Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (351)

Search Parameters:
Keywords = wurtzite-ZnO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3283 KiB  
Article
Atypical Pressure Dependent Structural Phonon and Thermodynamic Characteristics of Zinc Blende BeO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(15), 3671; https://doi.org/10.3390/ma18153671 - 5 Aug 2025
Abstract
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, [...] Read more.
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, flexible, transparent, nano-electronic and nanophotonic modules. BeO-based ultraviolet photodetectors and biosensors are playing important roles in providing safety and efficiency to nuclear reactors for their optimum operations. In thermal management, BeO epifilms have also been used for many high-tech devices including medical equipment. Phonon characteristics of zb BeO at ambient and high-pressure P ≠ 0 GPa are required in the development of electronics that demand enhanced heat dissipation for improving heat sink performance to lower the operating temperature. Here, we have reported methodical simulations to comprehend P-dependent structural, phonon and thermodynamical properties by using a realistic rigid-ion model (RIM). Unlike zb ZnO, the study of the Grüneisen parameter γ(T) and thermal expansion coefficient α(T) in zb BeO has revealed atypical behavior. Possible reasons for such peculiar trends are attributed to the combined effect of the short bond length and strong localization of electron charge close to the small core size Be atom in BeO. Results of RIM calculations are compared/contrasted against the limited experimental and first-principle data. Full article
(This article belongs to the Special Issue The Heat Equation: The Theoretical Basis for Materials Processing)
Show Figures

Figure 1

13 pages, 2459 KiB  
Article
Green Synthesis of Zinc Oxide Particles Using Cladophora glomerata L. (Kütz) Extract: Comparative Study of Crystal Structure, Surface Chemistry, and Antimicrobial Efficacy with Different Zinc Precursors
by Göksal Sezen and Ramazan Aktan
Processes 2025, 13(8), 2350; https://doi.org/10.3390/pr13082350 - 24 Jul 2025
Viewed by 277
Abstract
This study examined the eco-friendly synthesis of zinc oxide (ZnO) nanoparticles using Cladophora glomerata extracts as reducing and stabilizing agents, comparing zinc acetate and zinc chloride precursors for biomedical and environmental applications. Zinc acetate-synthesized ZnO nanoparticles showed a significant absorption peak around 320–330 [...] Read more.
This study examined the eco-friendly synthesis of zinc oxide (ZnO) nanoparticles using Cladophora glomerata extracts as reducing and stabilizing agents, comparing zinc acetate and zinc chloride precursors for biomedical and environmental applications. Zinc acetate-synthesized ZnO nanoparticles showed a significant absorption peak around 320–330 nm, indicating stable, quasi-spherical ZnO nanoparticles with a narrow size distribution, primarily around 100 nm. Zeta potential measurements revealed a value of −25 mV for these particles, suggesting moderate colloidal stability. XRD analysis confirmed a highly crystalline hexagonal wurtzite structure for zinc acetate-derived ZnO, and SEM images supported a proper microstructure with approximately 2 µm particle size. FTIR analysis indicated higher-quality ZnO from zinc acetate due to the absence of moisture and hydroxyl groups. Conversely, zinc chloride-derived ZnO particles displayed a broader absorption spectrum around 370 nm, indicative of significant aggregation. Their narrower zeta potential distribution around +10 mV suggested diminished colloidal stability and a heightened aggregation tendency. While a peak around 100 nm was observed, many particles exceeded 1000 nm, reaching up to 10,000 nm. XRD results showed that zinc chloride adversely affected crystallinity, and SEM analysis indicated smaller particles (approx. 1 µm). FTIR analysis demonstrated that zinc chloride samples retained hydroxyl groups. Both zinc acetate- and zinc chloride-derived ZnO nanoparticles produced notable inhibitory zones against Gram-positive (L. monocytogenes, S. aureus) and specific Gram-negative bacteria (E. coli, K. pneumoniae). Zinc acetate-derived ZnO showed a 21 mm inhibitory zone against P. vulgaris, while zinc chloride-derived ZnO showed a 10.1 mm inhibitory zone against C. albicans. Notably, zinc chloride-derived ZnO exhibited broad-spectrum antimicrobial activity. MIC readings indicated that zinc acetate-derived ZnO had better antibacterial properties at lower concentrations, such as 3.125 µg/mL against L. monocytogenes. These findings emphasize that the precursor material selection critically influences particle characteristics, including optical properties, surface charge, and colloidal stability. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Graphical abstract

