Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = zinc cadmium sulfide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1808 KiB  
Article
CdZnS Nanowire Decorated with Graphene for Efficient Photocatalytic Hydrogen Evolution
by Zemeng Wang, Yunsheng Shen, Qingsheng Liu, Tao Deng, Kangqiang Lu and Zhaoguo Hong
Molecules 2025, 30(14), 3042; https://doi.org/10.3390/molecules30143042 - 20 Jul 2025
Viewed by 285
Abstract
Harnessing abundant and renewable solar energy for photocatalytic hydrogen production is a highly promising approach to sustainable energy generation. To realize the practical implementation of such systems, the development of photocatalysts that simultaneously exhibit high activity, cost-effectiveness, and long-term stability is critically important. [...] Read more.
Harnessing abundant and renewable solar energy for photocatalytic hydrogen production is a highly promising approach to sustainable energy generation. To realize the practical implementation of such systems, the development of photocatalysts that simultaneously exhibit high activity, cost-effectiveness, and long-term stability is critically important. In this study, a Cd0.8Zn0.2S nanowire photocatalytic system decorated with graphene (GR) was prepared by a simple hydrothermal method. The introduction of graphene increased the reaction active area of Cd0.8Zn0.2S, promoted the separation of photogenerated charge carriers in the semiconductor, and improved the photocatalytic performance of the Cd0.8Zn0.2S semiconductor. The results showed that Cd0.8Zn0.2S loaded with 5% graphene exhibited the best photocatalytic activity, with a hydrogen production rate of 1063.4 µmol·g−1·h−1. Characterization data revealed that the graphene cocatalyst significantly enhances electron transfer kinetics in Cd0.8Zn0.2S, thereby improving the separation efficiency of photogenerated charge carriers. This study demonstrates a rational strategy for designing high-performance, low-cost composite photocatalysts using earth-abundant cocatalysts, advancing sustainable hydrogen production. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

19 pages, 6273 KiB  
Article
Enhanced Efficiency of CZTS Solar Cells with Reduced Graphene Oxide and Titanium Dioxide Layers: A SCAPS Simulation Study
by Dounia Fatihi, Giorgio Tseberlidis, Vanira Trifiletti, Simona Binetti, Eleonora Isotta, Paolo Scardi, Abderrafi Kamal, R’hma Adhiri and Narges Ataollahi
ChemEngineering 2025, 9(2), 38; https://doi.org/10.3390/chemengineering9020038 - 1 Apr 2025
Viewed by 1141
Abstract
Copper zinc tin sulfide (commonly known as CZTS) solar cells (SCs) are gaining attention as a promising technology for sustainable electricity generation owing to their cost-effectiveness, availability of materials, and environmental advantages. The goal of this study is to enhance CZTS SC performance [...] Read more.
Copper zinc tin sulfide (commonly known as CZTS) solar cells (SCs) are gaining attention as a promising technology for sustainable electricity generation owing to their cost-effectiveness, availability of materials, and environmental advantages. The goal of this study is to enhance CZTS SC performance by adding a back surface field (BSF) layer. SC capacitance simulator software (SCAPS) was used to examine three different configurations. Another option is to replace the cadmium sulfide (CdS) buffer layer with a titanium dioxide (TiO2) layer. The results demonstrate that the reduced graphene oxide (rGO) BSF layer increases the conversion efficiency by 25.68% and significantly improves the fill factor, attributed to lowering carrier recombination and creating a quasi-ohmic contact at the interface between the metal and semiconductor. Furthermore, replacing the CdS buffer layer with TiO2 offers potential efficiency gains and mitigates environmental concerns associated with the toxicity of CdS. The results of this investigation could enhance the efficiency and viability of CZTS SCs for future energy applications. However, it is observed that BSF layers may become less effective at elevated temperatures due to increased recombination, leading to reduced carrier lifetime. This study underlines valuable insights into optimizing CZTS SC performance through advanced material choices, highlighting the dual benefits of improved efficiency and reduced environmental impact. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

