source for studying
the relationships between traits and the question of whether they arise from genetic or
environmental causes. Noteworthy, in this context, is the music streaming service Spotify’s
recent partnership with Ancestry DNA to allow their approximately 217 million users
to upload their genetic data and create playlists that “match their genetic ancestry” [48].
Adding genetic information to predictive consumer models that use other FC-enabled
databases may improve their predictive accuracy at the individual consumer level.

FC Applications

With the FC-enabled IoT “which seeks to support the dream of smart world, it is no
longer enough to have only quality of service as it does not satisfy the user experience.
As such, quality of experience has now become a key to get user’s satisfaction regarding
reliability, availability, scalability, speed, accuracy, and efficiency” [49] (p. 2). FC can be
used to support applications and deployments in the IoT, Cloud of Things (CoT), and a
number of other applications that demand real-time or predictable latency [50]. Indeed, the
adoption of FC has increased rapidly due to recent developments in IoT smart devices and
technologies (major marketing/consumer-related smart applications have been compiled in
Supplementary S1). However, FC is constantly undergoing modification, and the number
of applications administered in fog platforms is expected to grow [34,51]. The new FC
structure and use cases are strongly influenced by an array of innovative applications,
which demand additional platform attributes, and can only be delivered if the applications
are deployed closer to end users, such as in “smart vehicles,” “smart supply chain systems”
(Gupta and Singh 2023), “smart healthcare systems” [52] (accessed on 1 October 2023),
“smart banking,” and more.

In August 2018, Dell partnering with Intel introduced a new secure, implementable,
and scalable solutions for IoT and edge computing use cases. Intel has contributed its
unique perspective and computer analysis technologies to the package [53]. The proposal
included sensors and licensed software customized for specific consumers use cases, along
with the diverse Dell architecture (PC hardware, edge gateways, integrated servers, etc.).
Software that expedites large-scale operation and monitoring was also included. Likewise,
in 2018, Huawei Technologies introduced the Hilink platform, which combines mobile
solutions and products designed to address the technological requirements of the various
stakeholders, connecting intelligent products, including storage solutions, air quality mon-
itors, remotely controlled infrared lights, intelligent electrical sockets, and fans, etc. [53].
Likewise, in January 2023, Intel acquired FogHorn Systems, a leading provider of FC
software, in a deal that will help Intel to expand its FC offerings and provide businesses
with a more comprehensive suite of “smart” solutions. Meanwhile, shortly thereafter, in
March 2023, Dell acquired Nimbix, a provider of FC solutions for the telecommunications
industry (smart telecommunications), thus enabling the former company to meaningfully
expand its FC offerings in telecommunications and meet the growing demand for FC in
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this market [54] (accessed on 3 January 2024). Likewise, FC has recently been used to
assist the current trend in Fintech including online credit, risk analysis, and use of large
amounts of data to improve consumer services [33]. Finally, “The Pentagon is exploring
new collaborations with technology companies that can provide potentially game-changing
edge and fog computing capabilities to support military missions” [55].

FC is generally considered to be more secure than cloud computing for several reasons.
First, the collected data is transiently maintained and analyzed on local fog nodes closest
to data sources, which decreases dependency on internet connections. Second, local data
storage, exchange, and analysis potentially make it more difficult for hackers to gain access
to user data since there can be separate and different security barriers at different fog
nodes. This limits the amount of accessible data in any given breach compared to a more
centralized cloud computing environment. However, the same level of security risks could
apply to the data exchange between user devices and the FC node or the data exchange
between different fog nodes [49]. In sum, using the IoT, social media, mobile apps, and
other digital technologies has become an integral part of consumers’ daily lives. In this
environment, a major source of consumer information is recommender systems.

