Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = wood–cement composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1882 KiB  
Article
Carbon-Negative Construction Material Based on Rice Production Residues
by Jüri Liiv, Catherine Rwamba Githuku, Marclus Mwai, Hugo Mändar, Peeter Ritslaid, Merrit Shanskiy and Ergo Rikmann
Materials 2025, 18(15), 3534; https://doi.org/10.3390/ma18153534 - 28 Jul 2025
Viewed by 247
Abstract
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting [...] Read more.
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting as a strong pozzolanic agent. Wood ash contributes calcium oxide and alkalis to serve as a reactive binder, while rice straw functions as a lightweight organic filler, enhancing thermal insulation and indoor climate comfort. These materials undergo natural pozzolanic reactions with water, eliminating the need for Portland cement—a major global source of anthropogenic CO2 emissions (~900 kg CO2/ton cement). This process is inherently carbon-negative, not only avoiding emissions from cement production but also capturing atmospheric CO2 during lime carbonation in the hardening phase. Field trials in Kenya confirmed the composite’s sufficient structural strength for low-cost housing, with added benefits including termite resistance and suitability for unskilled laborers. In a collaboration between the University of Tartu and Kenyatta University, a semi-automatic mixing and casting system was developed, enabling fast, low-labor construction of full-scale houses. This innovation aligns with Kenya’s Big Four development agenda and supports sustainable rural development, post-disaster reconstruction, and climate mitigation through scalable, eco-friendly building solutions. Full article
Show Figures

Figure 1

22 pages, 6793 KiB  
Article
Effect of Nano-Modified Recycled Wood Fibers on the Micro/Macro Properties of Rapid-Hardening Sulfoaluminate Cement-Based Composites
by Chunyu Ma, Liang Wang, Yujiao Li, Qiuyi Li, Gongbing Yue, Yuanxin Guo, Meinan Wang and Xiaolong Zhou
Nanomaterials 2025, 15(13), 993; https://doi.org/10.3390/nano15130993 - 26 Jun 2025
Viewed by 318
Abstract
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. [...] Read more.
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. In this study, high-performance sulfoaluminate cement (SAC)-RWF composites prepared by modifying RWFs with nano-silica (NS) and a silane coupling agent (KH560) were developed and their effects on mechanical properties, shrinkage behavior, hydration characteristics, and microstructure of SAC-RWF composites were systematically investigated. Optimal performance was achieved at water–cement ratio of 0.5 with 20% RWF content, where the KH560-modified samples showed superior improvement, with 8.5% and 14.3% increases in 28 d flexural and compressive strength, respectively, compared to the control groups, outperforming the NS-modified samples (3.6% and 8.6% enhancements). Both modifiers improved durability, reducing water absorption by 6.72% (NS) and 7.1% (KH560) while decreasing drying shrinkage by 4.3% and 27.2%, respectively. The modified SAC composites maintained favorable thermal properties, with NS reducing thermal conductivity by 6.8% through density optimization, whereas the KH560-treated specimens retained low conductivity despite slight density increases. Micro-structural tests revealed accelerated hydration without new hydration product formation, with both modifiers enhancing cementitious matrix hydration product generation by distinct mechanisms—with NS acting through physical pore-filling, while KH560 established Si-O-C chemical bonds at paste interfaces. Although both modifications improved mechanical properties and durability, the KH560-modified SAC composite group demonstrated superior overall performance than the NS-modified group, providing a technical pathway for developing sustainable, high-performance recycled wood fiber cement-based materials with balanced functional properties for low-carbon construction applications. Full article
(This article belongs to the Special Issue Nanocomposite Modified Cement and Concrete)
Show Figures

