Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = wireless channel estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6355 KB  
Article
TranSIC-Net: An End-to-End Transformer Network for OFDM Symbol Demodulation with Validation on DroneID Signals
by Zhihong Wang and Zi-Xin Xu
Sensors 2025, 25(20), 6488; https://doi.org/10.3390/s25206488 - 21 Oct 2025
Viewed by 528
Abstract
Demodulating Orthogonal Frequency Division Multiplexing (OFDM) signals in complex wireless environments remains a fundamental challenge, especially when traditional receiver designs rely on explicit channel estimation under adverse conditions such as low signal-to-noise ratio (SNR) or carrier frequency offset (CFO). Motivated by practical challenges [...] Read more.
Demodulating Orthogonal Frequency Division Multiplexing (OFDM) signals in complex wireless environments remains a fundamental challenge, especially when traditional receiver designs rely on explicit channel estimation under adverse conditions such as low signal-to-noise ratio (SNR) or carrier frequency offset (CFO). Motivated by practical challenges in decoding DroneID—a proprietary OFDM-like signaling format used by DJI drones with a nonstandard frame structure—we present TranSIC-Net, a Transformer-based end-to-end neural network that unifies channel estimation and symbol detection within a single architecture. Unlike conventional methods that treat these steps separately, TranSIC-Net implicitly learns channel dynamics from pilot patterns and exploits the attention mechanism to capture inter-subcarrier correlations. While initially developed to tackle the unique structure of DroneID, the model demonstrates strong generalizability: with minimal adaptation, it can be applied to a wide range of OFDM systems. Extensive evaluations on both synthetic OFDM waveforms and real-world unmanned aerial vehicle (UAV) signals show that TranSIC-Net consistently outperforms least-squares plus zero-forcing (LS+ZF) and leading deep learning baselines such as ProEsNet in terms of bit error rate (BER), estimation accuracy, and robustness—highlighting its effectiveness and flexibility in practical wireless communication scenarios. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

20 pages, 5744 KB  
Article
Decoupling Rainfall and Surface Runoff Effects Based on Spatio-Temporal Spectra of Wireless Channel State Information
by Hao Li, Yin Long and Tehseen Zia
Electronics 2025, 14(20), 4102; https://doi.org/10.3390/electronics14204102 - 20 Oct 2025
Viewed by 259
Abstract
Leveraging ubiquitous wireless signals for environmental sensing provides a highly promising pathway toward constructing low-cost and high-density flood monitoring systems. However, in real-world flood scenarios, the wireless channel is simultaneously affected by rainfall-induced signal attenuation and complex multipath effects caused by surface runoff [...] Read more.
Leveraging ubiquitous wireless signals for environmental sensing provides a highly promising pathway toward constructing low-cost and high-density flood monitoring systems. However, in real-world flood scenarios, the wireless channel is simultaneously affected by rainfall-induced signal attenuation and complex multipath effects caused by surface runoff (water accumulation). These two physical phenomena become intertwined in the received signals, resulting in severe feature ambiguity. This not only greatly limits the accuracy of environmental sensing but also hinders communication systems from performing effective channel compensation. How to disentangle these combined effects from a single wireless link represents a fundamental scientific challenge for achieving high-precision wireless environmental sensing and ensuring communication reliability under harsh conditions. To address this challenge, we propose a novel signal processing framework that aims to effectively decouple the effects of rainfall and surface runoff from Channel State Information (CSI) collected using commercial Wi-Fi devices. The core idea of our method lies in first constructing a two-dimensional CSI spatiotemporal spectrogram from continuously captured multicarrier CSI data. This spectrogram enables high-resolution visualization of the unique “fingerprints” of different physical effects—rainfall manifests as smooth background attenuation, whereas surface runoff appears as sparse high-frequency textures. Building upon this representation, we design and implement a Dual-Decoder Convolutional Autoencoder deep learning model. The model employs a shared encoder to learn the mixed CSI features, while two distinct decoder branches are responsible for reconstructing the global background component attributed to rainfall and the local texture component associated with surface runoff, respectively. Based on the decoupled signal components, we achieve simultaneous and highly accurate estimation of rainfall intensity (mean absolute error below 1.5 mm/h) and surface water accumulation (detection accuracy of 98%). Furthermore, when the decoupled and refined channel estimates are applied to a communication receiver for channel equalization, the Bit Error Rate (BER) is reduced by more than one order of magnitude compared to conventional equalization methods. Full article
Show Figures