27 pages, 8396 KiB  
Article
Biosynthesis of Zinc Oxide Nanostructures Using Leaf Extract of Azadirachta indica: Characterizations and In Silico and Nematicidal Potentials
by Gulrana Khuwaja, Anis Ahmad Chaudhary, Abadi M. Mashlawi, Abdullah Ali Alamri, Faris Alfifi, Kahkashan Anjum, Md Shamsher Alam, Mohammad Intakhab Alam, Syed Kashif Ali, Nadeem Raza, Mohamed A. M. Ali and Mohd Imran
Catalysts 2025, 15(7), 693; https://doi.org/10.3390/catal15070693 - 21 Jul 2025
Viewed by 480
Abstract
Biosynthesized ZnO nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible (UV-vis) spectroscopy, and Fourier transform–infrared (FT-IR) spectroscopy. XRD confirmed a hexagonal wurtzite phase with an average crystallite size of 36.44 nm, while UV-vis spectroscopy showed [...] Read more.
Biosynthesized ZnO nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible (UV-vis) spectroscopy, and Fourier transform–infrared (FT-IR) spectroscopy. XRD confirmed a hexagonal wurtzite phase with an average crystallite size of 36.44 nm, while UV-vis spectroscopy showed a distinct absorption peak at 321 nm. The Zeta potential of the ZnO nanostructures was −24.28 mV, indicating high stability in suspension, which is essential for their dispersion and functionality in biological and environmental applications. The nematicidal activity of ZnO was evaluated in vitro at concentrations of 150, 300, 450, and 600 ppm, with the highest concentration achieving 75.71% mortality of second-stage juveniles (J2s) after 72 h. The calculated LC50 values for the treatments were 270.33 ppm at 72 h. Additionally, molecular docking studies indicated significant interactions between the ZnO nanostructures and nematode proteins, HSP-90 and ODR1, supporting their potential nematicidal mechanism. This research highlights the effectiveness of neem leaf extract-mediated ZnO nanostructures as an eco-friendly, sustainable alternative for nematode control, presenting a promising solution for agricultural pest management. Full article
(This article belongs to the Special Issue (Bio)nanomaterials in Catalysis)
Show Figures

Figure 1

19 pages, 5463 KiB  
Article
Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea
by Pedro Gerardo Trejo-Flores, Yazmin Sánchez-Roque, Heber Vilchis-Bravo, Yolanda del Carmen Pérez-Luna, Paulina Elizabeth Velázquez-Jiménez, Francisco Ramírez-González, Karen Magaly Soto Martínez, Pascual López de Paz, Sergio Saldaña-Trinidad and Roberto Berrones-Hernández
Nanomaterials 2025, 15(14), 1126; https://doi.org/10.3390/nano15141126 - 20 Jul 2025
Viewed by 417
Abstract
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides [...] Read more.
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides an efficient, eco-friendly, and reproducible route to obtain ZnO nanoparticles, while minimizing environmental impact compared to conventional chemical approaches. The extracts were prepared following a standardized protocol, and their phytochemical profiles, including total phenolics, flavonoids, and antioxidant capacity, were quantified via UV-Vis spectroscopy to confirm their reducing potential. ZnO nanoparticles were synthesized using zinc acetate dihydrate as a precursor, with variations in pH and precursor concentration in both aqueous and ethanolic media. UV-Vis spectroscopy confirmed nanoparticle formation, while X-ray diffraction (XRD) revealed a hexagonal wurtzite structure with preferential (101) orientation and lattice parameters a = b = 3.244 Å, c = 5.197 Å. Scanning electron microscopy (SEM) showed agglomerated morphologies, and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of phytochemicals such as quercetin, kaempferol, saponins, and terpenes, along with Zn–O bonding, indicating surface functionalization. Zeta potential measurements showed improved dispersion under alkaline conditions, particularly with ethanolic extracts. This study presents a sustainable synthesis strategy with tunable parameters, highlighting the critical influence of precursor concentration and solvent environment on ZnO nanoparticle formation. Notably, aqueous extracts promote ZnO synthesis at low precursor concentrations, while alkaline conditions are essential when using ethanolic extracts. Compared to other green synthesis methods, this strategy offers control and reproducibility and employs a non-toxic, underexplored plant source rich in phytochemicals, potentially enhancing the crystallinity, surface functionality, and application potential of the resulting ZnO nanoparticles. These materials show promise for applications in photocatalysis, in antimicrobial coatings, in UV-blocking formulations, and as functional additives in optoelectronic and environmental remediation technologies. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Graphical abstract

