Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (156)

Search Parameters:
Keywords = zeolite porosity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 349
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

33 pages, 1666 KiB  
Review
Synthesis, Characterization, and Application of Magnetic Zeolite Nanocomposites: A Review of Current Research and Future Applications
by Sabina Vohl, Irena Ban, Janja Stergar and Mojca Slemnik
Nanomaterials 2025, 15(12), 921; https://doi.org/10.3390/nano15120921 - 13 Jun 2025
Viewed by 1070
Abstract
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview [...] Read more.
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview of the synthesis, characterization, and diverse applications of magnetic zeolite NCs. We begin by introducing the fundamental properties of zeolites and magnetic nanoparticles (MNPs), highlighting their synergistic integration into multifunctional composites. The structural features of various zeolite frameworks and their influence on composite performance are discussed, along with different interaction modes between MNPs and zeolite matrices. The evolution of research on magnetic zeolite NCs is traced chronologically from its early stages in the 1990s to current advancements. Synthesis methods such as co-precipitation, sol–gel, hydrothermal, microwave-assisted, and sonochemical approaches are systematically compared, emphasizing their advantages and limitations. Key characterization techniques—including X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning and Transmission Electron Microscopy (SEM, TEM), Thermogravimetric Analysis (TGA), Nitrogen Adsorption/Desorption (BET analysis), Vibrating Sample Magnetometry (VSM), Zeta potential analysis, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and X-Ray Photoelectron Spectroscopy (XPS)—are described, with attention to the specific insights they provide into the physicochemical, magnetic, and structural properties of the NCs. Finally, the review explores current and potential applications of these materials in environmental and biomedical fields, focusing on adsorption, catalysis, magnetic resonance imaging (MRI), drug delivery, ion exchange, and polymer modification. This article aims to provide a foundation for future research directions and inspire innovative applications of magnetic zeolite NCs. Full article
Show Figures

Figure 1

19 pages, 2109 KiB  
Review
Microenvironment Regulation in Zeolite-Based Catalysts for Selective Oxidation of Aromatic VOCs
by Xiaoxin Chen, Wenwen Ma and Guoju Yang
Catalysts 2025, 15(6), 581; https://doi.org/10.3390/catal15060581 - 11 Jun 2025
Viewed by 687
Abstract
Aromatic volatile organic compounds (VOCs) pose significant environmental and public health risks due to their toxicity, carcinogenicity, and role as precursors of hazardous secondary pollutants. Zeolite-based metal catalysts, with their well-defined microporous structures, tunable acidity, and high thermal stability, have shown promise in [...] Read more.
Aromatic volatile organic compounds (VOCs) pose significant environmental and public health risks due to their toxicity, carcinogenicity, and role as precursors of hazardous secondary pollutants. Zeolite-based metal catalysts, with their well-defined microporous structures, tunable acidity, and high thermal stability, have shown promise in the catalytic oxidation of aromatic VOCs. However, the influence of the zeolite microenvironment on supported metal active sites remains insufficiently understood, limiting the rational design of advanced catalysts. This review highlights how microenvironmental parameters—including pore architecture, acid site distribution, framework composition, and surface/interface engineering—can be modulated to enhance adsorption, oxygen activation, and metal–support interactions. Advances in hierarchical porosity, heteroatom substitution, and surface hydrophobicity are discussed. This review provides a framework for the development of next-generation zeolite-based catalysts and offers strategic guidance for advancing microenvironment-controlled catalysis in sustainable environmental remediation. Full article
(This article belongs to the Special Issue Catalytic Removal of Volatile Organic Compounds (VOCs))
Show Figures