Figure 1

28 pages, 2737 KB  
Article
Channel Estimation in UAV-Assisted OFDM Systems by Leveraging LoS and Echo Sensing with Carrier Aggregation
by Zhuolei Chen, Wenbin Wu, Renshu Wang, Manshu Liang, Weihao Zhang, Shuning Yao, Wenquan Hu and Chaojin Qing
Sensors 2025, 25(20), 6392; https://doi.org/10.3390/s25206392 - 16 Oct 2025
Viewed by 539
Abstract
Unmanned aerial vehicle (UAV)-assisted wireless communication systems often employ the carrier aggregation (CA) technique to alleviate the issue of insufficient bandwidth. However, in high-mobility UAV communication scenarios, the dynamic channel characteristics pose significant challenges to channel estimation (CE). Given these challenges, this paper [...] Read more.
Unmanned aerial vehicle (UAV)-assisted wireless communication systems often employ the carrier aggregation (CA) technique to alleviate the issue of insufficient bandwidth. However, in high-mobility UAV communication scenarios, the dynamic channel characteristics pose significant challenges to channel estimation (CE). Given these challenges, this paper proposes a line-of-sight (LoS) and echo sensing-based CE scheme for CA-enabled UAV-assisted communication systems. Firstly, LoS sensing and echo sensing are employed to obtain sensing-assisted prior information, which refines the CE for the primary component carrier (PCC). Subsequently, the path-sharing property between the PCC and secondary component carriers (SCCs) is exploited to reconstruct SCC channels in the delay-Doppler (DD) domain through a three-stage process. The simulation results demonstrate that the proposed method effectively enhances the CE accuracy for both the PCC and SCCs. Furthermore, the proposed scheme exhibits robustness against parameter variations. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 926 KB  
Article
Pilot Design Based on the Distribution of Inter-User Interference for Grant-Free Access
by Hao Wang, Xiujun Zhang and Shidong Zhou
Electronics 2025, 14(20), 3988; https://doi.org/10.3390/electronics14203988 - 12 Oct 2025
Viewed by 298
Abstract
Massive random access (MRA) involves massive devices sporadically and randomly sending short-packet messages through a shared wireless channel. It is a crucial scenario in 6G communications to support the Internet-of-Things. Grant-free access, where devices complete transmission without grants, is a promising scheme for [...] Read more.
Massive random access (MRA) involves massive devices sporadically and randomly sending short-packet messages through a shared wireless channel. It is a crucial scenario in 6G communications to support the Internet-of-Things. Grant-free access, where devices complete transmission without grants, is a promising scheme for MRA. In grant-free access, the design of pilot sequences has a significant effect on joint activity detection and channel estimation (JADCE) and, consequently, system performance. Inter-user interference (IUI), caused by non-orthogonal pilots, is random owing to the random set of active users, and existing studies on pilot design for grant-free access often attempt to reduce the mean IUI. However, the performance of JADCE is affected not only by the mean IUI but also by the tail behavior of the IUI distribution. In this paper, we propose a metric for pilot design, exploiting the distribution of IUI to reflect the impact of pilots on JADCE more precisely. We further develop a pilot design algorithm based on the proposed metric, with modified approximate message passing (AMP) adopted as the JADCE algorithm. Simulation results demonstrate that the proposed pilot design reduces the probability of missed detection of active users and channel estimation error, compared with existing pilot designs. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 944 KB  
Article
Robust Optimization for IRS-Assisted SAGIN Under Channel Uncertainty
by Xu Zhu, Litian Kang and Ming Zhao
Future Internet 2025, 17(10), 452; https://doi.org/10.3390/fi17100452 - 1 Oct 2025
Viewed by 277
Abstract
With the widespread adoption of space–air–ground integrated networks (SAGINs) in next-generation wireless communications, intelligent reflecting surfaces (IRSs) have emerged as a key technology for enhancing system performance through passive link reinforcement. This paper addresses the prevalent issue of channel state information (CSI) uncertainty [...] Read more.
With the widespread adoption of space–air–ground integrated networks (SAGINs) in next-generation wireless communications, intelligent reflecting surfaces (IRSs) have emerged as a key technology for enhancing system performance through passive link reinforcement. This paper addresses the prevalent issue of channel state information (CSI) uncertainty in practical systems by constructing an IRS-assisted multi-hop SAGIN communication model. To capture the performance degradation caused by channel estimation errors, a norm-bounded uncertainty model is introduced. A simulated annealing (SA)-based phase optimization algorithm is proposed to enhance system robustness and improve worst-case communication quality. Simulation results demonstrate that the proposed method significantly outperforms traditional multiple access strategies (SDMA and NOMA) under various user densities and perturbation levels, highlighting its stability and scalability in complex environments. Full article
Show Figures