17 pages, 4195 KiB  
Article
Rapid Synthesis of Highly Crystalline ZnO Nanostructures: Comparative Evaluation of Two Alternative Routes
by Emely V. Ruiz-Duarte, Juan P. Molina-Jiménez, Duber A. Avila, Cesar O. Torres and Sindi D. Horta-Piñeres
Crystals 2025, 15(7), 640; https://doi.org/10.3390/cryst15070640 - 11 Jul 2025
Viewed by 294
Abstract
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the [...] Read more.
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the rapid synthesis of highly crystalline ZnO nanostructures using two alternative routes: (1) direct thermal decomposition of zinc acetate and (2) a physical-green route assisted by Mangifera indica extract. Both routes were subjected to identical calcination thermal conditions (400 °C for 2 h), allowing for an objective comparison of their effects on structural, vibrational, morphological, and optical characteristics. X-ray diffraction analyses confirmed the formation of a pure hexagonal wurtzite phase in both samples, highlighting a higher crystallinity index (91.6%) and a larger crystallite size (35 nm) in the sample synthesized using the physical-green route. Raman and FTIR spectra supported these findings, revealing greater structural order. Electron microscopy showed significant morphological differences, and UV-Vis analysis showed a red shift in the absorption peak, associated with a decrease in the optical bandgap (from 3.34 eV to 2.97 eV). These results demonstrate that the physical-green route promotes significant improvements in the structural and functional properties of ZnO, without requiring changes in processing temperature or the use of additional chemicals. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

17 pages, 2685 KiB  
Article
Co-Effect of pH Control Agent and pH Value on the Physical Properties of ZnO Thin Films Obtained by Chemical Bath Deposition for Potential Application in Dye-Sensitized Solar Cells
by Alphonse Déssoudji Gboglo, Mazabalo Baneto, Komlan Segbéya Gadedjisso-Tossou, Ognanmi Ako, Ayayi Claude Ahyi, Muthiah Haris, Muthusamy Senthilkumar, Kekeli N’konou, Bruno Grandidier, Katawoura Beltako, Komi Apélété Amou and Milohum Mikesokpo Dzagli
Surfaces 2025, 8(3), 46; https://doi.org/10.3390/surfaces8030046 - 1 Jul 2025
Viewed by 448
Abstract
This study presents the influence of pH control agents and pH value on the physical properties of ZnO thin films obtained by chemical bath deposition. ZnO thin films were synthesized on glass substrates using precursor solutions of different pHs prepared from two bases: [...] Read more.
This study presents the influence of pH control agents and pH value on the physical properties of ZnO thin films obtained by chemical bath deposition. ZnO thin films were synthesized on glass substrates using precursor solutions of different pHs prepared from two bases: sodium hydroxide (NaOH) and ammonia (NH3). The effect of pH values on the morphological, structural, and optical properties of ZnO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and UV–Visible spectroscopy. XRD results showed that all the synthesized ZnO thin films are polycrystalline and crystallize in a hexagonal wurtzite structure. The crystallite size, calculated using the Debye–Scherrer formula, varied from 10.50 nm to 11.69 nm for ZnO thin films obtained with NH3 and from 20.79 nm to 27.76 nm for those obtained with NaOH. FTIR analysis confirmed the presence of functional groups. SEM images indicated that not only the base but also the pH affects the morphology of the films, giving rise to different granular shapes. Overall, the ZnO thin films obtained with NaOH looked more mesoporous compared to those obtained with NH3. Optical characterization results showed that whatever the base used, the pH of the precursor solution affected the ZnO thin film transmittance. Films synthesized with NH3 exhibited the best transmittance (80%) at pH 8.5, while the best transmittance (81%) of films synthesized with NaOH was obtained at pH 8 in the visible region. Based on optical and morphological properties, ZnO films obtained from NH3 at pH 8.5 are found to be more suitable as photoanodes in dye-sensitized solar cells. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Figure 1