Figure 1

24 pages, 3764 KiB  
Article
Development and Characterization of KOH-Activated Carbons Derived from Zeolite-Catalyzed Pyrolysis of Waste Tires
by Camila Aguilar-Ccuno, Rossibel Churata, Kattia Martínez and Jonathan Almirón
Sustainability 2025, 17(11), 4822; https://doi.org/10.3390/su17114822 - 23 May 2025
Viewed by 678
Abstract
This study focuses on the production and characterization of activated carbons derived from the carbonaceous residue obtained through the catalytic pyrolysis of waste tires. A catalytic pyrolysis process was conducted at 450 °C and 575 °C, employing two zeolitic catalysts, the commercial ZSM-5 [...] Read more.
This study focuses on the production and characterization of activated carbons derived from the carbonaceous residue obtained through the catalytic pyrolysis of waste tires. A catalytic pyrolysis process was conducted at 450 °C and 575 °C, employing two zeolitic catalysts, the commercial ZSM-5 and a synthesized zeolite (PZ2), developed from natural pozzolan, which played a key role in the pyrolysis performance and the quality of the resulting carbons. After pyrolysis, the solid residues were chemically activated using KOH to improve their porous structure and surface characteristics. Comprehensive characterization was carried out, including textural properties (BET surface area and porosity) and morphological (SEM) analysis of the activated carbons, as well as crystallinity evaluation (XRD) of the zeolitic catalysts. The BET surface areas of activated carbons PZ2-T1-AK and PZ2-T2-AK reached 608.65 m2/g and 624.37 m2/g, respectively, values that surpass those reported for similar materials under comparable activation conditions. The developed porous structure suggests strong potential for applications in adsorption processes, including pollutant removal. These findings demonstrate the effectiveness of zeolite-catalyzed pyrolysis, particularly using PZ2, as a sustainable strategy for transforming tire waste into high-performance adsorbent materials. This approach supports circular economy principles through innovative waste valorization and offers a promising solution to an environmental challenge. Full article
Show Figures

Figure 1

31 pages, 18126 KiB  
Article
Eco-Friendly Conversion of Waste Zeolite Dust into Dual Oil/Water Affinity Sorbents via HPGR-Based Agglomeration–Deagglomeration
by Ewelina Pabiś-Mazgaj, Agata Stempkowska and Tomasz Gawenda
Sustainability 2025, 17(10), 4359; https://doi.org/10.3390/su17104359 - 12 May 2025
Viewed by 531
Abstract
This study presents an innovative, eco-friendly approach for converting waste zeolite dust into efficient petroleum sorbents through an integrated agglomeration–deagglomeration process using high-pressure grinding rolls (HPGRs). This method generates secondary porosity without calcination, enhancing sorption while reducing greenhouse gas emissions and supporting sustainable [...] Read more.
This study presents an innovative, eco-friendly approach for converting waste zeolite dust into efficient petroleum sorbents through an integrated agglomeration–deagglomeration process using high-pressure grinding rolls (HPGRs). This method generates secondary porosity without calcination, enhancing sorption while reducing greenhouse gas emissions and supporting sustainable development by valorizing industrial by-products for environmental remediation. The study aimed to assess the influence of binder and water content on petroleum sorption performance, textural properties, and mechanical strength of the produced sorbents, and to identify correlations between these parameters. Sorbents were characterized using mercury porosimetry (MIP), sorption measurements, mechanical resistance tests, scanning electron microscopy (SEM), and digital microscopy. Produced zeolite sorbents (0.5–1 mm) exceeded the 50 wt.% sorption threshold required for oil spill cleanup in Poland, outperforming diatomite sorbents by 15–50% for diesel and 40% for used engine oil. The most effective sample, 3/w/22.5, reached capacities of 0.4 g/g for petrol, 0.8 g/g for diesel, and 0.3 g/g for used oil. The sorption mechanism was governed by physical processes, mainly diffusion of nonpolar molecules into meso- and macropores via van der Waals forces. Sorbents with dominant pores (~4.8 µm) showed ~15% higher efficiency than those with smaller pores (~0.035 µm). The sorbents demonstrated amphiphilic behavior, enabling simultaneous uptake of polar (water) and nonpolar (petrochemical) substances. Full article
Show Figures