36 pages, 22537 KiB  
Article
Comparative Analysis of Potentially Toxic Elements (PTEs) in Waste Rock and Tailings: A Case Study from the Recsk Mining Area, Hungary
by Naji Alwani, Péter Szabó, Zsuzsanna Horváth-Mezőfi, Zsuzsanna Jókainé Szatura, My Ban, Quang Duc Nguyen and Géza Hitka
Minerals 2025, 15(4), 360; https://doi.org/10.3390/min15040360 - 30 Mar 2025
Viewed by 510
Abstract
Metal-mining activities inevitably generate contaminants in high quantities, which can pose a risk to soil, water, biota, and humans. This study compares the geochemical properties of waste materials of tailings and waste rock heaps originating from the same high-sulfidation-type epithermal mineralization. Field sampling [...] Read more.
Metal-mining activities inevitably generate contaminants in high quantities, which can pose a risk to soil, water, biota, and humans. This study compares the geochemical properties of waste materials of tailings and waste rock heaps originating from the same high-sulfidation-type epithermal mineralization. Field sampling was conducted in the Recsk Copper Mining Area on the H2 tailings and H7 waste heap, where a total of 48 samples were collected at various depths. The results showed that PTEs were present in varying concentrations and behaved differently in the two waste materials. Copper concentrations were approximately five times higher in H2 tailings (median 1660 mg/kg) than in H7 waste rock (median 347 mg/kg), whereas arsenic was 2.8 times more concentrated in H2 tailings (674 mg/kg vs. 238 mg/kg). Conversely, zinc (114 mg/kg vs. 24 mg/kg), lead (172 mg/kg vs. 42.8 mg/kg), and cadmium (0.83 mg/kg vs. 0.097 mg/kg) show significantly higher concentrations in H7 waste rock. Element mobility analyses revealed that calcium mobility in H7 waste rock (65%) was twice that observed in H2 tailings (32%), with copper showing a threefold higher mobility in H7 despite lower total concentrations. NAG pH values (2.06–3.23) confirmed significant acid-generating potential in both waste types, with the H7 waste rock posing greater immediate environmental risk due to higher element mobility and more advanced weathering indicated by elevated jarosite (4.05%–8.01%) and secondary mineral contents. These findings demonstrate that, despite originating from the same mineralization, the distinct processing histories and physical properties of these materials necessitate unique approaches for successful remediation or secondary raw material extraction. Full article
Show Figures

Figure 1

13 pages, 2673 KiB  
Article
Construction of Hierarchical 2D-3D@3D Zn3In2S6@CdS Photocatalyst for Boosting Degradation of an Azo Dye
by Andreas Katsamitros, Nikolaos Karamoschos, Labrini Sygellou, Konstantinos S. Andrikopoulos and Dimitrios Tasis
Molecules 2025, 30(7), 1409; https://doi.org/10.3390/molecules30071409 - 21 Mar 2025
Viewed by 421
Abstract
Herein, flower-like Zn3In2S6 (ZIS3) crystallites were grown onto acorn leaf-like CdS assemblies via a two-step hydrothermal approach. Under visible light irradiation, the Zn3In2S6-enriched heterostructures demonstrated an enhanced azo-dye degradation rate, [...] Read more.
Herein, flower-like Zn3In2S6 (ZIS3) crystallites were grown onto acorn leaf-like CdS assemblies via a two-step hydrothermal approach. Under visible light irradiation, the Zn3In2S6-enriched heterostructures demonstrated an enhanced azo-dye degradation rate, with the majority of the organic analyte (Orange G) being degraded within 60 min. In contrast, the CdS-enriched hybrids showed poor photocatalytic performance. The optimized hybrid containing a nominal CdS content of 4 wt% was characterized by various physicochemical techniques, such as XRD, SEM, XPS and Raman. XPS analysis showed that the electron density around the Zn and In sites in Zn3In2S6 was slightly increased, implying a certain charge migration pattern. Complementary information from scavenging experiments suggested that hydroxy radicals were not the exclusive transient responsible for oxidative degradation of the organic azo-dye. This research provides new information about the development of metal chalcogenide-based heterostructures for efficient photocatalytic organic pollutant degradation. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 2799 KiB  
Article
Numerical Simulation and Hole Transport Layers Optimization of a Lead Sulfide-Based Solar Cell with a Power Conversion Efficiency of Above 22%
by Edson L. Meyer, Inam Vulindlela, Athandwe Paca, Mojeed A. Agoro and Nicholas Rono
Coatings 2025, 15(3), 255; https://doi.org/10.3390/coatings15030255 - 20 Feb 2025
Viewed by 1199
Abstract
Recently, the numerical simulation of solar cells has attracted tantamount scientific attention in the photovoltaic community because it saves on research time and resources before the actual fabrication of the devices in the laboratories. Despite significant advancements in the fabrication of quantum dot-sensitized [...] Read more.
Recently, the numerical simulation of solar cells has attracted tantamount scientific attention in the photovoltaic community because it saves on research time and resources before the actual fabrication of the devices in the laboratories. Despite significant advancements in the fabrication of quantum dot-sensitized solar cells (QDSSCs), the power conversion efficiency (PCE) is still low when compared to other solar cells such as perovskite. This efficiency gap poses a substantial challenge in harnessing the full potential of QDSSCs for widespread adoption in renewable energy applications. Enhancing the efficiency of QDSSCs is imperative for their commercial viability and widespread deployment. In this work, SCAPS-1D was used in the simulation of QDSSCs. The solar cell with a general configuration of FTO/TiO2/PbS/HTL/Au was investigated. In the device, PbS quantum dots were inserted as the absorber layer, TiO2 as the electron transport layer (ETL), gold as the back contact, and the following inorganic materials, i.e., copper (I) iodide (CuI), copper (I) oxide (Cu2O), cadmium zinc telluride selenide (CZTSe), copper iron tin sulfide (CFTS), and copper zinc tin sulfide selenide (CZTSSe) were tested as HTL materials, and FTO acted as the conductive substrate. The best HTL material (CZTSSe) exhibited a PCE of 22.61%, with a fill factor (FF) of 84.67%, an open circuit voltage (Voc) of 0.753 V, and a current density (Jsc) of 35.48 mA cm−2. This study contributes to the field by employing SCAPS-1D simulations to optimize QDSSCs, exploring novel inorganic HTL materials for these solar cells and identifying CZTSSe as a promising low-cost HTL that significantly enhances both the performance and commercial viability of QDSSCs. Full article
Show Figures