22 pages, 3862 KiB  
Article
Composition-Dependent Structural, Phonon, and Thermodynamical Characteristics of Zinc-Blende BeZnO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(13), 3101; https://doi.org/10.3390/ma18133101 - 1 Jul 2025
Cited by 1 | Viewed by 296
Abstract
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained [...] Read more.
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained substantial interest to design/improve the operations of highly efficient and flexible nano- and micro-electronics. Attempts are being made to engineer different electronic devices to cover light emission over a wide range of wavelengths to meet the growing industrial needs in photonics, energy harvesting, and biomedical applications. For zb materials, both experimental and theoretical studies of lattice dynamics ωjq have played crucial roles for understanding their optical and electronic properties. Except for zb ZnO, inelastic neutron scattering measurement of ωjq for BeO is still lacking. For the BexZn1-xO ternary alloys, no experimental and/or theoretical studies exist for comprehending their structural, vibrational, and thermodynamical traits (e.g., Debye temperature ΘDT; specific heat CvT). By adopting a realistic rigid-ion model, we have meticulously simulated the results of lattice dynamics, and thermodynamic properties for both the binary zb ZnO, BeO and ternary BexZn1-xO alloys. The theoretical results are compared/contrasted against the limited experimental data and/or ab initio calculations. We strongly feel that the phonon/thermodynamic features reported here will encourage spectroscopists to perform similar measurements and check our theoretical conjectures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Figure 1

20 pages, 2896 KiB  
Article
Annealing-Driven Modifications in ZnO Nanorod Thin Films and Their Impact on NO2 Sensing Performance
by Sandip M. Nikam, Tanaji S. Patil, Nilam A. Nimbalkar, Raviraj S. Kamble, Vandana R. Patil, Uttam E. Mote, Sadaf Jamal Gilani, Sagar M. Mane, Jaewoong Lee and Ravindra D. Mane
Micromachines 2025, 16(7), 778; https://doi.org/10.3390/mi16070778 - 30 Jun 2025
Viewed by 341
Abstract
This research examines the effect of annealing temperature on the growth orientation of zinc oxide (ZnO) nanorods and its subsequent influence on NO2 gas sensing efficiency. Zinc oxide (ZnO) nanorods were synthesized using the chemical bath deposition method, followed by annealing at [...] Read more.
This research examines the effect of annealing temperature on the growth orientation of zinc oxide (ZnO) nanorods and its subsequent influence on NO2 gas sensing efficiency. Zinc oxide (ZnO) nanorods were synthesized using the chemical bath deposition method, followed by annealing at 300, 400, and 500 °C. Diffraction analysis confirmed that both non-annealed and annealed ZnO nanorods crystallize in a hexagonal wurtzite structure. However, increasing the annealing temperature shifts the growth orientation from the c-axis (002) toward the (100) and (101) directions. Microscopy images (FE-SEM) revealed a reduction in nanorod diameter as the annealing temperature increases. Optical characterization using UV–visible and photoluminescence spectroscopy indicated shifts in the band gap energy and emission properties. Contact angle measurements demonstrated the hydrophobic nature of the films. Gas sensing tests at 200 °C revealed that the ZnO thin film annealed at 400 °C achieved the highest NO2 response of 5.88%. The study highlights the critical role of annealing in modifying the crystallinity, growth orientation, and defect states of ZnO thin films, ultimately enhancing their NO2 detection capability. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for High-Performance Gas Sensors)
Show Figures

Figure 1

20 pages, 1498 KiB  
Article
Novel Green Synthesis Route of ZnO Nanoparticles for Dielectric Applications
by Zohra Benzarti, Joana Neiva, Pedro Faia, Eduardo Silva, Sandra Carvalho and Susana Devesa
Nanomaterials 2025, 15(13), 991; https://doi.org/10.3390/nano15130991 - 26 Jun 2025
Viewed by 425
Abstract
This study presents a novel, eco-friendly synthesis route for zinc oxide (ZnO) nanoparticles using cladode extracts of Hylocereus undatus acting simultaneously as reducing and improving agents, in alignment with green chemistry principles. The synthesis involved the reaction of zinc sulfate heptahydrate with the [...] Read more.
This study presents a novel, eco-friendly synthesis route for zinc oxide (ZnO) nanoparticles using cladode extracts of Hylocereus undatus acting simultaneously as reducing and improving agents, in alignment with green chemistry principles. The synthesis involved the reaction of zinc sulfate heptahydrate with the plant extract, with the medium pH adjusted using sodium hydroxide (NaOH), followed by calcination at 300 °C, 400 °C, and 500 °C, and then by a washing step to enhance purity. Comprehensive characterization was performed using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrical impedance spectroscopy to investigate the structural, morphological, and dielectric properties of the nanoparticles. The sample calcined at 400 °C, followed by washing (HT400W), exhibits highly crystalline ZnO nanoparticles with a predominant wurtzite structure (93.15 wt% ZnO) and minimal impurities (6.85 wt% Na2SO4). SEM analysis indicated a flake-like morphology with nanoscale features (50–100 nm), while Raman spectroscopy confirmed enhanced crystallinity and purity post-washing. Additionally, the HT400W sample exhibited a dielectric constant (ε′) of 16.96 and a low loss tangent (tan δ) of 0.14 at 1 MHz, suggesting superior energy efficiency for high-frequency applications. This green synthesis approach not only eliminates hazardous reagents but also delivers ZnO nanoparticles with good dielectric performance. Furthermore, this work demonstrates the efficacy of a sustainable biotemplate, offering an environmentally friendly approach for synthesizing ZnO nanoparticles with tailored physicochemical properties. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