Figure 1

20 pages, 4793 KiB  
Article
Effect of Pozzolanic Additive on Properties and Surface Finish Assessment of Concrete
by Giedrius Girskas, Dalius Kriptavičius, Olga Kizinievič and Jurgita Malaiškienė
Buildings 2025, 15(10), 1617; https://doi.org/10.3390/buildings15101617 - 11 May 2025
Viewed by 536
Abstract
This research focuses on the impact of a pozzolanic additive (zeolite) on the durability properties of concrete and the evaluation of the surface finish of the final product (concrete). Durability is one of the key characteristics of concrete that ensures the performance of [...] Read more.
This research focuses on the impact of a pozzolanic additive (zeolite) on the durability properties of concrete and the evaluation of the surface finish of the final product (concrete). Durability is one of the key characteristics of concrete that ensures the performance of concrete structures, landscaping elements, and products over their lifetime and beyond. To reduce CO2 emissions, replacing part of traditional cement with pozzolanic additives is necessary. We tested concrete mixes in which up to 20% of cement was replaced with a pozzolanic additive. Concrete flow and entrained air content were measured. The following properties of hardened modified concrete were determined: density, ultrasonic pulse velocity, water absorption, freeze–thaw resistance, and mechanical properties after 7 and 28 days of curing. The compressive strength values were normalised and expressed in MPa/g to obtain a deeper insight into the effect of a pozzolanic additive on the mechanical properties of concrete. The test results showed that the pozzolanic additive selected for testing reduced the flowability, density, and ultrasonic pulse velocity; increased entrained air content; and reduced the porosity of concrete. The compressive strength results at 28 days (normalised and expressed in MPa/g) showed that all specimens modified with up to 20% zeolite had a higher compressive strength than that of the reference specimen (from 0.0138 to 0.0164). Freeze–thaw resistance results showed that 15% was the optimum content of zeolite additive that could replace cement in the mix to obtain concrete with appropriate durability properties. Concrete surface finish evaluation tests showed that 15% of the pozzolanic additive is recommended to obtain a good-quality surface finish of exposed concrete. Full article
Show Figures

Figure 1

30 pages, 1810 KiB  
Article
Zeolite and Inorganic Nitrogen Fertilization Effects on Performance, Lint Yield, and Fiber Quality of Cotton Cultivated in the Mediterranean Region
by Ioannis Roussis, Antonios Mavroeidis, Panteleimon Stavropoulos, Konstantinos Baginetas, Panagiotis Kanatas, Konstantinos Pantaleon, Antigolena Folina, Dimitrios Beslemes and Ioanna Kakabouki
Crops 2025, 5(3), 27; https://doi.org/10.3390/crops5030027 - 3 May 2025
Viewed by 2060
Abstract
The continuous provision of nitrogen (N) to the crop is critical for optimal cotton production; however, the constant and excessive application of synthetic fertilizers causes adverse impacts on soil, plants, animals, and human health. The current study focused on the short-term effects (one-year [...] Read more.
The continuous provision of nitrogen (N) to the crop is critical for optimal cotton production; however, the constant and excessive application of synthetic fertilizers causes adverse impacts on soil, plants, animals, and human health. The current study focused on the short-term effects (one-year study) of adding different rates of clinoptilolite zeolite, as part of an integrated nutrient management plan, and different rates of inorganic N fertilizer to improve soil and crop performance of cotton in three locations (ATH, MES, and KAR) in Greece. Each experiment was set up according to a split-plot design with three replications, three main plots (zeolite application at rates of 0, 5, and 7.5 t ha−1), and four sub-plots (N fertilization regimes at rates of 0, 100, 150, and 200 kg N ha−1). The results of this study indicated that increasing rates of the examined factors increased cotton yields (seed cotton yield, lint yield, and lint percentage), with the greatest lint yield recorded under the highest rates of zeolite (7.5 t ha−1: 1808, 1723, and 1847 kg ha−1 in ATH, MES, and KAR, respectively) and N fertilization (200 kg N ha−1: 1804, 1768, and 1911 kg ha−1 in ATH, MES, and KAR, respectively). From the evaluated parameters, most soil parameters (soil organic matter, soil total nitrogen, and total porosity), root and shoot development (root length density, plant height, leaf area index, and dry weight), fiber maturity traits (micronaire, maturity, fiber strength, and elongation), fiber length traits (upper half mean length, uniformity index, and short fiber index), as well as color (reflectance and spinning consistency index) and trash traits (trash area and trash grade), were positively impacted by the increasing rates of the evaluated factors. In conclusion, the results of the present research suggest that increasing zeolite and N fertilization rates to 7.5 t ha−1 and 200 kg N ha−1, respectively, improved soil properties (except mean weight diameter), stimulated crop development, and enhanced cotton and lint yield, as well as improved the fiber maturity, length, and color parameters of cotton grown in clay-loam soils in the Mediterranean region. Full article
Show Figures