3. Recommender Systems (RSs)

The widespread adoption of the internet has led to an explosion in the number of
choices available to consumers. The core idea of RSs is to find online “neighbors” based
on similarities and then, according to prediction scores, offer recommendations (for a
recent marketing review, see [56]). Thus, RSs first use algorithms to collect the original
data, second, they calculate the similarity, third, they score the prediction, and lastly, they
make recommendations. Consumers expect personalized content in modern e-commerce,
entertainment, and social media platforms. RSs comprise a subclass of information filtering
systems, which identify and recommend items based on consumer tastes and preferences
and seek to predict “rating” or “preferences” for an item not yet considered through a model
built from item characteristics or the consumer’s social environment [20,57] RSs have been
established as a crucial solution to keep consumers engaged and satisfied with personalized
content in addition to helping users navigate a vast array of choices. Felfernig and Burke
(2020) define RSs as encompassing “[a]ny system that guides a user in a personalized way
to interesting or useful objects in a very large space of possible options or that produces
such objects as output” [58] (p. 1).

RSs stem from the simple observation that consumers take recommendations from
others or use systems that provide signals to consumers about the preferences of other like-
minded customers. For example, consumers will search online for product reviews before
deciding to purchase a product. Consumers are often faced with information overload as
the amount of content and information available in a given platform expands at an ever-
increasing rate, making it difficult to make an appropriate choice among the large number
of items. Recommendation is primarily concerned with a decision-making process, whether
it concerns the next movie to watch, or story to read. RSs address this issue by filtering
out a few highly relevant items the consumer may find interesting from the vast number
of irrelevant items in the list. Successful systems span a wide variety of platforms such
as Amazon’s book recommendations, Netflix’s movie recommendations, and Pandora’s
music recommendations [59].

There are three widely used RS approaches: collaborative filtering (CF), content-based,
and hybrid approaches. CF is the process of filtering or evaluating a preference through the
opinions of others (“neighbors”). It unifies the views of many interconnected communities
on the internet and supports the filtering of large amounts of data [60].The content-based
approach recommends items similar to those in which the user has previously shown
interest. It combines CF methods and content-based methods, thus exploiting the advan-
tages of both while avoiding their specific limitations [61]. Hybrid RSs can be considered
a combination of any two or more RSs. RSs have significantly developed in recent years
along with advancements in both IoT and AI technologies. Accordingly, multiple forms of
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data are expected to be developed and incorporated into these systems, e.g., social, local,
and personal information, which improve RSs’ performance and expand their applicability
to traverse different disciplines. More recently, an emotion-aware recommender system
(EARS) [59] has been proposed based on hybrid information fusing user rating data, social
networking data, and sentiments culled from user reviews. The data is both explicit and
implicit. The model directly converts recommended tasks into user selection behavior
probabilities. Indeed, it has proven to be an effective approach to fusing user ratings
and emotional information employing hybrid features from explicit and implicit data [62].
Alongside these upsides, however, there are some notable limitations.

RS Limitations

The major RS issues are as follows:
Cold start problem. The cold start problem occurs when the RS cannot properly

recommend existing items to new users (new user problem) or recommend new items to
the existing users (new item problem). In such events, because consumers have not yet
rated a sufficient number of items, the RS is unable to monitor interest in new items. Some
RSs try to overcome this issue by forcing the consumer to first rate a given set of items.
However, these initial ratings are liable to introduce biases into the RS [59].

Sparsity. Sparsity occurs when transactional or consumers’ response data are scant
and insufficient for identifying “neighbors”. In most RSs, it refers to the situation where the
user–item interaction matrix is largely empty, meaning that most users have not interacted
with most items. This occurs frequently in real-world scenarios because users tend to
interact with only a small fraction of the available items, leading to a sparse matrix [63]. In
such cases, finding similarities among different consumers or items is challenging.

Scalability. Refers to the challenge of treating large and changing datasets, which
demands efficient and robust architectures and algorithms [63]. It signifies the limited
capability of RSs to secure valid recommendations, with a growing amount of information
about consumers and items, because it relies on complicated computations.

Latency. Latency occurs when new items are supplemented more frequently to the
RS database and the RSs solely recommend the already rated items, while the more newly
introduced items have not been rated yet.

Synonymy. The synonymy problem in RSs refers to the challenge of dealing with
items that are similar or semantically related but may not share the exact same keywords
or tags. This can lead to difficulties in accurately recommending items to users based solely
on explicit user–item interactions or metadata.