Graphical abstract

11 pages, 2799 KiB  
Article
Influence of Fluorine Nano-Coating on Cutting Force and Surface Roughness of Wood–Plastic Composites During Milling
by Xiaohang Du, Dietrich Buck, Jun Guan, Kai Liu and Zhaolong Zhu
Coatings 2025, 15(5), 574; https://doi.org/10.3390/coatings15050574 - 11 May 2025
Viewed by 824
Abstract
Wood–plastic composites (WPCs) are important materials used in interior architectural decorations and landscape construction products. Enhancing the cutting performance of WPCs is of great significance for improving both production efficiency and product quality in factories. This study aims to elucidate the impact of [...] Read more.
Wood–plastic composites (WPCs) are important materials used in interior architectural decorations and landscape construction products. Enhancing the cutting performance of WPCs is of great significance for improving both production efficiency and product quality in factories. This study aims to elucidate the impact of fluorine nano-coating technology on the cutting performance of cemented carbide tools during the milling of WPCs. The main results are given as follows. The cutting force and surface roughness showed similar trends with the varied parameters; both increased with increasing cutting depth and decreased with increasing cutting speed. The fluorine nano-coating technology exerts a positive influence on the cutting performance in terms of lower cutting forces and surface roughness. Meanwhile, based on the analysis of variance results, the experimental factors of cutting speed, depth, and surface treatment had a significant contribution to both cutting force and surface roughness, and cutting depth had the greatest impact on cutting force and surface roughness, followed by cutting speed and tool surface treatment. In general, the cutting performance of WPCs can be improved by higher cutting speed and lower depth, with the tool surface treated with fluorine nano-coating. Full article
(This article belongs to the Special Issue Innovations in Functional Coatings for Wood Processing)
Show Figures

Graphical abstract

17 pages, 3911 KiB  
Article
Wood-Based Micro-Biochars in a Cement Mixture
by Minkyeong Pyo, Jongsun Kim, Seungwook Seok, Chan Ho Park and Wonchang Choi
Molecules 2025, 30(9), 1898; https://doi.org/10.3390/molecules30091898 - 24 Apr 2025
Viewed by 728
Abstract
Immediate action is required to achieve carbon neutrality within the cement industry. The integration of biochar into cement as a component of reinforced concrete has potential to mitigate carbon emissions in the construction sector by enabling carbon sequestration. In pursuit of eco-friendly practices [...] Read more.
Immediate action is required to achieve carbon neutrality within the cement industry. The integration of biochar into cement as a component of reinforced concrete has potential to mitigate carbon emissions in the construction sector by enabling carbon sequestration. In pursuit of eco-friendly practices and improved physical properties of cement composites, this study investigated the properties of wood-based, micron-sized biochar as a non-carbonate raw material, including its chemical composition, morphology, and wettability. The characterization of lignocellulosic micro-biochar and its mechanical impact on cement composites was a focus of this study. Cement was partially replaced with varying weight percentages of micro-biochar (1, 3, and 5 wt%), and the effects were evaluated through compressive strength tests after 7 and 28 d. The results demonstrated that the micro-biochar could sustain strength even when substituted for cement. Notably, after 28 d, the compressive strength of the sample with only cement was 29.6 MPa, while the sample with 3 wt% biochar substitution showed 30.9 MPa, indicating a 4.4% increase. This research contributes to sustainable construction practices by offering a green solution for reducing carbon emissions in the industry. Full article
(This article belongs to the Special Issue Carbon-Based Materials for Sustainable Chemistry: 2nd Edition)
Show Figures

Figure 1

21 pages, 1947 KiB  
Article
Assessment of Mechanical and Ecotoxicological Properties of Mortar with Wood Waste Biochar as Partial Cement Replacement
by Maša Legan, Petra Štukovnik, Klementina Zupan and Andreja Žgajnar Gotvajn
Materials 2025, 18(4), 876; https://doi.org/10.3390/ma18040876 - 17 Feb 2025
Viewed by 670
Abstract
For several decades, cement production has caused concerns about CO2 emissions. As the production of concrete has increased over the years, the fact that cement is its key component additionally raises a concern. By partially replacing cement with waste material such as [...] Read more.
For several decades, cement production has caused concerns about CO2 emissions. As the production of concrete has increased over the years, the fact that cement is its key component additionally raises a concern. By partially replacing cement with waste material such as biomass waste biochar, the reduction in waste and the reduction of CO2 emissions could be addressed at the same time but raises a concern about the ecotoxicological potential of biochar-containing cementitious composites. During their use, recycling and disposal of biochar-containing mortars could pose hazardous environmental impacts due to their exposure to rain and other environmental conditions. The aim of the study was to determine the early-age mechanical properties of mortars with 5%, 10%, and 15% biochar as partial cement replacement. The environmental impact of biochar-containing mortars in terms of carbon footprint reduction and ecotoxicological potential was addressed simultaneously. The biochar used was prepared from waste wood biomass as carpentry waste wood. Results showed that added biochar caused no significant changes in flowability and fresh density of fresh mortar mixture. The strength tests revealed mortars with 5% and 10% biochar had higher 3-day flexural strength, while only mortar with 5% biochar had higher 7- and 28-day compressive strength (4% and 6%) than the conventional mortar. The X-ray diffraction (XRD) analysis detected five main crystalline phases in biochar-containing mortars. SEM-EDS showed the strong embedment of biochar particles in cement paste. Ecotoxicological assessment based on acute toxicity tests with mortar leachates using duckweed and mustard seeds showed low toxicity of leachates with the highest inhibition values around 50%. The calculations of the total CO2-equivalent emissions for selected mortars revealed mortars with biochar as partial cement replacement had lower CO2-equivalent emissions than the conventional mortar and can contribute to carbon footprint reduction and at the same time to natural resource conservation. Full article
Show Figures