Figure 1

16 pages, 2296 KiB  
Article
Hazard Study of Sludge from Mining Wastewater Treatment Systems (Tailings), Accumulation of Contaminants and Potential Utilization Proposals
by Paúl N. Malacatus, Paulina E. Manobanda and Inmaculada Romero
Sustainability 2024, 16(23), 10569; https://doi.org/10.3390/su162310569 - 2 Dec 2024
Viewed by 1382
Abstract
The increase in gold mining activities has led to a substantial rise in tailings generation, which carry distinct physicochemical and microbiological properties. This study aimed to evaluate the hazardous characteristics of mining tailings using the CRETIB (corrosivity, reactivity, explosiveness, toxicity, ignitability, biological-infectious) methodology. [...] Read more.
The increase in gold mining activities has led to a substantial rise in tailings generation, which carry distinct physicochemical and microbiological properties. This study aimed to evaluate the hazardous characteristics of mining tailings using the CRETIB (corrosivity, reactivity, explosiveness, toxicity, ignitability, biological-infectious) methodology. The research analyzed concentrations of heavy metals including arsenic, cadmium, copper, chromium, lead, mercury, nickel, and zinc, alongside parameters such as pH, cyanide, hydrogen sulfide, and coliform bacteria. Tailings samples were collected from a mine in Ponce Enriquez, Ecuador, at the surface and at a depth of 2 m across three monitoring campaigns. The results indicate that the tailings do not exhibit hazardous characteristics according to CRETIB criteria. While arsenic, chromium, copper, nickel, zinc, and mercury concentrations showed significant differences between the surface and 2 m depth, accumulating at the bottom of the tailings dam by 30–72%, parameters such as pH, cyanide, and hydrogen sulfide were higher at the surface, likely due to volatilization and precipitation effects. Lead did not show significant differences, but also tended to accumulate at depth. These findings suggest that the tailings could be safely utilized in the production of construction materials such as bricks, geopolymer concrete, and fiber cement, promoting circular economy practices and sustainable development in mining. Full article
(This article belongs to the Special Issue Geological Engineering and Sustainable Environment)
Show Figures