27 pages, 3716 KiB  
Article
Raman Characterization of Dioxygen Species as Defects in Single-Crystal ZnO Including Their Pressure Dependence
by Dieter Fischer, Dominik Bloos, Aleksandra Krajewska, Graham M. McNally, Dejan Zagorac and Johann Christian Schön
Crystals 2025, 15(6), 574; https://doi.org/10.3390/cryst15060574 - 18 Jun 2025
Viewed by 404
Abstract
The defects in zinc oxide crystals are of crucial importance for their usability in many applications and are not yet fully understood. Here, we demonstrate that dioxygen species are present as defects in the grown ZnO, resulting in a bending of the atom [...] Read more.
The defects in zinc oxide crystals are of crucial importance for their usability in many applications and are not yet fully understood. Here, we demonstrate that dioxygen species are present as defects in the grown ZnO, resulting in a bending of the atom layers that lie perpendicular to the c-axis. In the Raman spectra, these defects cause the appearance of bands different from the known bands of perfect ZnO crystals allowed by symmetry. These additional Raman bands, which have been frequently reported for ZnO in the past, can thus be fully explained by the presence of dioxygen species, and the widespread assumption of second-order modes for the assignments of these bands is not necessary. Furthermore, the Raman spectrum belonging to perfect zinc oxide in the ideal wurtzite structure is presented, obtained from small domains in ZnO(0001) crystals exposed to pressures up to 2 GPa. The dependence of the O-O stretching modes on the applied pressure proves the presence of dioxygen species in ZnO, which is also confirmed by phonon calculations of structure models with embedded dioxygen species. The surface quality of the ZnO crystals studied is also reflected in the Raman spectra and is included in the analysis. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

23 pages, 4528 KiB  
Article
Exploring Photocatalytic, Antimicrobial and Antioxidant Efficacy of Green-Synthesized Zinc Oxide Nanoparticles
by Sabina Shrestha, Laxmi Tiwari, Sujan Dhungana, Jasana Maharjan, Devendra Khadka, Allison A. Kim, Megh Raj Pokhrel, Janaki Baral, Mira Park and Bhoj Raj Poudel
Nanomaterials 2025, 15(11), 858; https://doi.org/10.3390/nano15110858 - 3 Jun 2025
Cited by 1 | Viewed by 1970
Abstract
Aloe vera is effectively utilized to synthesize zinc oxide nanoparticles (Av-ZnO NPs), providing an alternative to traditional chemical and physical methods. This sustainable approach minimizes the environmental impacts and enhances their compatibility with herbal ecosystems. We comprehensively analyzed the optical, structural, morphological, and [...] Read more.
Aloe vera is effectively utilized to synthesize zinc oxide nanoparticles (Av-ZnO NPs), providing an alternative to traditional chemical and physical methods. This sustainable approach minimizes the environmental impacts and enhances their compatibility with herbal ecosystems. We comprehensively analyzed the optical, structural, morphological, and catalytic properties of Av-ZnO NPs using various analytical methods. The results indicated that the nanoparticles primarily exhibited a spherical shape. X-ray diffraction (XRD) revealed the successful formation of a highly crystalline hexagonal wurtzite structure, with an average size estimated at 12.2 nm. The antimicrobial properties of the Av-ZnO NPs indicated moderate antibacterial effectiveness. Using the DPPH free radical scavenging method, we evaluated the antioxidant properties, where the Av-ZnO NPs exhibited improved the radical scavenging efficiency, reflected by a lower IC50 value compared to the plant extract. Additionally, we assessed the photocatalytic functionality through the degradation of methylene blue (MB) dye, finding that the Av-ZnO NPs achieved approximately 82.43% degradation in 210 min, demonstrating their potential for environmental remediation. These findings suggest that green-synthesized ZnO NPs could play a noteworthy role in various nanotechnology applications and biomedical fields, while also promoting environmental sustainability. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