Figure 1

28 pages, 7815 KiB  
Article
Design and Characteristics of a Single-Story Building Model Incorporating Waste
by Mohamed Darwish, Mohamed Elnakeb, Marina Moawad, Marwan Mohamed Shawki, Ehab Abdelhamid, Donia Eldwib, Mohamed Nagib Abouzeid, Maram Saudy, Safwan Khedr and Khaled Nassar
Buildings 2025, 15(2), 177; https://doi.org/10.3390/buildings15020177 - 9 Jan 2025
Cited by 1 | Viewed by 1447
Abstract
The construction field is one of the largest sectors and industries worldwide. This industry is the main industry accused of contributing to greenhouse gases and increasing the effects of climate change. However, the construction industry is indispensable, accordingly in an attempt to decrease [...] Read more.
The construction field is one of the largest sectors and industries worldwide. This industry is the main industry accused of contributing to greenhouse gases and increasing the effects of climate change. However, the construction industry is indispensable, accordingly in an attempt to decrease the greenhouse gas effects of construction this research presents the manuscript for building a one-story building with all components including waste products. The building model used a strip foundation with a concrete mix design incorporating recycled concrete as a partial replacement for aggregates, cement hollow blocks containing granite waste instead of conventional cement blocks, and sandwiched insulated panels made of wood-plastic composites for the roof. The structural soundness of the system was tested by loading it with a load surpassing its design load in addition to measuring the deflection and checking its abidance to the code limitations. The thermal efficiency was tested by measuring the temperatures in comparison with the outside of the building for a span of 7 days with data recorded every 1 h. Analysis of both the short-term and long-term costs and carbon emissions was performed by acquiring the carbon emissions per unit of material from literature and multiplying it by the quantities of the materials used within the different building alternatives. That study showed that the roofs made of Structural Insulated Panels (SIPs) using Wood-Plastic Composite (WPC) facings when used with hollow-block cement block walls have shown enduring cost efficiency and improved thermal insulation, leading to diminished energy usage, life-cycle expenses, and carbon emissions. Furthermore, the proposed system is more environmentally friendly than conventional reinforced concrete technologies due to their lower costs and emissions in addition to improving sustainability through utilizing recycled materials. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 22480 KiB  
Article
Durability of Wood–Cement Composites with Modified Composition by Limestone and Stabilised Spruce Chips
by Tomáš Melichar, Amos Dufka, Karel Dvořák, Patrik Bayer, Silvestr Vasas, Iveta Novakova, Ivana Schwarzova and Jiří Bydžovský
Materials 2024, 17(24), 6300; https://doi.org/10.3390/ma17246300 - 23 Dec 2024
Cited by 2 | Viewed by 780
Abstract
Limestone (LS) and stabilised secondary spruce chips (SCs) utilisation in wood–cement composites is still an unexplored area. Therefore, the main objective of the research presented here is the assessment of the long-term behaviour of cement-bonded particleboards (CBPs) modified by LS and SCs. Cement [...] Read more.
Limestone (LS) and stabilised secondary spruce chips (SCs) utilisation in wood–cement composites is still an unexplored area. Therefore, the main objective of the research presented here is the assessment of the long-term behaviour of cement-bonded particleboards (CBPs) modified by LS and SCs. Cement (CE) was replaced by 10% of LS, and spruce chips by 7% of SCs. The test specimens were stored in a laboratory and exterior environment (Middle Europe) for up to 2 years. The density, strength, and modulus of elasticity were evaluated after 28 days, and then in 6-month periods. The hygroscopicity was analysed separately. The mineralogical composition and microstructure were analysed due to possible LS participation during hydration. SC synergic behaviour in CBPs was also studied. After 2 years, the microstructure of the CBP was more compact, and denser. Strong carbonatation contributes to the improvement of CBP properties. The products of carbonatation were present in both the matrix and wood chips. The hydration of the matrix was almost finished. LS has a positive effect on the matrix microstructure development. LS acts both as an active component participating in the formation of the cement matrix structure and as an inert microfiller, synergic with hydration products. SCs have a positive effect on the hygroscopic behaviour of CBPs and slightly negative effect on the tensile strength. Full article
Show Figures