Figure 1

28 pages, 1898 KiB  
Review
An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress
by Pan Luo, Jingjing Wu, Ting-Ting Li, Peihua Shi, Qi Ma and Dong-Wei Di
Antioxidants 2024, 13(10), 1174; https://doi.org/10.3390/antiox13101174 - 26 Sep 2024
Cited by 18 | Viewed by 3306
Abstract
Cadmium (Cd2+) is a non-essential and highly toxic element to all organic life forms, including plants and humans. In response to Cd stress, plants have evolved multiple protective mechanisms, such as Cd2+ chelation, vesicle sequestration, the regulation of Cd2+ [...] Read more.
Cadmium (Cd2+) is a non-essential and highly toxic element to all organic life forms, including plants and humans. In response to Cd stress, plants have evolved multiple protective mechanisms, such as Cd2+ chelation, vesicle sequestration, the regulation of Cd2+ uptake, and enhanced antioxidant defenses. When Cd2+ accumulates in plants to a certain level, it triggers a burst of reactive oxygen species (ROS), leading to chlorosis, growth retardation, and potentially death. To counteract this, plants utilize a complex network of enzymatic and non-enzymatic antioxidant systems to manage ROS and protect cells from oxidative damage. This review systematically summarizes how various elements, including nitrogen, phosphorus, calcium, iron, and zinc, as well as phytohormones such as abscisic acid, auxin, brassinosteroids, and ethylene, and signaling molecules like nitric oxide, hydrogen peroxide, and hydrogen sulfide, regulate the antioxidant system under Cd stress. Furthermore, it explores the mechanisms by which exogenous regulators can enhance the antioxidant capacity and mitigate Cd toxicity. Full article
Show Figures

Figure 1

15 pages, 4805 KiB  
Article
Composition-Regulated Photocatalytic Activity of ZnIn2S4@CdS Hybrids for Efficient Dye Degradation and H2O2 Evolution
by Nikolaos Karamoschos, Andreas Katsamitros, Labrini Sygellou, Konstantinos S. Andrikopoulos and Dimitrios Tasis
Molecules 2024, 29(16), 3857; https://doi.org/10.3390/molecules29163857 - 14 Aug 2024
Cited by 4 | Viewed by 1934
Abstract
Heterostructures of visible light-absorbing semiconductors were prepared through the growth of ZnIn2S4 crystallites in the presence of CdS nanostructures. A variety of hybrid compositions was synthesized. Both reference samples and heterostructured materials were characterized in detail, regarding their morphology, crystalline [...] Read more.
Heterostructures of visible light-absorbing semiconductors were prepared through the growth of ZnIn2S4 crystallites in the presence of CdS nanostructures. A variety of hybrid compositions was synthesized. Both reference samples and heterostructured materials were characterized in detail, regarding their morphology, crystalline character, chemical speciation, as well as vibrational properties. The abovementioned physicochemical characterization suggested the absence of doping phenomena, such as the integration of either zinc or indium ions into the CdS lattice. At specific compositions, the growth of the amorphous ZnIn2S4 component was observed through both XRD and Raman analysis. The development of heterojunctions was found to be composition-dependent, as indicated by the simultaneous recording of the Raman profiles of both semiconductors. The optical band gaps of the hybrids range at values between the corresponding band gaps of reference semiconductors. The photocatalytic activity was assessed in both organic dye degradation and hydrogen peroxide evolution. It was observed that the hybrids demonstrating efficient photocatalytic activity in dye degradation were rather poor photocatalysts for hydrogen peroxide evolution. Specifically, the hybrids enriched in the CdS component were shown to act efficiently for hydrogen peroxide evolution, whereas ZnIn2S4-enriched hybrids demonstrated high potential to photodegrade an azo-type organic dye. Furthermore, scavenging experiments suggested the involvement of singlet oxygen in the mechanistic path for dye degradation. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Green Chemistry, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 2303 KiB  
Article
Cytotoxicity of Quantum Dots in Receptor-Mediated Endocytic and Pinocytic Pathways in Yeast
by Onyinye Okafor and Kyoungtae Kim
Int. J. Mol. Sci. 2024, 25(9), 4714; https://doi.org/10.3390/ijms25094714 - 26 Apr 2024
Viewed by 1293
Abstract
Despite the promising applications of the use of quantum dots (QDs) in the biomedical field, the long-lasting effects of QDs on the cell remain poorly understood. To comprehend the mechanisms underlying the toxic effects of QDs in yeast, we characterized defects associated with [...] Read more.
Despite the promising applications of the use of quantum dots (QDs) in the biomedical field, the long-lasting effects of QDs on the cell remain poorly understood. To comprehend the mechanisms underlying the toxic effects of QDs in yeast, we characterized defects associated with receptor-mediated endocytosis (RME) as well as pinocytosis using Saccharomyces cerevisiae as a model in the presence of cadmium selenide/zinc sulfide (CdSe/ZnS) QDs. Our findings revealed that QDs led to an inefficient RME at the early, intermediate, and late stages of endocytic patch maturation at the endocytic site, with the prolonged lifespan of GFP fused yeast fimbrin (Sac6-GFP), a late marker of endocytosis. The transit of FM1-43, a lipophilic dye from the plasma membrane to the vacuole, was severely retarded in the presence of QDs. Finally, QDs caused an accumulation of monomeric red fluorescent protein fused carbamoyl phosphate synthetase 1 (mRFP-Cps1), a vacuolar lumen marker in the vacuole. In summary, the present study provides novel insights into the possible impact of CdSe/ZnS QDs on the endocytic machinery, enabling a deeper comprehension of QD toxicity. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