14 pages, 2757 KiB  
Article
Highly Efficient Inverted Organic Light-Emitting Devices with Li-Doped MgZnO Nanoparticle Electron Injection Layer
by Hwan-Jin Yoo, Go-Eun Kim, Chan-Jun Park, Su-Been Lee, Seo-Young Kim and Dae-Gyu Moon
Micromachines 2025, 16(6), 617; https://doi.org/10.3390/mi16060617 - 24 May 2025
Viewed by 509
Abstract
Inverted organic light-emitting devices (OLEDs) have been attracting considerable attention due to their advantages such as high stability, low image sticking, and low operating stress in display applications. To address the charge imbalance that has been known as a critical issue of the [...] Read more.
Inverted organic light-emitting devices (OLEDs) have been attracting considerable attention due to their advantages such as high stability, low image sticking, and low operating stress in display applications. To address the charge imbalance that has been known as a critical issue of the inverted OLEDs, Li-doped MgZnO nanoparticles were synthesized as an electron-injection layer of the inverted OLEDs. Hexagonal wurtzite-structured Li-doped MgZnO nanoparticles were synthesized at room temperature via a solution precipitation method using LiCl, magnesium acetate tetrahydrate, zinc acetate dihydrate, and tetramethylammonium hydroxide pentahydrate. The Mg concentration was fixed at 10%, while the Li concentration was varied up to 15%. The average particle size decreased with Li doping, exhibiting the particle sizes of 3.6, 3.0, and 2.7 nm for the MgZnO, 10% and 15% Li-doped MgZnO nanoparticles, respectively. The band gap, conduction band minimum and valence band maximum energy levels, and the visible emission spectrum of the Li-doped MgZnO nanoparticles were investigated. The surface roughness and electrical conduction properties of the Li-doped MgZnO nanoparticle films were also analyzed. The inverted phosphorescent OLEDs with Li-doped MgZnO nanoparticles exhibited higher external quantum efficiency (EQE) due to better charge balance resulting from suppressed electron conduction, compared to the undoped MgZnO nanoparticle devices. The maximum EQE of 21.7% was achieved in the 15% Li-doped MgZnO nanoparticle devices. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
Show Figures

Figure 1

12 pages, 1455 KiB  
Article
Hydrothermal Synthesis of Nanocomposites Combining Tungsten Trioxide and Zinc Oxide Nanosheet Arrays for Improved Photocatalytic Degradation of Organic Dye
by Chien-Yie Tsay, Tao-Ying Hsu, Gang-Juan Lee, Chin-Yi Chen, Yu-Cheng Chang, Jing-Heng Chen and Jerry J. Wu
Nanomaterials 2025, 15(10), 772; https://doi.org/10.3390/nano15100772 - 21 May 2025
Viewed by 419
Abstract
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy [...] Read more.
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy (FE-SEM) observations confirmed the formation of irregular oxide nanosheet arrays on the FTO surfaces. X-ray diffraction (XRD) analysis revealed the presence of hexagonal WO3 and wurtzite ZnO crystal phases. UV-Vis diffuse reflectance spectroscopy showed that integrating ZnO nanostructures with WO3 nanosheets resulted in a blue shift of the absorption edge and a reduced absorption capacity in the visible-light region. Photoluminescence (PL) spectra indicated that the WO 0.5/ZnO 2.0 sample exhibited the lowest electron-hole recombination rate among the WO3/ZnO nanocomposite sample. Photocatalytic degradation tests demonstrated that all WO3/ZnO nanocomposite samples had higher photodegradation rates for a 10 ppm methylene blue (MB) aqueous solution under visible-light irradiation compared to pristine WO3 nanosheet arrays. Among them, the WO 0.5/ZnO 2.0 sample showed the highest photocatalytic efficiency. Furthermore, it exhibited excellent recyclability and high photodegradation stability over three cycles. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