Graphical abstract

22 pages, 2607 KiB  
Review
Wood–Cement Composites: A Sustainable Approach for Mitigating Environmental Impact in Construction
by Dorin Maier, Daniela Lucia Manea, Daniela-Roxana Tămaș-Gavrea, Alexandra Țiriac and Paul Costin
J. Compos. Sci. 2024, 8(11), 474; https://doi.org/10.3390/jcs8110474 - 15 Nov 2024
Cited by 3 | Viewed by 2201
Abstract
The construction industry’s environmental impact has become a growing concern, largely due to the energy-intensive production of conventional building materials. This paper explores the potential of wood–cement composites as a more sustainable alternative through a comprehensive literature review, including a bibliometric and scientometric [...] Read more.
The construction industry’s environmental impact has become a growing concern, largely due to the energy-intensive production of conventional building materials. This paper explores the potential of wood–cement composites as a more sustainable alternative through a comprehensive literature review, including a bibliometric and scientometric analysis of research trends. Our analysis traces the evolution of wood–cement composites from early studies focused on mechanical properties, to recent investigations into their environmental benefits and practical applications. Key findings suggest that optimal performance can be achieved by treating wood with tetraethyl orthosilicate, incorporating additives like cellulose nanocrystals or wollastonite, and using wood from species such as Pinus. While partial cement replacement with wood waste and ash offers significant environmental advantages, precise formulations are needed to maintain structural integrity. This study also acknowledges certain methodological limitations, such as the reliance on keyword-based filtering, which may have excluded some relevant studies. Future research should address long-term durability, economic feasibility, and standardized testing methodologies to facilitate the adoption of wood–cement composites in the construction industry. These materials, particularly suitable for non-structural applications and insulation, hold promise as viable, eco-friendly building solutions capable of reducing the construction industry’s carbon footprint. Full article
(This article belongs to the Special Issue Behaviour and Analysis of Timber–Concrete Composite Structures)
Show Figures

Figure 1

25 pages, 9387 KiB  
Article
Neural Network Prediction and Enhanced Strength Properties of Natural Fibre-Reinforced Quaternary-Blended Composites
by Pavithra Chandramouli, Mohamed Riyaaz Nayum Akthar, Veerappan Sathish Kumar, Revathy Jayaseelan and Gajalakshmi Pandulu
CivilEng 2024, 5(4), 827-851; https://doi.org/10.3390/civileng5040043 - 26 Sep 2024
Cited by 2 | Viewed by 1607
Abstract
This research, with its potential to revolutionise the construction industry, aims to develop quaternary-blended composites (QBC) by replacing 80% of ordinary Portland cement (OPC) with metakaolin, rice husk ash, and wood ash combined with discrete hybrid natural fibres at a volume fraction of [...] Read more.
This research, with its potential to revolutionise the construction industry, aims to develop quaternary-blended composites (QBC) by replacing 80% of ordinary Portland cement (OPC) with metakaolin, rice husk ash, and wood ash combined with discrete hybrid natural fibres at a volume fraction of 0.5%. This study investigates the mechanical properties, including compressive strength, split tensile strength, and impact strength of the QBC at various curing ages of 7, 28, and 56 days. Scanning electron microscopy (SEM) analysis was performed to assess the microstructural characteristics. This research aimed to formulate a novel quaternary binder that may minimise our reliance on cement. The experimental results indicate that the mix labelled M4L2 exhibited superior compressive and split tensile strength performance, with percentage increases of approximately 51.03% and 29.19%, respectively. Meanwhile, the M5L1 mix demonstrated enhanced impact energy, with a percentage increase of about 36.40% in 56 days. SEM observations revealed that the MC4 mix contained unhydrated portions and larger cracks. In contrast, the presence of fibres in the M4L2 mix contributed to crack resistance, resulting in a denser matrix and improved microstructural properties. This study also employed an artificial neural network (ANN) model to predict the compressive, tensile, and impact strength characteristics of the QBC, with the predictions aligning closely with the experimental results. An investigation was conducted to determine the ideal number of hidden layers and neurons in each layer. The model’s effectiveness was evaluated using statistical metrics such as correlation coefficient (R), coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MEA), and mean absolute percentage error (MAPE). The findings suggest that the developed QBCs can effectively reduce reliance on conventional cement while offering improved mechanical properties suitable for sustainable construction practices. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