16 pages, 14155 KiB  
Article
Construction of Zn0.5Cd0.5S/Bi4O5Br2 Heterojunction for Enhanced Photocatalytic Degradation of Tetracycline Hydrochloride
by Lan Luo, Juan Shen and Bo Jin
Inorganics 2024, 12(5), 127; https://doi.org/10.3390/inorganics12050127 - 24 Apr 2024
Cited by 3 | Viewed by 1759
Abstract
The development of efficient catalysts with visible light response for the removal of pollutants in an aqueous environment has been a hotspot in the field of photocatalysis research. A Zn0.5Cd0.5S (ZCS) nanoparticle/Bi4O5Br2 ultra-thin nanosheet [...] Read more.
The development of efficient catalysts with visible light response for the removal of pollutants in an aqueous environment has been a hotspot in the field of photocatalysis research. A Zn0.5Cd0.5S (ZCS) nanoparticle/Bi4O5Br2 ultra-thin nanosheet heterojunction was constructed by ultrasound-assisted solvothermal method. The morphology, structure, and optoelectronic properties of the composite were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV–vis diffuse reflectance spectra. Under simulated visible light illumination, the photocatalytic performance was evaluated through degradation of tetracycline hydrochloride. Results show that the degradation effect by the optimum ZCS/Bi4O5Br2 catalyst is superior to pure materials with the kinetic constant that is 1.7 and 9.6 times higher than those of Bi4O5Br2 and ZCS, and also has better stability and reusability. Trapping experiments and electron paramagnetic resonance tests find that free radicals in the photocatalytic system are superoxide radicals and holes. This work provides a referable idea for the development of more efficient and recyclable photocatalysts. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

13 pages, 4571 KiB  
Article
Metal-Based Nanomaterials for the Sensing of NSAIDS
by Farah Quddus, Afzal Shah, Naimat Ullah and Iltaf Shah
Nanomaterials 2024, 14(7), 630; https://doi.org/10.3390/nano14070630 - 4 Apr 2024
Cited by 1 | Viewed by 1869
Abstract
Cadmium sulfide and zinc oxide nanoparticles were prepared, characterized and used as electrode modifiers for the sensing of two non-steroidal anti-inflammatory drugs (NSAIDs): naproxen and mobic. The structural and morphological characterization of the synthesized nanoparticles was carried out by XRD, UV-Vis spectroscopy, FTIR [...] Read more.
Cadmium sulfide and zinc oxide nanoparticles were prepared, characterized and used as electrode modifiers for the sensing of two non-steroidal anti-inflammatory drugs (NSAIDs): naproxen and mobic. The structural and morphological characterization of the synthesized nanoparticles was carried out by XRD, UV-Vis spectroscopy, FTIR and scanning electron microscopy. The electrode’s enhanced surface area facilitated the signal amplification of the selected NSAIDs. The CdS-modified glassy carbon electrode (GCE) enhanced the electro-oxidation signals of naproxen to four times that of the bare GCE, while the ZnO-modified GCE led to a two-fold enhancement in the electro-oxidation signals of mobic. The oxidation of both NSAIDs occurred in a pH-dependent manner, suggesting the involvement of protons in their electron transfer reactions. The experimental conditions for the sensing of naproxen and mobic were optimized and, under optimized conditions, the modified electrode surface demonstrated the qualities of sensitivity and selectivity, and a fast responsiveness to the target NSAIDs. Full article
Show Figures