26 pages, 4870 KiB  
Article
Incorporation of Zinc Oxide Nanoparticles Biosynthesized from Epimedium brevicornum Maxim. into PCL Nanofibers to Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells
by Kuei-Ping Hsieh, Parichart Naruphontjirakul, Jen-Hao Chen, Chih-Sheng Ko, Chi-Wei Lin and Wen-Ta Su
Materials 2025, 18(10), 2295; https://doi.org/10.3390/ma18102295 - 15 May 2025
Cited by 1 | Viewed by 589
Abstract
The optimal parameters for the microwave-assisted extraction of Epimedium brevicornum Maxim. were determined by using response surface methodology (RSM), increasing the extraction of flavonoids by 1.79 times. The resulting extract facilitated the green synthesis of zinc oxide nanoparticles (ZnONPs) with a wurtzite structure [...] Read more.
The optimal parameters for the microwave-assisted extraction of Epimedium brevicornum Maxim. were determined by using response surface methodology (RSM), increasing the extraction of flavonoids by 1.79 times. The resulting extract facilitated the green synthesis of zinc oxide nanoparticles (ZnONPs) with a wurtzite structure through a reaction with zinc nitrate. These ZnONPs were then incorporated into polycaprolactone (PCL) by using an electrospinning technique to produce nanofibers. The incorporation of ZnONPs resulted in an increase in Young’s modulus, biodegradation rate, and swelling ratio while decreasing the diameter and water contact angle of the nanofibers, thereby improving the hydrophilicity of PCL. ZnO demonstrates excellent biocompatibility with periodontal ligament stem cells (PDLSCs), increasing cell proliferation and enhancing alkaline phosphatase activity by 56.9% (p < 0.05). Additionally, mineralization deposition increased by 119% (p < 0.01) in the presence of 1% ZnO and showed a concentration-dependent response. After inducing PDLSC cultures with PCL–1% ZnO for 21 days, the protein expression levels of Runx2 and OCN increased by 50% (p < 0.05) and 30% (p < 0.001), respectively. Additionally, Col-1, Runx2, BSP, and OCN gene expression levels increased by 2.18, 1.88, 1.8, and 1.7 times, respectively. This study confirms that biosynthesized ZnONPs improve the physical properties of PCL nanofibers and effectively induce the osteogenic differentiation of PDLSCs. Full article
(This article belongs to the Special Issue Diverse Nanomaterials Applied in Bio- and Electrochemical Sensing)
Show Figures

Figure 1

13 pages, 5645 KiB  
Article
Morphology-Dependent Behavior of PVDF/ZnO Composites: Their Fabrication and Application in Pressure Sensors
by Binbin Zhang, Wenhui Zhang, Wei Luo, Zhijie Liang, Yan Hong, Jianhui Li, Guoyun Zhou and Wei He
Sensors 2025, 25(9), 2936; https://doi.org/10.3390/s25092936 - 7 May 2025
Viewed by 746
Abstract
This study investigated the impact of zinc oxide’s (ZnO’s) morphology on the piezoelectric performance of polyvinylidene fluoride (PVDF) composites for flexible sensors. Rod-like (NR) and sheet-like (NS) ZnO nanoparticles were synthesized via hydrothermal methods and incorporated into PVDF through direct ink writing (DIW). [...] Read more.
This study investigated the impact of zinc oxide’s (ZnO’s) morphology on the piezoelectric performance of polyvinylidene fluoride (PVDF) composites for flexible sensors. Rod-like (NR) and sheet-like (NS) ZnO nanoparticles were synthesized via hydrothermal methods and incorporated into PVDF through direct ink writing (DIW). The structural analyses confirmed the successful formation of wurtzite ZnO and enhanced β-phase content in the PVDF/ZnO composites. At a degree of 15 wt% loading, the ZnO-NS nanoparticles achieved the highest β-phase fraction (81.3%) in PVDF due to their high specific surface area, facilitating dipole alignment and strain-induced crystallization. The optimized PVDF/ZnO-NS-15 sensor demonstrated superior piezoelectric outputs (4.75 V, 140 mV/N sensitivity) under a 27 N force, outperforming its ZnO-NR counterparts (3.84 V, 100 mV/N). The cyclic tests revealed exceptional durability (<5% signal attenuation after 1000 impacts) and a rapid response (<100 ms). The application trials validated their real-time motion-monitoring capabilities, including finger joint flexion detection. This work highlights the morphology-dependent interfacial polarization as a critical factor for high-performance flexible sensors, offering a scalable DIW-based strategy for wearable electronics. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Sensing)
Show Figures

Graphical abstract

Back to TopTop