Figure 1

17 pages, 931 KB  
Article
Channel Estimation Using Linear Regression with Bernoulli–Gaussian Noise
by Prerna Chaudhary, B. R. Manoj, Isha Chauhan and Manav Bhatnagar
Appl. Sci. 2025, 15(19), 10590; https://doi.org/10.3390/app151910590 - 30 Sep 2025
Viewed by 314
Abstract
This study introduces a novel mathematical framework for a machine learning algorithm tailored to address linear regression problems in the presence of non-Gaussian estimation noise. In particular, we focus on Bernoulli–Gaussian noise, which frequently occurs in practical scenarios such as wireless communication channels [...] Read more.
This study introduces a novel mathematical framework for a machine learning algorithm tailored to address linear regression problems in the presence of non-Gaussian estimation noise. In particular, we focus on Bernoulli–Gaussian noise, which frequently occurs in practical scenarios such as wireless communication channels and signal processing systems. We apply our framework within the context of wireless systems, particularly emphasizing its utility in channel estimation tasks. This article demonstrates the efficacy of linear regression in estimating wireless channel fading coefficients under the influence of additive Bernoulli–Gaussian noise. Through comparative analysis with Gaussian noise scenarios, we underscore the indispensability of the proposed framework. Additionally, we evaluate the performance of the maximum-likelihood estimator using gradient descent, highlighting the superiority of estimators tailored to non-Gaussian noise assumptions over those relying solely on simplified Gaussian models. Full article
Show Figures