Figure 1

18 pages, 6859 KiB  
Article
Advanced Synthesis and Characterization of CdO/CdS/ZnO Heterostructures for Solar Energy Applications
by Yana Suchikova, Sergii Kovachov, Ihor Bohdanov, Zhakyp T. Karipbayev, Yaroslav Zhydachevskyy, Anastasiia Lysak, Vladimir Pankratov and Anatoli I. Popov
Materials 2024, 17(7), 1566; https://doi.org/10.3390/ma17071566 - 29 Mar 2024
Cited by 10 | Viewed by 3077
Abstract
This study introduces an innovative method for synthesizing Cadmium Oxide /Cadmium Sulfide/Zinc Oxide heterostructures (CdO/CdS/ZnO), emphasizing their potential application in solar energy. Utilizing a combination of electrochemical deposition and oxygen annealing, the research provides a thorough analysis of the heterostructures through scanning electron [...] Read more.
This study introduces an innovative method for synthesizing Cadmium Oxide /Cadmium Sulfide/Zinc Oxide heterostructures (CdO/CdS/ZnO), emphasizing their potential application in solar energy. Utilizing a combination of electrochemical deposition and oxygen annealing, the research provides a thorough analysis of the heterostructures through scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, and photoluminescence (PL) spectroscopy. The findings reveal a complex surface morphology and a composite structure with significant contributions from hexagonal CdS and cubic CdO phases. The study highlights the uniformity in the distribution of luminescent centers and the crystalline quality of the heterostructures, which is evident from the PL analysis. The redshift observed in the emission peak and the additional peaks in the excitation spectrum indicate intricate optical properties influenced by various factors, including quantum confinement and lattice strain. The research demonstrates these heterostructures’ potential in enhancing solar cells’ efficiency and applicability in optoelectronic devices. This comprehensive characterization and analysis pave the way for future optimization and application in efficient and sustainable solar energy solutions. Full article
(This article belongs to the Special Issue Metal Oxide Semiconductors for Electronic Applications)
Show Figures

Figure 1

12 pages, 3186 KiB  
Article
The In Vitro Toxicity Profile of ZnS and CdS Quantum Dots in Polysaccharide Carriers (Starch/Chitosan)
by Anna Grzesiakowska, Magdalena Dzióbek, Marta Kuchta-Gładysz, Joanna Wojciechowska-Puchałka, Karen Khachatryan, Gohar Khachatryan and Magdalena Krystyjan
Int. J. Mol. Sci. 2024, 25(1), 361; https://doi.org/10.3390/ijms25010361 - 27 Dec 2023
Cited by 4 | Viewed by 2517
Abstract
Nanocomposites are an emerging technology for ensuring food safety and quality. Their unique properties, attributed to nanoparticle presence, facilitate the development of sophisticated sensors and biosensors for detecting harmful substances, microbial growth, and environmental changes in food products. Smart and/or active food packaging [...] Read more.
Nanocomposites are an emerging technology for ensuring food safety and quality. Their unique properties, attributed to nanoparticle presence, facilitate the development of sophisticated sensors and biosensors for detecting harmful substances, microbial growth, and environmental changes in food products. Smart and/or active food packaging development also benefits from the use of nanocomposites. This packaging, or portions of it, provide active protection for its contents and serve as sensors to promptly, simply, and safely identify any detrimental changes in stored food, without elaborate techniques or analyses. Films made from potato starch and chitosan were produced and quantum dots of zinc sulfide (ZnS) and cadmium sulfide (CdS)were synthesized in them for this study. The presence and dimensions of the QDs (quantum dots) were examined with scanning electron microscopy (SEM) and ultraviolet-visible (UV-VIS) spectroscopy. The study aimed to establish the toxicity profile of a starch–chitosan bionanocomposite integrated with ZnS and CdS quantum dots. Cytotoxic and genotoxic features were assessed through cytogenetic instability assessments, consisting of the alkaline comet assay, erythrocyte micronucleus assay, and peripheral blood cell viability analysis of a laboratory mouse model. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