Figure 1

21 pages, 8076 KiB  
Article
Eco-Friendly Synthesis of Geopolymer Foams from Natural Zeolite Tuffs and Silica Fume: Effects of H2O2 and Calcium Stearate on Foam Properties
by Ethem Ilhan Şahin and Jamal-Eldin F. M. Ibrahim
Buildings 2025, 15(6), 970; https://doi.org/10.3390/buildings15060970 - 19 Mar 2025
Viewed by 671
Abstract
The need for environmentally friendly and energy-efficient building materials has increased significantly. This study synthesizes geopolymer foams with enhanced thermal insulation properties using silica fume and natural zeolite tuff. Zeolite’s porous structure and active sites improve polymerization and strengthen the foam, while silica [...] Read more.
The need for environmentally friendly and energy-efficient building materials has increased significantly. This study synthesizes geopolymer foams with enhanced thermal insulation properties using silica fume and natural zeolite tuff. Zeolite’s porous structure and active sites improve polymerization and strengthen the foam, while silica fume reacts with NaOH to release sodium silicate, forming a durable geopolymer matrix. Foam porosity is introduced by generating oxygen gas from H2O2 and NaOH, with calcium stearate stabilizing the foam structure. Comparative analysis of the compressive strength, bulk density, porosity, and thermal conductivity shows that incorporating H2O2 and calcium stearate significantly reduces thermal conductivity (from 0.19 to 0.06 W/m·K) while ensuring a highly porous system (66–82.6% porosity) with adequate mechanical strength (1.6–3.39 MPa). These findings highlight the potential of the developed geopolymer foam for sustainable insulation applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 10189 KiB  
Article
Experimental Research and Theoretical Analysis of the Coupling Mechanism Between Microstructure and Acoustics in Porous Materials
by Haoshuai Suo, Junhuai Xu, Yaohan Feng, Dongsheng Liu, Pei Tang and Ya Feng
Appl. Sci. 2025, 15(6), 3104; https://doi.org/10.3390/app15063104 - 13 Mar 2025
Viewed by 975
Abstract
Based on the three-parameter approximate JCAL analytical model (hereinafter referred to as the three-parameter model), this study conducted an in-depth analysis of the effects of porosity, median pore size, and pore size standard deviation on the acoustic performance of porous materials and developed [...] Read more.
Based on the three-parameter approximate JCAL analytical model (hereinafter referred to as the three-parameter model), this study conducted an in-depth analysis of the effects of porosity, median pore size, and pore size standard deviation on the acoustic performance of porous materials and developed a composite porous material composed of glass fibers and zeolite particles. Experimental results indicate that the pore size distribution significantly affects the acoustic performance of fibrous porous sound-absorbing materials. Specifically, smaller pores lead to better sound absorption at mid–low frequencies, with the optimal sound absorption performance observed when the median pore size is between 60 and 80 μm. Increasing the material density and decreasing the fiber diameter help reduce the internal pore size, thereby improving the material’s sound absorption performance. Additionally, the appropriate addition of zeolite can further optimize the internal pore size and effective sound-absorbing interface, thus enhancing the material’s sound absorption performance. When the material density is 120 kg/m3 and the zeolite substitution rate is around 10%, the material exhibits the best acoustic performance, with a noise reduction coefficient (NRC) reaching 0.65, which is a 10.17% increase compared to the material without zeolite. Comparing the simulation data from the three-parameter model with the actual measurement data shows that the model has excellent predictive performance for the sound absorption coefficient (SAC) of single-fiber porous materials (with an error of approximately 5%). However, for composite porous materials, due to the complex changes in interfaces, there is a certain prediction error (with the maximum error reaching 12.81%), indicating that the model needs further optimization and correction when applied to composite materials. Full article
Show Figures