Shilling attacks. Also known as a data poisoning attack or profile injection attack,
this is a type of malicious activity aimed at manipulating the recommendations provided
by an RS. In a shilling attack, an attacker introduces fake or manipulated data into the
system in order to bias the recommendations towards certain items or to degrade the
quality of recommendations for other users. Several methods affecting both model-based
and neighbor-based [60] algorithms have been introduced in the past. These have reduced,
although only partially, the shilling problem.

Privacy. While supplying RSs with personal information presumably leads to the
best recommendations, security issues frequently arise in the process. There is an undeni-
able trade-off between providing highly personalized recommendations and respecting
user privacy.

Grey-sheep problem. “Grey-sheep users” are defied as users with unique preferences
and tastes, which make it difficult to develop accurate profiles. When it comes to such users,
the similarity search approach usually followed during the recommendation process fails
to yield valuable results. As most research neglects these users, it is unable to cater to more
exotic tastes and emerging trends, leading to a subsequent loss of valuable information. One
possible solution is to use one-class classification to provide a prediction list for these users,
while decision boundaries are learned that distinguish between normal and grey-sheep
users [62].



J. Theor. Appl. Electron. Commer. Res. 2024, 19 605

Information overload. The massive amounts of RS data being generated have rendered
“information overload” a serious problem. Unwieldy quantities of sometimes unrelated,
redundant RS information can seriously interfere with the consumer decision process.

Implicit emotions. Despite the enhanced quality of emotional data from, for example,
EARSs, which, as aforementioned, are based on hybrid information fusion using user
rating data, social networking, and explicit sentiments data from user’s responses, can be
generated by RSs. However, these do not apply to implicit emotions [60]. Implicit emotions
refer to feelings or emotional responses that are not consciously recognized or expressed by
an individual. These emotions may be hidden, subtle, or not readily apparent, even to the
person experiencing them. They can influence behaviors, thoughts, and decision making
without the individual being fully aware of their presence [64].

Filter bubbles. Although existing RSs achieve high accuracy through backtracking
tests, considering accuracy alone may lead to the phenomenon of “filter bubbles” [60],
which isolates consumers from a diversity of content. Moreover, the accuracy inferred from
historical records may not reflect the real correlations among products very well when
“concentration bias” is heavy [65].

Additional challenges are related to recent advancements in RSs such as merging
RSs with other successful systems and EEG-based neuro-RSs [20]. While the RS furnishes
purchase information based on similar others and past behavior, neuromarketing-based
systems add real-time brain state information during purchase behaviors. Also, EARSs
are undoubtedly improving RSs. However, some researchers have proposed that only
FC-based RSs can assist in solving these challenges by way of conceptualizing RSs as part
of an integrated smart system that provides consumers with decision-supporting social
information as well as personal and situational data [66].

4. Conceptualizing Fog-Based Recommender Systems

“Despite the many advantages of fog computing, which comprise low latency, privacy,
uninterrupted service and location awareness, there is still no research that combines fog
computing with recommendations systems” [60]. (p. 121).

To advance RSs, to propose solutions to the above listed limitations, and to apply RSs
in the field of marketing and consumer behavior, we conceptualized a novel fog-based
RS, depicted in Figure 2. Fog-enabled solutions leverage the capabilities of edge devices,
such as IoT devices, and other local computing resources to enhance the RS process. The
proposed system can run independently on a single fog server or collaboratively on a group
of fog servers. All these will be able to provide the following:
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Data proximity. Fog-based RSs can benefit from data generated and collected at the
edge of the network. These edge devices are able to gather valuable consumer cognitive,
emotional, and behavioral data, which is then processed locally to provide recommenda-
tions. By processing recommendation algorithms at the edge (i.e., closer to the end user),
it is possible to significantly reduce the latency associated with using recommendations
from a distant cloud server. This will lead to faster response times, which can be crucial in
real-time or interactive applications.

Low latency. FC can help to reduce RS latency by bringing computation and data storage
closer to end devices. This is important for applications where real-time recommendations
are needed, such as e-commerce and online advertising.

Privacy and security. Since data is processed locally at the edge, the potential exists
to address privacy concerns [67]. User data can remain within the local network, thus
reducing the need to transmit sensitive RS information to distant cloud servers. This makes
it more difficult for attackers to access the data.