13 pages, 2938 KiB  
Article
The Impact of Cadmium Selenide Zinc Sulfide Quantum Dots on the Proteomic Profile of Saccharomyces cerevisiae
by Nhi Le, Abhishu Chand, Onyinye Okafor and Kyoungtae Kim
Int. J. Mol. Sci. 2023, 24(22), 16332; https://doi.org/10.3390/ijms242216332 - 15 Nov 2023
Cited by 2 | Viewed by 1802
Abstract
Quantum dots (QDs) have been highly sought after in the past few decades for their potential to be used in many biomedical applications. However, QDs’ cytotoxicity is still a major concern that limits the incorporation of QDs into cutting-edge technologies. Thus, it is [...] Read more.
Quantum dots (QDs) have been highly sought after in the past few decades for their potential to be used in many biomedical applications. However, QDs’ cytotoxicity is still a major concern that limits the incorporation of QDs into cutting-edge technologies. Thus, it is important to study and understand the mechanism by which QDs exert their toxicity. Although many studies have explored the cytotoxicity of quantum dots through the transcriptomic level and reactive species generation, the impact of quantum dots on the expression of cellular protein remains unclear. Using Saccharomyces cerevisiae as a model organism, we studied the effect of cadmium selenide zinc sulfide quantum dots (CdSe/ZnS QDs) on the proteomic profile of budding yeast cells. We found a total of 280 differentially expressed proteins after 6 h of CdSe/ZnS QDs treatment. Among these, 187 proteins were upregulated, and 93 proteins were downregulated. The majority of upregulated proteins were found to be associated with transcription/RNA processing, intracellular trafficking, and ribosome biogenesis. On the other hand, many of the downregulated proteins are associated with cellular metabolic pathways and mitochondrial components. Through this study, the cytotoxicity of CdSe/ZnS QDs on the proteomic level was revealed, providing a more well-rounded knowledge of QDs’ toxicity. Full article
(This article belongs to the Special Issue Nano-Bio Interaction)
Show Figures

Figure 1

12 pages, 2238 KiB  
Article
Enhancing the Photovoltaic Performance of Cd(1−x)ZnxS Thin Films Using Seed Assistance and EDTA Treatment
by Gayan W. C. Kumarage, Ruwan P. Wijesundera, Elisabetta Comini and Buddhika S. Dassanayake
Micro 2023, 3(4), 867-878; https://doi.org/10.3390/micro3040059 - 12 Nov 2023
Cited by 2 | Viewed by 1387
Abstract
This research article provides a comprehensive investigation into the optoelectronic characteristics of three distinct types of cadmium sulfide (CdS) thin films, namely: (a) conventionally prepared CdS thin films using chemical bath deposition (CBD-CdS), (b) CdS thin films produced via chemical bath deposition with [...] Read more.
This research article provides a comprehensive investigation into the optoelectronic characteristics of three distinct types of cadmium sulfide (CdS) thin films, namely: (a) conventionally prepared CdS thin films using chemical bath deposition (CBD-CdS), (b) CdS thin films produced via chemical bath deposition with the inclusion of zinc (CBD-Cd(1−x)ZnxS, x = 0.3), and (c) CdS thin films synthesized using a seed-assisted approach, treated with ethylenediaminetetraacetic acid (EDTA), and incorporating zinc (ED/CBD + EDTA-Cd(1−x)ZnxS). The investigation reveals that the crystallite size of these thin films decreases upon the addition of EDTA to the reaction solution, leading to an increase in the inter-planar spacing and dislocation density. Furthermore, a blue shift in the transmittance edge of the ED/CBD + EDTA-Cd(1−x)ZnxS samples compared to CBD-CdS implies modifications in the band gaps of the deposited films. The incorporation of Zn2+ into the reaction solution results in an increased band gap value of up to 2.42 eV. This suggests that Cd(1−x)ZnxS thin films permit more efficient photon transmission compared to conventional CdS. Among the three types of films studied, ED/CBD + EDTA-Cd(1−x)ZnxS exhibits the highest optical band gap of 2.50 eV. This increase in the optical band gap is attributed to the smaller crystallite size and the splitting of the tail levels from the band structure. Additionally, the increment in the optical band gap leads to reduced light absorption at longer wavelengths, thereby enhancing the electrical properties. Notably, ED/CBD + EDTA-Cd(1−x)ZnxS thin films demonstrate improved photovoltaic performance in a photoelectrochemical (PEC) cell, characterized by enhanced open-circuit voltage (363 mV, VOC), short-circuit current (35.35 μA, ISC), and flat-band voltage (−692 mV, Vfb). These improvements are attributed to the better adhesion of CdS to the fluorine-doped tin oxide (FTO) substrate and improved inter-particle connectivity. Full article
Show Figures

Figure 1

Back to TopTop