Figure 1

19 pages, 2098 KB  
Article
Radio Frequency Fingerprint-Identification Learning Method Based-On LMMSE Channel Estimation for Internet of Vehicles
by Lina Sheng, Yao Xu, Yan Li, Yang Yang and Nan Fu
Mathematics 2025, 13(19), 3124; https://doi.org/10.3390/math13193124 - 30 Sep 2025
Viewed by 352
Abstract
As a typical representative of complex networks, the Internet of Vehicles (IoV) is more vulnerable to malicious attacks due to the mobility and complex environment of devices, which requires a secure and efficient authentication mechanism. Radio frequency fingerprinting (RFF) presents a novel research [...] Read more.
As a typical representative of complex networks, the Internet of Vehicles (IoV) is more vulnerable to malicious attacks due to the mobility and complex environment of devices, which requires a secure and efficient authentication mechanism. Radio frequency fingerprinting (RFF) presents a novel research perspective for identity authentication within the IoV. However, as device fingerprint features are directly extracted from wireless signals, their stability is significantly affected by variations in the communication channel. Furthermore, the interplay between wireless channels and receiver noise can result in the distortion of the received signal, complicating the direct separation of the genuine features of the transmitted signals. To address these issues, this paper proposes a method for RFF extraction based on the physical sidelink broadcast channel (PSBCH). First, necessary preprocessing is performed on the signal. Subsequently, the wireless channel, which lacks genuine features, is estimated using linear minimum mean square error (LMMSE) techniques. Meanwhile, the previous statistical models of the channel and noise are incorporated into the analysis process to accurately capture the channel distortion caused by multipath effects and noise. Ultimately, the impact of the channel is mitigated through a channel-equalization operation to extract fingerprint features, and identification is carried out using a structurally optimized ShuffleNet V2 network. Based on a lightweight design, this network integrates an attention mechanism that enables the model to adaptively concentrate on the most distinguishable weak features in low signal-to-noise ratio (SNR) conditions, thereby enhancing the robustness of feature extraction. The experimental results show that in fixed and mobile scenarios with low SNR, the classification accuracy of the proposed method reaches 96.76% and 91.05%, respectively. Full article
(This article belongs to the Special Issue Machine Learning in Computational Complex Systems)
Show Figures

Figure 1

19 pages, 1027 KB  
Article
A Convolutional-Transformer Residual Network for Channel Estimation in Intelligent Reflective Surface Aided MIMO Systems
by Qingying Wu, Junqi Bao, Hui Xu, Benjamin K. Ng, Chan-Tong Lam and Sio-Kei Im
Sensors 2025, 25(19), 5959; https://doi.org/10.3390/s25195959 - 25 Sep 2025
Cited by 1 | Viewed by 582
Abstract
Intelligent Reflective Surface (IRS)-aided Multiple-Input Multiple-Output (MIMO) systems have emerged as a promising solution to enhance spectral and energy efficiency in future wireless communications. However, accurate channel estimation remains a key challenge due to the passive nature and high dimensionality of IRS channels. [...] Read more.
Intelligent Reflective Surface (IRS)-aided Multiple-Input Multiple-Output (MIMO) systems have emerged as a promising solution to enhance spectral and energy efficiency in future wireless communications. However, accurate channel estimation remains a key challenge due to the passive nature and high dimensionality of IRS channels. This paper proposes a lightweight hybrid framework for cascaded channel estimation by combining a physics-based Bilinear Alternating Least Squares (BALS) algorithm with a deep neural network named ConvTrans-ResNet. The network integrates convolutional embeddings and Transformer modules within a residual learning architecture to exploit both local and global spatial features effectively while ensuring training stability. A series of ablation studies is conducted to optimize architectural components, resulting in a compact configuration with low parameter count and computational complexity. Extensive simulations demonstrate that the proposed method significantly outperforms state-of-the-art neural models such as HA02, ReEsNet, and InterpResNet across a wide range of SNR levels and IRS element sizes in terms of the Normalized Mean Squared Error (NMSE). Compared to existing solutions, our method achieves better estimation accuracy with improved efficiency, making it suitable for practical deployment in IRS-aided systems. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