Offline capability. Fog-based RSs continue to make recommendations even when
connectivity to the cloud is lost, since fog nodes are able to store consumers data and
historical interactions locally. This allows for generation of recommendations even when
the device in question is not connected to the internet or when network connectivity is
limited, a benefit that is crucial in scenarios where network interruptions can occur. In other
words, fog nodes can continue to learn and adapt even when not connected to the cloud.
This will allow RSs to refine models based on local interactions and feedback, providing a
more personalized experience.

Bandwidth efficiency. By performing computations at the edge, fog-based RSs can
reduce the need to transmit large amounts of data to the cloud for processing, thus saving
bandwidth and potentially lowering data transmission costs [68].

Scalability. FC allows for distributed processing across multiple edge devices, enabling
better scalability for RSs as the number of users and devices increases. FC can help to
improve the scalability of RSs by distributing the workload across multiple fog nodes. This
is important for applications with a large number of users and items, such as social media
and healthcare. A more recent and advanced technology designed to deal not only with
data scalability but also with sparsity is neural networks, which are powerful models that
can learn complex and nonlinear features and interactions from data [34]. FC-enabled
neural networks can be applied to various aspects of RSs, such as embedding, ranking,
prediction, and generation. For instance, they can learn low-dimensional embedding of
consumers and items from sparse and high-dimensional data and use them to predict
ratings or interactions. Neural networks can also learn to rank items according to their
relevance or preference for each consumer or generate new and diverse items based on
user feedback or context.

Contextual recommendations. Fog-based RSs hold the potential to leverage local con-
textual information from edge devices (such as location, device type, and local events)
to enhance the quality of recommendations. FC can use a large-scale sensor network to
monitor the environment. This additional context in turn may be leveraged by RSs to offer
more accurate and relevant recommendations based on the user’s current situation.

Personalization. By processing data locally, fog-based RSs can provide more person-
alized recommendations in real-time, adapting to user preferences faster. FC enables the
provision of personalized services directly at the edge. RSs can tailor content and products
based on individual user preferences, behavior, and context, without the need to send data
back and forth to the cloud.

Reducing overload. To address overload, various strategies can be employed, including
load balancing, resource allocation, and dynamic task offloading [68]. Load balancing
distributes tasks across multiple fog nodes to ensure even utilization of resources. Resource
allocation involves allocating additional resources or scaling fog nodes when needed to
handle increased workloads. Dynamic task offloading allows tasks to be transferred from
overloaded fog nodes to less busy ones to maintain efficient processing [32]. Thus, a fog-
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based RS can be considered an overload reduction system and information optimization
tool, which provides more specific recommendations to users.

Overcoming sparsity. The sparsity problem is a challenge in IoT systems where devices
are often geographically dispersed and have limited resources. This can make it difficult
to collect and process RS data from all of the devices in real time. FC can help to solve
the sparsity problem by providing a distributed computing platform deployable closer
to the edge of the network. This allows fog nodes to process data locally, reducing the
need to send it all the way to the cloud. An analytical method was proposed to address
data sparsity that uses FC matrix factorization, which decomposes the user–item rating
matrix into two low-rank matrices, one representing the latent features of users and the
other representing the latent features of items [69]. By learning these latent features, FC-
enabled matrix factorization can capture the underlying patterns and RS preferences of
users and items and predict the missing ratings or interactions. Matrix factorization can
also incorporate additional information, such as user or item attributes, temporal dynamics,
and social relations, to enhance the accuracy and diversity of recommendations.

Resilience to network failures. FC can operate in disconnected or partially connected
environments. This means that even in situations where network connectivity is unreliable,
RSs can continue to function at the edge.

Edge-centric consumer models. FC can enable new consumer models where edge devices
or fog nodes play a more active role in generating value through recommendations.

The effectiveness of FC-based RSs depends on factors such as the nature of the rec-
ommendation task, the available edge resources, and the specific requirements of the
application. As technology continues to advance, new systems will offer innovative FC
consumer applications and solutions for overcoming RS limitations, especially in regard
to the efficiency, scalability, latency, and privacy aspects of RSs. Also, due to the velocity
of information flow over social networks, the RS is growing into big data research. Thus,
the evolution of FC-based RSs is a promising direction for future marketing and consumer
behavior work.