26 pages, 8642 KiB  
Article
Study of the Effect of Cedar Sawdust Content on Physical and Mechanical Properties of Cement Boards
by Anas El Hamri, Yassine Mouhib, Atmane Ourmiche, Mohammed Chigr and Nour-Eddine El Mansouri
Molecules 2024, 29(18), 4399; https://doi.org/10.3390/molecules29184399 - 16 Sep 2024
Cited by 1 | Viewed by 2370
Abstract
The growing demand for sustainable building materials, amid escalating costs, has spurred interest in alternative solutions such as wood cement composites. This study explores the feasibility of producing wood cement boards (WCBs) using locally sourced cedar sawdust as a reinforcing agent. Boards with [...] Read more.
The growing demand for sustainable building materials, amid escalating costs, has spurred interest in alternative solutions such as wood cement composites. This study explores the feasibility of producing wood cement boards (WCBs) using locally sourced cedar sawdust as a reinforcing agent. Boards with a thickness of 10 mm and a target density of 1200 kg/m3 were manufactured under pressures ranging from 2 to 6 MPa for 24 h. Cedar sawdust, used as raw and untreated material, was incorporated into the mixture as a partial substitute for cement in varying proportions, ranging from 10% to 25% (by weight). The WCBs were cured for 28 days under ambient conditions. Physical properties including density, water absorption (WA), and thickness swelling (TS) were assessed, along with mechanical properties through flexural tests. The results showed that increasing cedar sawdust content decreased both density and mechanical performance while increasing WA and TS. Microstructural analysis (SEM and EDS) revealed significant porosity at higher sawdust contents, while lower contents had better matrix–reinforcement cohesion. Additionally, substantial levels of calcium and silicon were detected on the sawdust surface, indicating stabilized cement hydration products. These findings, supported by thermal (TGA and DSC) and FTIR analyses, clearly demonstrate that cement boards with 10% cedar sawdust exhibit favorable properties for non-structural applications, such as wall and partition cladding. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass III)
Show Figures

Graphical abstract

24 pages, 7513 KiB  
Review
Magnesium Oxychloride Cement: Development, Opportunities and Challenges
by Farhan Ahmad, Sanket Rawat and Yixia Zhang
Appl. Sci. 2024, 14(7), 3074; https://doi.org/10.3390/app14073074 - 5 Apr 2024
Cited by 12 | Viewed by 4369
Abstract
Magnesium oxychloride cement (MOC), an alternative to ordinary Portland cement (OPC), has attracted increasing research interest for its excellent mechanical properties and its green and sustainable attributes. The poor water resistance of MOC limited its usage mainly to indoor applications; nevertheless, recent advances [...] Read more.
Magnesium oxychloride cement (MOC), an alternative to ordinary Portland cement (OPC), has attracted increasing research interest for its excellent mechanical properties and its green and sustainable attributes. The poor water resistance of MOC limited its usage mainly to indoor applications; nevertheless, recent advances in water-resistant MOC have expanded the material’s potential applications from indoor to outdoor. This review aims to showcase recent advances in MOC, including water-resistant MOC and ductile fiber-reinforced MOC (FRMOC), exploring their potential applications including in sustainable construction for future generations. The mechanism under different curing procedures such as normal and CO2 curing and the effect of different inorganic and organic additives on the water resistance of MOC composites are discussed. In particular, the review highlights the recent developments in achieving over 100% strength retention under water at 28 days as well as advancements in FRMOC, where tensile strength has surpassed 10 MPa with a remarkable strain capacity ranging from 4–8%. This paper also sheds light on the potential applications of MOC as a fire-resistant coating material, green-wood-MOC composite building material, and in reducing solid waste industrial byproduct accumulations. Finally, this study suggests future research directions to enhance the practical application of MOC. Full article
Show Figures