28 pages, 29247 KB  
Article
Channel Capacity Analysis of Partial-CSI SWIPT Opportunistic Amplify-and-Forward (OAF) Relaying over Rayleigh Fading
by Kyunbyoung Ko and Seokil Song
Electronics 2025, 14(19), 3791; https://doi.org/10.3390/electronics14193791 - 24 Sep 2025
Viewed by 241
Abstract
This paper presents an analytical framework for the channel capacity evaluation of simultaneous wireless information and power transfer (SWIPT)-enabled opportunistic amplify-and-forward (OAF) relaying systems over Rayleigh fading channels. For the SWIPT, we employ a power splitter (PS) at the relay, which splits the [...] Read more.
This paper presents an analytical framework for the channel capacity evaluation of simultaneous wireless information and power transfer (SWIPT)-enabled opportunistic amplify-and-forward (OAF) relaying systems over Rayleigh fading channels. For the SWIPT, we employ a power splitter (PS) at the relay, which splits the received signal into the information transmission and the energy-harvesting parts. By modeling the partial channel state information (P-CSI)-based SWIPT OAF system as an equivalent non-SWIPT OAF configuration, a semi-lower bound and a new upper bound on the ergodic channel capacity are derived. A refined approximation is then obtained by averaging these bounds, yielding a simple yet accurate analytical estimate of the true capacity. Simulation results confirm that the proposed approximations closely track the actual performance across a wide range of signal-to-noise ratios (SNRs) and relay configurations. They further demonstrate that SR-based relay selection provides higher capacity than RD-based selection, primarily due to its direct influence on energy harvesting efficiency at the relay. In addition, diversity advantages manifest mainly as SNR improvements, rather than as gains in diversity order. The proposed framework thus serves as a practical and insightful tool for the capacity analysis and design of SWIPT-enabled cooperative networks, with direct relevance to energy-constrained Internet of Things (IoT) and wireless sensor applications. Full article
(This article belongs to the Special Issue Applications of Image Processing and Sensor Systems)
Show Figures

Figure 1

20 pages, 7914 KB  
Article
Channel Estimation for Intelligent Reflecting Surface Empowered Coal Mine Wireless Communication Systems
by Yang Liu, Kaikai Guo, Xiaoyue Li, Bin Wang and Yanhong Xu
Entropy 2025, 27(9), 932; https://doi.org/10.3390/e27090932 - 4 Sep 2025
Viewed by 645
Abstract
The confined space of coal mines characterized by curved tunnels with rough surfaces and a variety of deployed production equipment induces severe signal attenuation and interruption, which significantly degrades the accuracy of conventional channel estimation algorithms applied in coal mine wireless communication systems. [...] Read more.
The confined space of coal mines characterized by curved tunnels with rough surfaces and a variety of deployed production equipment induces severe signal attenuation and interruption, which significantly degrades the accuracy of conventional channel estimation algorithms applied in coal mine wireless communication systems. To address these challenges, we propose a modified Bilinear Generalized Approximate Message Passing (mBiGAMP) algorithm enhanced by intelligent reflecting surface (IRS) technology to improve channel estimation accuracy in coal mine scenarios. Due to the presence of abundant coal-carrying belt conveyors, we establish a hybrid channel model integrating both fast-varying and quasi-static components to accurately model the unique propagation environment in coal mines. Specifically, the fast-varying channel captures the varying signal paths affected by moving conveyors, while the quasi-static channel represents stable direct links. Since this hybrid structure necessitates an augmented factor graph, we introduce two additional factor nodes and variable nodes to characterize the distinct message-passing behaviors and then rigorously derive the mBiGAMP algorithm. Simulation results demonstrate that the proposed mBiGAMP algorithm achieves superior channel estimation accuracy in dynamic conveyor-affected coal mine scenarios compared with other state-of-the-art methods, showing significant improvements in both separated and cascaded channel estimation. Specifically, when the NMSE is 103, the SNR of mBiGAMP is improved by approximately 5 dB, 6 dB, and 14 dB compared with the Dual-Structure Orthogonal Matching Pursuit (DS-OMP), Parallel Factor (PARAFAC), and Least Squares (LS) algorithms, respectively. We also verify the convergence behavior of the proposed mBiGAMP algorithm across the operational signal-to-noise ratios range. Furthermore, we investigate the impact of the number of pilots on the channel estimation performance, which reveals that the proposed mBiGAMP algorithm consumes fewer number of pilots to accurately recover channel state information than other methods while preserving estimation fidelity. Full article
(This article belongs to the Special Issue Wireless Communications: Signal Processing Perspectives, 2nd Edition)
Show Figures