One of the major concerns in FC-based RSs is how to construct a system evaluation
process. Evaluation metrics are the indicators or criteria that can be used to assess the
effectiveness and usefulness of RS-generated recommendations [32].FC provides different
kinds of evaluation metrics. Offline FC evaluation metrics are obtained based on historical
or simulated data, such as accuracy, recall, precision, and diversity, while online evaluation
metrics rely on real-time or live data, such as conversion rate, click-through rate, and
user satisfaction. They can assist users in identifying the strengths and weaknesses of
the RS and guide improvements. For example, energy RSs have become an essential
solution for energy efficiency in buildings, physical stores, and neighborhoods, while a
large number of current frameworks are focused on using cloud-to-edge architectures in
which recommended energy-saving implementations are transmitted to edge devices (e.g.,
smartphones) after completing the computing task in the cloud server [50]. Although these
architectures assist in achieving good efficiencies, they are prone to serious probable delays
in system feedback and user response because of the network bandwidth and latency
between the cloud and edge [69]. By contrast, implementing recommender algorithms
directly on the edge can allow real-time computing and identify consumer interests and
preferences more accurately, thereby enhancing consumer satisfaction and trust in the
generated recommendations. Therefore, research should be devoted to developing and
implementing RSs on the fog nodes, which should significantly reduce computational time,
minimize cloud hosting costs, ensure privacy, and overcome many of the aforementioned
RS challenges.

5. Future Trends and Challenges

“Fog computing is the next generation computing paradigm” [17]. (p. 129).

FC’s full potential has yet to be realized because several challenges are still being
addressed by the research community. According to SkyQuest Technology’s Global Fog
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Computing Market Report for 2023, the following are some future trends for FC growth with
marketing and consumer implications: embracing of 5G technology and its alliance with
FC; emergence of fog-to-cloud composition and hybrid cloud architectures; assimilation of
AI and ML capabilities; edge analytics for real-time data processing and decision making;
development of edge devices and sensors in IoT systems; language models; merging
of FC with blockchain technology; edge-native implementation and services; and more
advancements in edge privacy and security [70].Intelligent device-free sensing (IDFS) will
probably signify one of the most important IoT breakthroughs in the near future. Current
transpiring methods for IDFS include wireless device-free centralized gesture recognition,
action recognition, and computer vision-based sensing. FC not only acts in favor of latency-
sensitive applications but also lays the foundations for smarter mobility support, which
is important for individual consumers. As usage of smart and wearable devices rises
every day, intelligent location-based mobility support to maintain the benefits of consumer
proximity assumes paramount importance [3]. Research gathering accurate information
about consumer activities and environments is particularly critical. However, handling
such issues is challenging due to complex interference from dynamic environments, moving
targets, ambient noise, etc. [3].

As the market for smart devices develops, so does the number of internet users. FC
was designed to connect billions of intelligent entities, which can help to create a better
future. Thus, the need for efficient algorithms to manage the large data, fog devices, and
cloud servers is also expected to grow [30]. In this regard, there are several fundamental
challenges that marketing science and informatics will have to investigate. The first is
related to AI. As AI decision support systems and other applications are currently under
much criticism, it is important to investigate which market stakeholders are more inclined
to adopt FC-enabled AI and which are more vulnerable in the face of this emerging tech-
nology [71]. Also, technological advances have resulted in a hyperconnected world [72],
requiring a reassessment of FC-enabled smart consumers from the perspective of orga-
nizations, consumers, and society. In other words, what are the managerial focuses in
adopting FC?