Figure 1

18 pages, 3633 KiB  
Article
Evaluation of Hydrothermally Treated Wood Fibre Performance in Cement Mortars
by Petrini Kampragkou, Vasiliki Kamperidou and Maria Stefanidou
Fibers 2024, 12(3), 21; https://doi.org/10.3390/fib12030021 - 26 Feb 2024
Cited by 9 | Viewed by 3019
Abstract
Biofibres’ wide application in mortar enhancement has thus far been restricted by factors related to their chemical composition and hygroscopic nature. Their hydrophilic behaviour increases the water demand of mortar mixtures and diminishes their affinity to the matrix, while further moisture-related fibre degradation [...] Read more.
Biofibres’ wide application in mortar enhancement has thus far been restricted by factors related to their chemical composition and hygroscopic nature. Their hydrophilic behaviour increases the water demand of mortar mixtures and diminishes their affinity to the matrix, while further moisture-related fibre degradation issues may arise. Additionally, natural fibres seem to be susceptible to degradation caused by exposure to alkaline environmental conditions such as those experienced by cement mortars, restricting their utilisation in the construction industry. Therefore, the current study investigates the potential of fibre modification through treatments that would permanently alter their structure and chemical composition to improve their performance. In this study, wood fibres of black pine and beech species were exposed to mild thermal treatment (140 °C 2 h, under a steam atmosphere), characterised in terms of the physical and chemical properties and incorporated in cement mortars, applying the proportion of 1.5% v/v in the mortar, in order to assess their performance as reinforcement material. The mortars’ workability (at a fresh state) was examined, as well as other physical, hygroscopic, thermal, and mechanical characteristics of the mortars at the ages of 28, 90 and 365 days and weathering performance, by subjecting them to different artificial ageing environments (freeze–thaw cycles or outdoor exposure). The results revealed the beneficial role of the treated fibres in dimensional stability, flexural strength, thermal insulation properties and capillary absorption of the mortar specimens, especially during the ageing process, with the black pine fibres showing the greatest improvement. The hydrothermally treated wood fibres seem to help maintain the integrity of cement mortars under all ageing conditions, proving that they could provide low-cost and eco-friendly mortar enhancement pathways. Full article
Show Figures

Figure 1

11 pages, 2725 KiB  
Article
Production of Alternative Fuels Based on Sewage Sludge
by Krzysztof Rećko
Energies 2024, 17(1), 48; https://doi.org/10.3390/en17010048 - 21 Dec 2023
Cited by 7 | Viewed by 2319
Abstract
Due to the growing demand for energy, conventional fossil fuels are being depleted. Reducing dependence on energy sources based on fossil fuels is possible by using the energy potential of biomass. Sewage sludge deserves special attention. The increase in the amount of sewage [...] Read more.
Due to the growing demand for energy, conventional fossil fuels are being depleted. Reducing dependence on energy sources based on fossil fuels is possible by using the energy potential of biomass. Sewage sludge deserves special attention. The increase in the amount of sewage sludge produced around the world poses a serious problem with its management. The use of sewage sludge to produce fuel with the possibility of energy recovery seems to be an excellent solution. The article presents the results of laboratory tests on the production of fuel in the form of granulates from mixed sewage sludge, rubber waste, and wood waste in the form of sawdust. Fuel mixtures were tested, and fuel parameters were determined. The calorific value of the tested fuel ranged from 13.92 MJ/kg to 22.15 MJ/kg, and the moisture content from 41.57% to 18.36%, depending on the percentage composition of the mixtures used to produce the granules. The ash content ranged from 14.82% to 17.40%. The composition of granulated fuel mixtures has been designed to avoid additional drying or pre-drying of sewage sludge. In this way, fuel was obtained without additional energy consumption associated with drying sewage sludge. Moreover, it should be stated that the share of sewage sludge in granulated fuel should not exceed 25%. Nowadays, such fuel can be an alternative to fossil fuels used in the cement or energy industry. Full article
Show Figures