Figure 1

15 pages, 1850 KB  
Article
Adaptive Transmission Performance of Underwater Autoencoder Group Based on DNN Channel Estimation
by Dan Chen, Jiongxuan Li and Rui Wang
Photonics 2025, 12(9), 865; https://doi.org/10.3390/photonics12090865 - 28 Aug 2025
Viewed by 649
Abstract
Autoencoders can leverage deep neural networks to jointly optimize transmitters and receivers for end-to-end communication performance. The time-varying characteristics of underwater channels due to turbulence, absorption, and scattering seriously affect the reliability of autoencoder-based underwater wireless optical communication (UWOC) systems. In order to [...] Read more.
Autoencoders can leverage deep neural networks to jointly optimize transmitters and receivers for end-to-end communication performance. The time-varying characteristics of underwater channels due to turbulence, absorption, and scattering seriously affect the reliability of autoencoder-based underwater wireless optical communication (UWOC) systems. In order to reduce the need for complex online training of autoencoders in real underwater channels, we propose a deep autoencoder group adaptive transmission scheme, which can adaptively select the optimal autoencoder group at the transmitter side for signaling based on the instantaneous channel state information (CSI) estimation obtained using a deep neural network (DNN) during the online transmission process, thus suppressing the underwater effect of the time-varying channel. The selection of the optimal number of encoders in the autoencoder group can balance the error performance and complexity of the system, as well as reduce the complexity of the system while ensuring the reliability of the adaptive transmission system. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

14 pages, 730 KB  
Article
A Configurable Parallel Architecture for Singular Value Decomposition of Correlation Matrices
by Luis E. López-López, David Luviano-Cruz, Juan Cota-Ruiz, Jose Díaz-Roman, Ernesto Sifuentes, Jesús M. Silva-Aceves and Francisco J. Enríquez-Aguilera
Electronics 2025, 14(16), 3321; https://doi.org/10.3390/electronics14163321 - 21 Aug 2025
Viewed by 710
Abstract
Singular value decomposition (SVD) plays a critical role in signal processing, image analysis, and particularly in MIMO channel estimation, where it enables spatial multiplexing and interference mitigation. This study presents a configurable parallel architecture for computing SVD on 4 × 4 and 8 [...] Read more.
Singular value decomposition (SVD) plays a critical role in signal processing, image analysis, and particularly in MIMO channel estimation, where it enables spatial multiplexing and interference mitigation. This study presents a configurable parallel architecture for computing SVD on 4 × 4 and 8 × 8 correlation matrices using the Jacobi algorithm with Givens rotations, optimized via CORDIC. Exploiting algorithmic parallelism, the design achieves low-latency performance on a Virtex-5 FPGA, with processing times of 5.29 µs and 24.25 µs, respectively, while maintaining high precision and efficient resource usage. These results confirm the architecture’s suitability for real-time wireless systems with strict latency demands, such as those defined by the IEEE 802.11n standard. Full article
Show Figures

Figure 1

19 pages, 823 KB  
Article
Integrating Large Language Models into Fluid Antenna Systems: A Survey
by Tingsong Deng, Yan Gao, Tong Zhang, Mingjie Shao, Wanli Ni and Hao Xu
Sensors 2025, 25(16), 5177; https://doi.org/10.3390/s25165177 - 20 Aug 2025
Viewed by 1159
Abstract
Fluid antenna system (FAS) has emerged as a promising technology for next-generation wireless networks, offering dynamic reconfiguration capabilities to adapt to varying channel conditions. However, FAS faces critical issues from channel estimation to performance optimization. This paper provides a survey of a how [...] Read more.
Fluid antenna system (FAS) has emerged as a promising technology for next-generation wireless networks, offering dynamic reconfiguration capabilities to adapt to varying channel conditions. However, FAS faces critical issues from channel estimation to performance optimization. This paper provides a survey of a how large language model (LLM) can be leveraged to address these issues. We review potential approaches and recent advancements in LLM-based FAS channel estimation, LLM-assisted fluid antenna position optimization, and LLM-enabled FAS network simulation. Furthermore, we discuss the role of LLM agents in FAS management. As an experimental study, we evaluated the performance of our designed LLM-enhanced genetic algorithm. The results demonstrated a 75.9% performance improvement over the traditional genetic algorithm on the Rastrigin function. Full article
Show Figures