Figure 1

32 pages, 3577 KiB  
Article
Effects of Zeolite Application and Inorganic Nitrogen Fertilization on Growth, Productivity, and Nitrogen and Water Use Efficiency of Maize (Zea mays L.) Cultivated Under Mediterranean Conditions
by Ioanna Kakabouki, Ioannis Roussis, Antonios Mavroeidis, Panteleimon Stavropoulos, Panagiotis Kanatas, Konstantinos Pantaleon, Antigolena Folina, Dimitrios Beslemes and Evangelia Tigka
Sustainability 2025, 17(5), 2178; https://doi.org/10.3390/su17052178 - 3 Mar 2025
Cited by 2 | Viewed by 2277
Abstract
Nitrogen (N) fertilizer application is one of the most crucial agronomic management practices for increasing grain yield in maize crops. However, the long application may adversely affect soil quality. For achieving sustainable agricultural production, the current research set out to evaluate the short-term [...] Read more.
Nitrogen (N) fertilizer application is one of the most crucial agronomic management practices for increasing grain yield in maize crops. However, the long application may adversely affect soil quality. For achieving sustainable agricultural production, the current research set out to evaluate the short-term effects of the addition of zeolite as a soil amendment and N fertilization on the maize growth, yield, quality, N- and water-use efficiency in three locations (Athens, Messolonghi, and Karditsa) in Greece. Each experiment set up during the spring–summer 2024 cultivation period was laid out in a split-plot design with three main plots (Zeolite treatments: 0, 5, and 7.5 t ha−1) and four sub-plots (N fertilization treatments: 0, 100, 150, and 200 kg N ha−1). The results revealed that increasing the zeolite application rate from 0 to 7.5 t ha−1 led to a significant increase in grain yield, with the highest value (13.46, 12.46, and 14.83 t ha−1 in Athens, Messolonghi, and Karditsa, respectively) observed at 7.5 t ha−1. In the same manner, the increasing inorganic N fertilization rate from 0 to 200 kg N ha−1, also increased the grain yield. In general, most of the soil properties (soil organic matter, soil total nitrogen, total porosity, soil moisture content, and infiltration rate), root and shoot growth (root length density, plant height, leaf area index and dry weight), N content and uptake of the grains, and aerial biomass, as well as, thousand kernel weight, N harvest index (NHI), and water use efficiency (WUE), were positively affected by both of the examined factors. In conclusion, this study proved that the increasing rates of zeolite as a soil amendment and N fertilization up to a rate of 7.5 t ha−1 and 200 kg N ha−1, respectively, improved soil properties, promoted plant development, and increased grain yield, grain and biomass N uptake, NHI, and WUE of the maize crop cultivated in clay–loam soils and under Mediterranean conditions, where the experimental trials set up. Full article
(This article belongs to the Special Issue Sustainable Soil Management and Crop Production Research: 2nd Edition)
Show Figures