Although algorithmic improvement is noteworthy in the case of RSs along with
novelty in applications, RSs using the FC paradigm are a completely novel development,
which exposes a prominent research gap. However, accuracy measures (mean absolute
error, root-mean-square error) should be deployed to check the robustness of the proposed
framework [73]. In addition, there are many relevant research questions linked to the
conceptual framework that might be posed in future research, such as the following:

RQ1: How should RSs and FC collaboration resonate with consumers?
RQ2: How can marketing research scale relative consumer trust in the different data-

generating devices?
RQ3: Although FC has strong data-collection and integration capabilities, very of-

ten data contexts are lost, creating problems in modeling, especially as it concerns emo-
tional data. The automated process of data collection also makes customer intimacy less
achievable because it is machines talking to machines [47]. Thus, how can data loss be
prevented/reduced in an FC-based RS?

RQ4: Both FC and RSs rely on digital data to make recommendations. The proficiency
to collect and analyze big data for decision making is crucial, provided that the functionality
of digital technologies all rely on digital data [74]. What levels of digital knowledge will be
needed for consumers to understand FC recommendations?

RQ5: As consumer choices of items might change with time, temporal-based data are
important for enhancing RS accuracy validity [75]. Therefore, how can FC-based RSs include
temporal-based data?

RQ6: The quantities of data and information produced by RS consumers are very large,
thus raising the issue of information overload. The RS only partially treats this problem by
attempting to automatically recommend items that activate consumer interest [26]. While
the major aim of any RS is to reduce complexity by processing the huge amount of data and
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selecting the information most pertinent to consumer’s specification, information overload
remains [75]. Therefore, how can the new FC-based RS assist in reducing the overload?

RQ7: One of the problems in recommending an algorithm for RSs is deciding the
attributes composing the recommendation [76]. As different considerations might affect
RSs differently, how can FC assign appropriate weights to the different attributes?

RQ8: RSs are mainly based on the fact that consumer interests and behavior are influ-
enced by their social “neighbors.” However, consumers might have different trust attitudes
for different social domains, which depends upon the RS situations. Thus, situational infor-
mation might play a critical role in decision making. Situational information is based on
consumers’ mental, physical, emotional, and social situations [75]. How can FC incorporate
situational information for generating effective recommendations?

RQ9: There are significant cultural differences in consumer responses to the new
technologies. It was demonstrated that individuals with stronger interdependent and
collectivistic tendencies are more receptive to non-personalized recommendations than
others [62]. In the context of our framework, the question is as follows: can cultural differences
also explain differences in responses to FC?

RQ10: There is a long tradition in marketing and consumer behavior showing different
responses to different products (e.g., high/low involvement; hedonic/utilitarian). Do the
same differences apply to FC-based RS product recommendations?

RQ11: FC is claimed to be an effective computational paradigm for any data-related
ecosystem [1], and while this paper has used FC-based RSs to elaborate on possible FC
implications for marketing and consumer behavior, the following intuitive question is as
follows: can all big data marketing benefit from FC?

RQ12: FC has proven to be an interdisciplinary paradigm. When conducting FC
research, how can marketing and consumer behavior benefit from related disciplines (e.g.,
economics, psychology, and sociology)?

RQ13: Virtualization is an important paradigm for providing isolated environments
in FC and the main factor of fog node performance [74]. Therefore, what FC-enabled
virtualization techniques should be used for RSs and other consumer domains?

RQ14: As already noted, offloading is a unique component that has an impact on all
design goals. Offloading in FC to RSs and other consumer issues must resolve several
questions: (1) what kinds of consumer data are needed in offloading decisions, (2) how can marketing
partition applications for offloading, and (3) how can optimal offloading systems be designed?

6. Limitations

This study has some noteworthy limitations. It has been our objective to present future
FC applications in consumer behavior RSs in a concise way and to derive important research
questions. Consequently, we did not elaborate on the many subtleties and intricacies of
FC technologies, which are undoubtedly important subjects for future research. We also
recommend that future research explore the effects of the value of FC information, trust in
smart technology [77–79], technology-mediated life, and enjoyment of technology-enriched
experiences [80,81], among many other questions that ought to be investigated in the
general context of FC. Although the present article has focused on consumers, many
of these issues are also relevant in business-to-business contexts, and we expect further
research to apply the proposed framework in B2B e-commerce marketplaces. Users should
also consider some of the inherent limitations of FC like the fact that fog nodes require
additional processing power and storage compared to simple edge devices, which might
increase initial costs. In fact, managing and maintaining a distributed network of fog nodes
is more complex and expensive than centralized cloud setups. Also, the lack of standardized
protocols and technologies can create compatibility issues and hinder scalability. Despite
the discussed challenges and future research issues, FC has the potential to revolutionize
the way marketing and consumer research sectors compute and store data. By addressing
these future FC challenges, scholars can make FC more reliable, efficient, and secure and
pave the way for its widespread adoption.
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7. Technical Contributions of FC