Figure 1

20 pages, 5781 KB  
Article
Performance Evaluation of Uplink Cell-Free Massive MIMO Network Under Weichselberger Rician Fading Channel
by Birhanu Dessie, Javed Shaikh, Georgi Iliev, Maria Nenova, Umar Syed and K. Kiran Kumar
Mathematics 2025, 13(14), 2283; https://doi.org/10.3390/math13142283 - 16 Jul 2025
Viewed by 958
Abstract
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a [...] Read more.
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a large number of users at the same time. It has the ability to provide high spectral efficiency (SE) as well as improved coverage and interference management, compared to traditional cellular networks. However, estimating the channel with high-performance, low-cost computational methods is still a problem. Different algorithms have been developed to address these challenges in channel estimation. One of the high-performance channel estimators is a phase-aware minimum mean square error (MMSE) estimator. This channel estimator has high computational complexity. To address the shortcomings of the existing estimator, this paper proposed an efficient phase-aware element-wise minimum mean square error (PA-EW-MMSE) channel estimator with QR decomposition and a precoding matrix at the user side. The closed form uplink (UL) SE with the phase MMSE and proposed estimators are evaluated using MMSE combining. The energy efficiency and area throughput are also calculated from the SE. The simulation results show that the proposed estimator achieved the best SE, EE, and area throughput performance with a substantial reduction in the complexity of the computation. Full article
Show Figures

Figure 1

25 pages, 34645 KB  
Article
DFN-YOLO: Detecting Narrowband Signals in Broadband Spectrum
by Kun Jiang, Kexiao Peng, Yuan Feng, Xia Guo and Zuping Tang
Sensors 2025, 25(13), 4206; https://doi.org/10.3390/s25134206 - 5 Jul 2025
Viewed by 902
Abstract
With the rapid development of wireless communication technologies and the increasing demand for efficient spectrum utilization, broadband spectrum sensing has become critical in both civilian and military fields. Detecting narrowband signals under broadband environments, especially under low-signal-to-noise-ratio (SNR) conditions, poses significant challenges due [...] Read more.
With the rapid development of wireless communication technologies and the increasing demand for efficient spectrum utilization, broadband spectrum sensing has become critical in both civilian and military fields. Detecting narrowband signals under broadband environments, especially under low-signal-to-noise-ratio (SNR) conditions, poses significant challenges due to the complexity of time–frequency features and noise interference. To this end, this study presents a signal detection model named deformable feature-enhanced network–You Only Look Once (DFN-YOLO), specifically designed for blind signal detection in broadband scenarios. The DFN-YOLO model incorporates a deformable channel feature fusion network (DCFFN), replacing the concatenate-to-fusion (C2f) module to enhance the extraction and integration of channel features. The deformable attention mechanism embedded in DCFFN adaptively focuses on critical signal regions, while the loss function is optimized to the focal scaled intersection over union (Focal_SIoU), improving detection accuracy under low-SNR conditions. To support this task, a signal detection dataset is constructed and utilized to evaluate the performance of DFN-YOLO. The experimental results for broadband time–frequency spectrograms demonstrate that DFN-YOLO achieves a mean average precision (mAP50–95) of 0.850, averaged over IoU thresholds ranging from 0.50 to 0.95 with a step of 0.05, significantly outperforming mainstream object detection models such as YOLOv8, which serves as the benchmark baseline in this study. Additionally, the model maintains an average time estimation error within 5.55×105 s and provides preliminary center frequency estimation in the broadband spectrum. These findings underscore the strong potential of DFN-YOLO for blind signal detection in broadband environments, with significant implications for both civilian and military applications. Full article
(This article belongs to the Special Issue Emerging Trends in Cybersecurity for Wireless Communication and IoT)
Show Figures

Figure 1

Back to TopTop