Figure 1

16 pages, 4559 KiB  
Article
Assessment of Wood Bio-Concrete Properties Modified with Silane–Siloxane
by Amanda L. D. de Aguiar, Nathalia A. da Silva, Bruno M. C. Gomes, M’hamed Y. R. da Gloria, Nicole P. Hasparyk and Romildo D. Toledo Filho
Materials 2023, 16(18), 6105; https://doi.org/10.3390/ma16186105 - 7 Sep 2023
Cited by 11 | Viewed by 2024
Abstract
Bio-based materials, such as wood bio-concrete (WBC), hold promise in reducing energy consumption and carbon footprint of the construction industry. However, the durability of these materials is not well understood and can be negatively affected by the high water absorption capacity of wood [...] Read more.
Bio-based materials, such as wood bio-concrete (WBC), hold promise in reducing energy consumption and carbon footprint of the construction industry. However, the durability of these materials is not well understood and can be negatively affected by the high water absorption capacity of wood bio-aggregates. In the field of cement composites, for example, silane–siloxane-based water repellent has been used to protect such materials from natural environmental attack. Nevertheless, there is still a limited understanding of various aspects related to this type of treatment, including its performance when applied to the bio-concrete substrate. This research aimed to investigate the influence of silane–siloxane on the rheology and hydration of cementitious paste through isothermal calorimetry and thermogravimetric analysis. Additionally, the impact of silane–siloxane on the physical and mechanical properties of WBCs was examined by conducting tests at fresh state (flow table and entrained air content) and hardened state (compressive strength and capillary water absorption). The composites were produced with a volumetric fraction of 45% of wood shavings while the cement matrix consisted of a combination of cement, rice husk ash, and fly ash. Silane–siloxane was applied in three ways: as coating, incorporated as an admixture, and in a combination of both methods. The results indicated that by incorporating silane in the cementitious pastethe viscosity increased by 40% and the hydration was delayed by approximately 6 h when compared to the reference. In addition, silane improved the compressive strength of WBCs by 24% when incorporated into the mixture, expressively reduced the water sorptivity of WBCs (93%), and was more effective if used as coating. Full article
(This article belongs to the Special Issue Development and Characterization of Bio-Based Insulation Materials)
Show Figures

Figure 1

23 pages, 11982 KiB  
Article
Retarding Effect of Hemp Hurd Lixiviates on the Hydration of Hydraulic and CSA Cements
by Donato Tale Ponga, Amirmohammad Sabziparvar, Patrice Cousin, Lina Boulos, Mathieu Robert and M. Reza Foruzanmehr
Materials 2023, 16(16), 5561; https://doi.org/10.3390/ma16165561 - 10 Aug 2023
Cited by 2 | Viewed by 1859
Abstract
Wood wool panels are widely used in the construction industry as sustainable cementitious composites, but there is a growing need to replace traditional Portland cement with a binder that has a lower embodied carbon footprint. In addition, the sustainability of these panels may [...] Read more.
Wood wool panels are widely used in the construction industry as sustainable cementitious composites, but there is a growing need to replace traditional Portland cement with a binder that has a lower embodied carbon footprint. In addition, the sustainability of these panels may face serious impediments if the required amount of wood for their production needs a harvest rate higher than the rate at which the tree sources reach maturity. One solution is to use the wooden part of fast-growing plants such as hemp. However, the compounds extracted from the mixture of plants and water are the main cause of the delay observed during the hydration process of hydraulic binders in these cementitious composites. The objective of this study is to evaluate the effect of bio-aggregate lixiviates (hemp hurd) on the hydration kinetics of calcium sulfoaluminate (CSA) cement as a low-embodied-carbon alternative to ordinary Portland cement (OPC). The isothermal calorimeter showed that the hemp hurd lixiviate caused a greater delay in GU’s hydration process than CSA’s. At a 5% concentration, the main hydration peak for GU cement emerged after 91 h, whereas for CSA cement, it appeared much earlier, at 2.5 h. XRD and TGA analysis showed that after 12 h of hydration, hydration products such as calcium silicate hydrates (C-S-H) and portlandite (CH) were not able to form on GU cement, indicating low hydration of silicate products. Moreover, at 5% concentration, the carbonation of ettringite was observed in CSA cement. The compressive strength values obtained from the mixes containing hemp hurd lixiviate consistently showed lower values compared to the reference samples prepared with distilled water. Furthermore, the CSA samples demonstrated superior compressive strength when compared to the GU samples. After 28 days of hydration, the compressive strength values for CSA cement were 36.7%, 63.5% and 71% higher than GU cement at a concentration of 0.5%, 2% and 5% hemp hurd lixiviate, respectively. Full article
(This article belongs to the Special Issue Properties and Applications of Cement-based Composites)
Show Figures

Figure 1

Back to TopTop