Figure 1

17 pages, 10821 KiB  
Article
Impact of Treatment Methods on the Surface Properties of the Mg-Containing Zeolite Y
by Andrzej Biessikirski, Grzegorz Piotr Kaczmarczyk, Malwina Kolano, Karolina Kaznowska-Opala, Małgorzata Ruggiero-Mikołajczyk, Jacek Gurgul and Łukasz Kuterasiński
Materials 2025, 18(5), 1033; https://doi.org/10.3390/ma18051033 - 26 Feb 2025
Viewed by 572
Abstract
In the undertaken research, we investigated the preparation route’s influence mainly on the surface properties of the final form of Mg-containing zeolite Y. The parent zeolite was subjected to modification with aqueous solutions of magnesium nitrate via impregnation, ion-exchange, and ultrasonic techniques, respectively. [...] Read more.
In the undertaken research, we investigated the preparation route’s influence mainly on the surface properties of the final form of Mg-containing zeolite Y. The parent zeolite was subjected to modification with aqueous solutions of magnesium nitrate via impregnation, ion-exchange, and ultrasonic techniques, respectively. The results obtained from the Atomic Force Microscopy (AFM), Computer Tomography (CT), and crystallinity evaluations indicated that the method of zeolite modification influenced the physicochemical properties of the studied samples. Wet impregnation caused additional surface roughness, whereas both ion-exchange and sonication led to surface smoothing of the Mg-containing zeolite Y. Nitrogen adsorption analysis indicated no enormous changes in the porosity of Mg-containing zeolite Y, which can be explained by a relatively high resistance of zeolite to interaction with magnesium nitrate aqueous solutions. However, the biggest changes in porosity were observed for Mg-Y prepared via the impregnation technique due to the longest contact between the zeolite and Mg solution. Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications (2nd Edition))
Show Figures

Figure 1

18 pages, 2871 KiB  
Article
Enhancing Soil Physical Quality with Compost Amendments: Effects of Particle Size and Additives
by Tomasz Głąb, Krzysztof Gondek and Monika Mierzwa-Hersztek
Agronomy 2025, 15(2), 458; https://doi.org/10.3390/agronomy15020458 - 13 Feb 2025
Cited by 3 | Viewed by 1684
Abstract
This research investigates the impact of compost particle size, compost additives, and application rate on the physical properties of loamy sand soil, particularly focusing on water retention characteristics. Compost, enriched with additives like zeolite, biochar, and diatomite, was applied to soil in different [...] Read more.
This research investigates the impact of compost particle size, compost additives, and application rate on the physical properties of loamy sand soil, particularly focusing on water retention characteristics. Compost, enriched with additives like zeolite, biochar, and diatomite, was applied to soil in different rates: 1%, 2%, and 4%. Compost particles were divided into three particle size classes: 0–500 µm, 500–1000 µm, and 1000–2000 µm. The study revealed significant effects of compost on soil physical quality, including bulk density, porosity, and water retention. Zeolite-enriched compost showed the most pronounced improvements in soil water retention by modifying pore diameter. However, the effectiveness of compost additives varied depending on the type and rate of application. Compost with zeolite resulted in a decrease in the volume of large soil pores with diameters of 50–500 µm and above 500 µm. This resulted in higher water retention related to mesopores. Larger compost particles (1.0–2.0 mm) exhibited superior effects on soil physical quality compared to smaller particles (<1.0 mm), although finer particles (0.5–1.0 mm) were associated with higher water repellency. Compost with diatomite resulted in higher water repellency than other compost types. The findings underscore the importance of considering compost particle size, component type, and application rate to optimize soil hydraulic characteristics, particularly in agricultural practices where water management is crucial. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 3005 KiB  
Article
Synthesis of Granular Free-Binder ZSM-5 Zeolites Using Different Amorphous Aluminosilicates
by Alina Kh. Ishkildina, Olga S. Travkina, Dmitry V. Serebrennikov, Rufina A. Zilberg, Artur I. Malunov, Nadezhda A. Filippova, Boris I. Kutepov and Marat R. Agliullin
Surfaces 2025, 8(1), 12; https://doi.org/10.3390/surfaces8010012 - 7 Feb 2025
Viewed by 1086
Abstract
In this paper, we discuss options for the synthesis of granular free-binder ZSM-5 zeolites using synthetic aluminosilicates prepared by sol-gel technology with organic and inorganic silicon sources. It has been shown that the properties of the amorphous aluminosilicate used to prepare the initial [...] Read more.
In this paper, we discuss options for the synthesis of granular free-binder ZSM-5 zeolites using synthetic aluminosilicates prepared by sol-gel technology with organic and inorganic silicon sources. It has been shown that the properties of the amorphous aluminosilicate used to prepare the initial granules influence the crystallization conditions, as well as the morphology and size of the crystals formed from granular ZSM-5 zeolite. The granular free-binder Pt/ZSM-5 with a developed secondary porous structure showed higher activity in the hydrocracking of hexadecane than the granular binder Pt/ZSM-5. At a reaction temperature of 220 °C, the conversion of n-hexadecane in the granular free-binder sample was 59.1%. At the same time, the selectivity for hexadecane isomers was 15.7%. Full article
(This article belongs to the Special Issue Recent Advances in Catalytic Surfaces and Interfaces)
Show Figures