FC can make several key technical contributions to the field of distributed comput-
ing to enhance RSs. In particular, FC can be helpful in bridging the gap between edge
devices and the cloud, like with reduced latency and improved responsiveness, optimized
network bandwidth, increased reliability and resilience, and most importantly for RSs, by
facilitating emerging technologies and enhancing scalability and flexibility. These technical
contributions highlight the transformative potential of fog computing to RSs and its ability
to improve various aspects of RS distributed computing. As technology evolves and new
applications emerge, fog computing is poised to play a vital role in shaping the future of
RS research.

8. Conclusions

It is clear that “[t]he era of the cloud’s total dominance is drawing to a close” [18].
Emerging technologies such as neural networks, blockchains, the metaverse (e.g., virtual
reality and augmented reality), cyber–physical systems, artificial intelligence, genetic data,
and nanotechnologies, some of which are used independently in marketing ecosystems,
are revolutionizing the smart consumer domain as we know it. One of the most remarkable
changes brought about by FC is the unprecedented interactive system that cuts across
physical, sensory, virtual, and digital data, not only for consumers, but also regarding
products, stores, locations, and store shelves.

Theoretical and Practical Implications

The ubiquity of FC usage compels marketing scholars to study its effects on the vast
array of marketing and consumer domains. Marketing managers as well as consumers
need FC to augment data analytics, limit communication latency and costs, increase human
situational awareness, enable adaptive decisions, and provide energy-efficient computing
and architectures for data collection and processing. FC’s major benefit for smart consumers
lies in its ability to collect and compute big data sets in milliseconds from an array of
different sources, including location-based applications (e.g., mobile devices), user-centric
services, and behavioral and emotional modalities. Also, implementing practices like
device refurbishment and recycling will promote responsible resource management in fog
networks. The FC-based RS framework presented here suggests that FC is developing
into a fully functional and potentially disruptive opportunity for consumer behavior.
FC presents a platform for combining all kinds of data in a scalable manner to enrich
consumers’ knowledge. In this context, FC can play a crucial role in big data analytics in
terms of anticipating and providing consumers with guided valuable information to meet
expectations. The combination of IoT–SDN devices and decision-support software will
provide smart consumers with improved systems to monitor not only their attitudes and
preferences but also various recommendations and decision options. Also, IoT devices can
unobtrusively insert themselves into the consumers’ lives, automate regular activities, and
escalate functionality by reducing the need for human intervention. In short, FC is expected
to become a unifying concept, rich enough to provide a new breed of emerging services
and enable the development of new consumer applications. Research on FC remains in
its initial phases. Throughout this paper, we have provided a holistic view of FC as a
smart world facilitator. FC is a relatively new paradigm, which has swiftly garnered wide
recognition, and found broad applications, due to its significant contribution to advanced
computing technology (for an updated list of references, see Web Supplementary S4).

In this paper, we have argued that FC is well suited for smart consumers, where
there is a constant need to quickly analyze and react to new technologies and real-time
data. Indeed, FC’s ability to accelerate awareness of and response to events with minimal
latency makes it perfect for smart consumers. It seems clear, as well, that IoT-enabled FC
may have the potential to revolutionize the future of emotion and behavior measurement
in using hybridizing approaches. With the evolution of the IoT and AI services and
technologies, which establishes a new “smart world” where everything is monitored
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automatically, merely providing quality of service is no longer acceptable, as it fails to offer
a satisfactory user experience [82]. Indeed, quality of experience (QoE), which gratifies
consumer experience and enhances consumer performance, has become far more vital,
and FC is considered a major technological breakthrough in terms of the advancement
of QoE [33,49]. Smart consumers can exist and grow only when they continuously and
rapidly adapt to changing technologies.
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