Figure 1

22 pages, 6298 KiB  
Article
Influence of Secondary Porosity Introduction via Top-Down Methods on MOR, ZSM-5, and Y Zeolites on Their Cumene Cracking Performance
by Josué C. Souza, Mariele I. S. Mello, Felipe F. Barbosa, Iane M. S. Souza, Alexander Sachse and Sibele B. C. Pergher
Catalysts 2025, 15(2), 146; https://doi.org/10.3390/catal15020146 - 4 Feb 2025
Cited by 1 | Viewed by 1164
Abstract
The influence of secondary porosity and the dimensionality of zeolitic structures with 1D and 3D pore systems on the accessibility of cumene to Brønsted acid sites was evaluated in this study. Zeolites Y, ZSM-5, and MOR, obtained through NH4F leaching and basic and [...] Read more.
The influence of secondary porosity and the dimensionality of zeolitic structures with 1D and 3D pore systems on the accessibility of cumene to Brønsted acid sites was evaluated in this study. Zeolites Y, ZSM-5, and MOR, obtained through NH4F leaching and basic and acid treatments, were studied. Zeolites Y and ZSM-5 showed a significant increase in specific surface area while maintaining the micropore volume as well as an increase in the concentration of Brønsted acid sites following treatment. Zeolite MOR exhibited an increase in mesopore volume and retained Brønsted acidity. The impact of the treatments on catalytic properties was evaluated through cumene cracking, which yielded high catalytic conversion for the materials. This result is consistent with the goal of the model reaction to characterize Brønsted acid sites, enhance accessibility, and reduce diffusion paths. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Figure 1

14 pages, 7136 KiB  
Article
Mesoporous Nitrogen-Doped Carbon Support from ZIF-8 for Pt Catalysts in Oxygen Reduction Reaction
by Sangyeup Park, Jong Gyeong Kim, Youngin Cho and Chanho Pak
Nanomaterials 2025, 15(2), 128; https://doi.org/10.3390/nano15020128 - 16 Jan 2025
Cited by 1 | Viewed by 1516
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) has been extensively studied as a precursor for nitrogen-doped carbon (NC) materials due to its high surface area, tunable porosity, and adjustable nitrogen content. However, the intrinsic microporous structure of the ZIF-8 limits mass transport and accessibility of reactants [...] Read more.
Zeolitic imidazolate framework-8 (ZIF-8) has been extensively studied as a precursor for nitrogen-doped carbon (NC) materials due to its high surface area, tunable porosity, and adjustable nitrogen content. However, the intrinsic microporous structure of the ZIF-8 limits mass transport and accessibility of reactants to active sites, reducing its effectiveness in electrochemical applications. In this study, a soft templating approach using a triblock copolymer was used to prepare mesoporous ZIF-8-derived NC (Meso-ZIF-NC) samples. The hierarchical porous structure was investigated by varying the ratios of Pluronic F-127, NaClO4, and toluene. The resulting Meso-ZIF-NC exhibited widespread pore size distribution with an enhanced mesopore (2–50 nm) volume according to the composition of the reaction mixtures. Pt nanoparticles were uniformly dispersed on the Meso-ZIF-NC to form Pt/Meso-ZIF-NC catalysts, which presented a high electrochemical surface area and improved oxygen reduction reaction activity. The study highlights the important role of mesopore structure and nitrogen doping in enhancing catalytic performance, providing a pathway for advanced fuel cell catalyst design. Full article
(This article belongs to the Collection Micro/Nanoscale Open Framework Materials (OFMs))
Show Figures

Figure 1

Back to TopTop